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Maximum-entropy method for analytic continuation of quantum Monte Carlo data
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An outstanding problem in the simulation of condensed-matter phenomena is how to obtain
dynamical information. We consider the numerical analytic continuation of imaginary-time quan-
tum Monte Carlo data to obtain real-frequency spectral functions. This is an extremely ill-posed

problem similar to the inversion of a Laplace transform. We suggest an image-reconstruction ap-

proach, which has been widely applied to data analysis in experimental research. Specifically, we

apply the maximum-entropy method (ME) to the analytic continuation of quantum Monte Carlo
data. We report encouraging preliminary results for the Fano-Anderson model of an impurity state
in a continuum. The incorporation of additional prior information, such as sum rules and asymp-
totic behavior, can be expected to significantly improve results. We compare (ME) to alternative
methods. We also discuss statistical error propagation for the analytic continuation problem via the
likelihood function, which is independent of the choice of image-reconstruction method. This in-

cludes the sensitivity of the data to structure in the spectral function, the optimization of Monte
Carlo simulations, and how to incorporate covariance in the statistical errors of the Monte Carlo
method.

I. INTRODUCTION

The dynamical properties of strongly correlated
many-body systems are of fundamental interest in most
areas of condensed-matter research. Quantum Monte
Carlo methods' for the numerical simulation of such sys-
tems provide data on thermodynamic Green's functions
in imaginary time. While this is appropriate for the
determination of thermodynamic properties, it is difficult
to extract the dynamical properties from the data because
an analytic continuation from imaginary time to real time
is required. The transform which relates the imaginary-
time data to the real-frequency spectral function is simi-
lar to a Laplace transform. If one has physical reasons to
believe in a model for the spectral function, the parame-
ters of the model can be determined by fitting to the data.
In the absence of a model, which is generally the case, the
problem of inferring the spectral function by inverting
such transforms can be extremely ill posed when the data
are noisy and incomplete.

We suggest that this analytic continuation is essentially
an image-reconstruction problem, which is similar to oth-
ers in a wide variety of experimental fields including ra-
dio astronomy, magnetic resonance imaging, photograph-
ic image enhancement, neutron scattering, etc. The im-
age sought in the present case is the real-frequency spec-
tral function. Almost any of the successful methods for
image reconstruction should work with sufficiently good
data. Given the limited data usually available, image-
reconstruction methods improve as they incorporate
more prior knowledge about the quantity of interest. In
choosing an image-reconstruction method for our prob-
lem, the criteria to be considered should include: (1) the
conceptual foundations of the statistical inference ap-
proach; (2) the efficiency of the method in making the
most out of the prior knowledge and the data available,

with the caution that the method should tend to put
structure in the image only if there is statistically
significant evidence for it in the data; and (3) the compu-
tational cost and programming effort required.

The maximum-entropy method (ME) (Ref. 3) meets the
first two criteria admirably, but it can score poorly on the
third. For the analytic continuation problem, however,
this weakness is of little consequence because the compu-
tational cost of ME is negligible compared to the cost of
the quantum Monte Carlo calculations required to pro-
duce the data. The programming effort required is also
negligible because we use an existing third generation
commercial code for ME image processing.

ME, like many successful image-reconstruction tech-
niques, can be understood in terms of Bayesian probabili-
ty theory, also called the law of conditional probabilities,
which provides a logically consistent approach to statisti-
cal inference. Bayes' theorem encapsulates the learning
process: our state of knowledge about some quantity of
interest after an experiment (or simulation) depends on
both the relevant data and our prior state of knowledge
(or the lack thereof).

For the analytic continuation problem, the most im-
portant prior knowledge is that the spectral function is a
positive additive probability distribution. Additional pri-
or knowledge may include sum rules, symmetry proper-
ties, asymptotic behavior, etc. ME is a special case of
Bayes theorem appropriate to such probability distribu-
tions. It enforces the positivity of the spectral function, it
tends to put structure in the image only if warranted by
the data, and for most applications it has no adjustable
parameters. When there are adjustable parameters, these
can (in principle) also be estimated using Bayesian
methods. Because ME is based on probability theory, it
can provide error estimates of the reliability of the
features in the spectral function given an adequate char-
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acterization of the statistical errors in the data. There is
a vast body of experience in using ME on diverse image-
reconstruction problems, which provides insight into the
images ME will produce for our problem.

Figure 1 shows an example of the use of the ME
method for photographic image enhancement. The pho-
tograph of a "getaway" car is blurred because of car
motion observed with a finite camera shutter speed. The
blurring function is evident from the streak produced by
the point source above the fender. This is used as prior
knowledge in a ME reconstruction. While the number on
the license plate cannot be read from the original photo,
it is easily read from the ME reconstruction.

The present paper describes the application of ME to
the analytic continuation problem for Monte Carlo data.
We use the spectral function of the Fano-Anderson mod-
el of a bound state in a continuum for illustration. We
compare ME to other approaches to the analytic con-
tinuation problem in the recent literature by Jarrell and
Biham, and by White et al. The problem has also been
approached by Schuttler and Scalapino' using least-
squares fitting, and by Hirsch" using Fade approximants.

The propagation of statistical errors in the analytic
continuation of Monte Carlo data is embodied in the like-
lihood function, which is independent of the choice of
image-reconstruction method. This enables error esti-
mates of the integrated intensities of features in an image,
such as is implemented in modern versions of ME. We
analyze the likelihood function for the analytic continua-

tion problem to show that the data are most sensitive to
sharp structure in the spectral function for frequencies
near the chemical potential, and that at higher and lower
frequencies only broad structure can be reliably deter-
mined. We discuss a likelihood function analysis of the
optimization of Monte Carlo calculations. We suggest
how the likelihood function might be modified to account
for covariance in the statistical errors of quantum Monte
Carlo data.

II. THE ANALYTIC CONTINUATION PROBLENI

Quantum Monte Carlo generates the imaginary time
(Matsurbara} Green's function

G(~)=——(T,[&(~)& (0)]),
where v is imaginary time, T, denotes time ordering, &

and 8 are particle creation and annihilation operators,
and ( ) denotes a grand canonical ensemble average over
the states of the many-body system. Knowledge of G(r}
in the range 0 ~ r ~ )33, where P = 1 /k' T, is complete be-
cause G (r) is periodic for bosons and antiperiodic for fer-
mions. The dynamical properties of interest are given by
the density of single-particle states, which is termed the
spectral function, A (cu). This is related to G(r) by a
transform
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FIG. 1. Optical deconvolution: an example of the use of ME.



2382 R. N. SILVER, D. S. SIVIA, AND J. E. GUBERNATIS 41

where p is the chemical potential. The problem is to in-
vert this transform in order to determine A (to) from
G(r). Because this involves going from imaginary time
to real time, it is equivalent to analytic continuation.

The Monte Carlo calculations provide data, I Gd(rz ) I

(i.e., calculated at a discrete set of r points, I w& I, distri-
buted in the range 0~ ~1, ~P), about G(r), which are in-

complete and noisy (i.e., subject to statistical error). In
this case, the inversion is ill posed because there exist an
infinity of A (to}, all of which fit the data according to a

measure. Like the inversion of a Laplace transform,
the analytic continuation problem is extremely ill posed,
because very small changes in the data can lead to very
large changes in A (co). The fitting of an A (co) to the
data by minimization of X (the method of least squares),
is likely to put statistically insignificant structure into the
A (to) obtained. This nonuniqueness and extreme sensi-
tivity to error have limited the ability to infer A (to) from
data produced by quantum Monte Carlo calculations.
The data may also be subject to systematic error because
of the limitations of the quantum Monte Carlo calcula-
tion, but we do not consider these further in this paper.

likelihood function, P[Gd(r)~ A (co)]. It represents the
modification of the prior probability on A (to) by the ex-
periment. The third is the conditional probability of
A (co) given the data after the experiment,
P[ A (co)~Gd(r)], which is termed the posterior probabili-
ty. The theorem states that the posterior probability is
proportional to the product of the prior probability and
the likelihood function, i.e.,

P [ A (co)~Gd(r)] ~P[Gd(r)
~
A (to)] XP[A (co)] . (6)

The image to be presented, At(co), is the A (co) which
maximizes the posterior probability. The statistical relia-
bility of the image is to be obtained from the variation of
P[ A (co) Gd(r)] about this maximum.

The likelihood function contains the new information
provided by the experiment. If the data, IGd(r&)], are
assumed to be independent and Gaussian distributed with
error O. k, the likelihood function is related to the y mea-
sure by

P[Gd(r)~ A (co)] o-exp( —X l2),
where

III. THE MAXIMUM-ENTROPY METHOD

and

f dry A (ro) =1.0 . (4)

Bayes' theorem provides our basis for statistical
reasoning. It is simply the law of conditional probabili-
ties:

P[X, Y]=P[XiY]xP[Y]=P[YiX]xP[X]. (5)

The image-reconstruction approach we adopt is to
infer the "best" A (co) according to probability theory ar-
guments. The method should tend to put structure in
A (co) only if there is statistically significant evidence for
it in the data. The method must also be capable of pro-
viding estimates of the statistical reliability of the results.
The method should enforce whatever prior knowledge
about A (to) we may have, such as positivity and sum
rules; i.e.,

A (co) ~0,

Here, GI(r&) are the data that a given choice of A (co)
would produce in the absence of noise. For example, if
the A (co) is to be determined in pixels at discrete fre-
quencies, Ice, ), then

Gf(T&) =g A (to, )b,~
f

If one ignores the prior probability in Eq. (6), i.e.,
P [ A (co)]~const, then maximizing the posterior proba-
bility is equivalent to fitting the data by the method of
least squares, i,e., minimizing y .

The errors will be assumed to be independent in all the
simulations of this paper. In Sec. V, we shall discuss the
generalization of the likelihood function to nonindepen-
dent data, which may be important for real Monte Carlo
simulations.

The maximum-entropy method corresponds to a par-
ticular choice of prior that incorporates the prior
knowledge that the spectral function is positive and addi-
tive. In that case, a variety of different statistical infer-
ence arguments ' lead to the conclusion that the prior
should take the form

Here, P[X, Y] is the joint probability of X and Y, and
P[X~ Y] is the conditional probability of X given Y. To
specialize this to the analytic continuation problem, three
quantities enter into the theorem. The first is the proba-
bility distribution of A(co) before the experiment (or
Monte Carlo calculation) is conducted, P [ A (to)], which
is termed the prior probability. For example, since we
know that A (co) cannot be negative, P [ A (co)] should be
zero for A (co} that go negative. The second is the condi-
tional probability of producing the data, I Gd ( rl, ) ), via
the experiment from a given A (co), which is termed the

P [ A (co) ] ~ exp(aS) . (10)

Here, S is the information theory entropy' of the image,
i.e.,

S =g b,co A (co, )
—m (co; )

—A (co; )ln
A(to;)

m(co, )

S is defined relative to a starting model, m (co), for ~ (~).
It is termed the default model, because it is the image to
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which the maximum-entropy method will default in the
absence of data. It is usually chosen to be the smoothest
function consistent with prior knowledge such as sum
rules. If, before the quantum Monte Carlo simulation, we
are completely ignorant about A (co) except for the sum

rule, we take m (co) to be fiat with a magnitude to satisfy
the sum rule in the frequency range of interest. More
generally, m (co) should be chosen by the maximum-

entropy method using the prior knowledge (e.g. , mo-
ments} as constraints (or "testable information" ).

While space does not permit a detailed presentation of
the variety of rationales leading to Eqs. (10) and (11),
condensed-rnatter scientists will understand a statistical
mechanics analogy. The thermodynamic entropy is the
logarithm of the number of different states by which one
can arrive at a given total energy, or any other macro-
scopic constraint. Analogously, the information theory
entropy is the logarithm of the number of ways by which
one can arrive at a given A (co) in a Poisson process from
the default model. For a fiat m(to), this is called the
"monkey argument" by the image processing communi-
ty': "If a team of monkeys throws a very large number
N of quanta randomly at the M a priori equivalent cells
of an image, then the probability of obtaining a particular
set (n „n~, . . . , n~ ) of occupation numbers shall be pro-
portional to the degeneracy N!/n, !nz! n~! "Mo. re

generally, in a Poisson process the expected number of
counts in a cell (or pixel) is n; =am(co, )bee. The parame-
ter a characterizes the degree of Auctuation about the de-
fault model. Application of Stirling's formula to the fac-
torials in a Poisson probability distribution then leads to
Eqs. (10) and (11).

Finally, the image is obtained by maximizing the poste-
rior probability. This is the same as functional variation
of A (co) to maximize the entropy, S, subject to a con-
straint on y with Lagrange multiplier 1/a; hence the
name maximum-entropy method. Clearly, 1/a controls
the relative importance of the prior knowledge and the
data. It is a statistical regularization parameter that is
fixed by self-consistency arguments. Before the experi-
ment the image starts at the default model and a = ~.
As the data improve a becomes smaller, and the image
deviates from the default model (hopefully) toward the
correct A (co) acquiring sharper resolution. In traditional
(or historic) ME, 1/a is chosen so that the image maxim-
izes the entropy subject to it being "feasible, " in that it
fits the data according to g N„where N, is the num-
ber of independent data. This is, of course, consistent
with the y -probability distribution for independent
Gaussian errors. In the more modern (or classic) ME,"
I/a is itself determined by Bayesian arguments that max-
imize the posterior probability of a given the data,
P [a~ Gd(r)]. The image exhibited is the center of a prob-

ability distribution (called the "bubble" ) of possible im-

ages. It is the classic ME formulation that makes possi-
ble estimates of the statistical significance of the features
in the image.

Maximum entropy is a statistical inference principle,
how one implements the principle is an algorithm, choos-
ing the appropriate prior knowledge is physics, and in-
corporating it in the algorithm is an art. Prior
knowledge should be built into the default model and into
the data as a constraint. The images are conditional on
the prior knowledge. The use of prior knowledge can be
essential to solving some problems, but invalid prior
knowledge can also lead to spurious results. For exam-
ple, using a functional model for A (to) defined by a few
parameters is a strong form of incorporating prior
knowledge. However, if the mode1 cannot be fit to the
data, at least some of the "prior knowledge" contained in
the model is wrong. In many image-processing situa-
tions, one uses the flexibility of ME to iteratively input
increasing amounts of prior knowledge (e.g. , first positivi-
ty only, then include symmetry, and so on), or to test the
validity of assumed "prior knowledge. " Often, an initial
ME image will suggest additional prior knowledge that
should be incorporated. ME images often lead to a phys-
ical model for the quantity of interest, the parameters of
which can then be estimated directly using the raw data.

IV. EXAMPLES OF NIE ANALYTIC CONTINUATION

Let us consider the spectral function shown in Fig. 2(a)
termed the "truth, " where we have binned the spectral
function into 41 pixels in the range —0 ~ co —p ~ Q. Us-
ing this in the transform, Eq. (2), with 13=10.0, 0=5.0,
binning with Dr =0.125, and adding 1% relative Gauss-
ian random noise yields the G (r) data shown in Fig. 2(b)
termed the "mock data. " The problem then is to recover
the spectral function from this mock data. Figure 2(c)
shows the ME reconstruction of the spectral function us-
ing the classical ME algorithm. One can see that the
basic structure of the truth is recovered in the reconstruc-
tion. However, the features at large

~
co —p are

broadened compared to features at small ~co
—

p, ~.

Most significantly, classic ME allows one to place error
bars on the integrated intensities of the features in the im-
age. The areas to be integrated over are marked by the
hatching. The corresponding integrated intensity and es-
timated error are shown. The central peak and the gap
for small ~co

—
p~ are well determined, but the side peaks

and the gap at large ~co
—p ~

are less well determined.
We compare ME with the method of White et al.

(WSSB). Their method is to minimize a modified least-
squares measure for the data which in our notation is

[Gd ( r„) Gf(r„)]'—
XwssB g +b +[A (co, }—A (co, , )] +h +6(—A (to, })A (co, ) .

k l

(12)
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FIG. 2. First simulation, with parameters A=5, bc@=0.25, p= 10, and Dr=0. 125: (a) true spectra] function; (b) resultant mocl
data, G(~), with relative Gaussian random error of l%%uo,

' (c) ME reconstruction; (d) reconstruction using the ~SSB (Ref. 9) algorithm.

The ftrst term is conventional. The second term with pa-
rameter b is designed to encourage smoothness and,
hence, minimize the structure in the reconstruction. The
third term with parameter h is designed to encourage (but
not enforce) the positivity of the spectral function. The
authors recommend how to iteratively adjust the parame-
ters b and h to arrive at g =1.1g;„,where g;„is the
lowest value attained when enforcing positivity but very
little smoothness. The resulting image is shown in Fig.
2(d). This image is essentially the same as the ME image,
but it lacks information about the statistical reliability of
the image. The WSSB approach is sensible since it in-
corporates the additional prior knowledge of positivity,
but it is also ad hoc because there is no self-consistent
way of choosing the parameters b and h. Moreover, the
smoothness assumption (correlations between neighbor-
ing pixels) is invalid prior knowledge, as there are spec-
tral functions that are not smooth (such as the Fano-
Anderson model we consider later).

The pathology of the smoothness assumption can be
shown with the spectral function in Fig. 3(a), which in-
cludes a sharp peak at ~cu

—
p~ =0 and broad structure at

large ~co
—

IM ~. Figure 3(b) shows the corresponding mock
data. Figure 3(c) shows the WSSB reconstruction at

1 1g~jn which produces spurious structure. Figure
3(d) shows the image obtained by turning the smoothness
up to achieve y =2.0y;„,and Fig. 3(e) has further
smoothing with y = 10.0+~jn One can see that the fits to
the broad structure are improving at the expense of

8=e,b b+gekdq 8k++ Al, (&k b+b &k),
k k

where we consider a one-dimensional band with

(13)

Ak =&c/L; ek = —w cosk . (14)

Here b is the creation operator for an electron on the
impurity site, 8 k is the creation operator for an electron
in the band, e, is the impurity level energy, 2w is the
bandwidth, Ak is the coupling between the impurity level
and the band, and L, is the lattice spacing. For this mod-
el, one can analytically derive the spectral function for
the impurity state from the imaginary-time impurity
Green's function

broadening the central peak. Finally, Fig. 3(f) shows the
ME reconstruction (symmetry was not enforced). It is
much closer to the original image, and it permits esti-
mates of the statistical reliability of features in the image,
as shown.

The method of Jarrell and Biham also attempts to en-
force smoothness and positivity while working with data
in Matsubara frequency space rather than imaginary
time. There is no explicit provision for statistical error
propagation in their method. It shows similar qualitative
behavior to the WSSB method.

For a more realistic example of ME analytic continua-
tion, we consider the spectral function of the Fano-
Anderson model of an impurity state in a continuum.
Here, the Hamiltonian is



41 MAXIMUM-ENTROPY METHOD FOR ANALYTIC CONTINUATION. . . 2385

Truth Mock Data

3 0

I
I

0

O

Q - ~

I
I I I

(b)-

o

I
I

I
I

—4 —2

I
I I

2 4
I I I I I

2 4 6

WSSB Reconstruction WSSB Reconstruction

I
I

I I I

(c) C)
o

I I I

3 0

o
3
~ o

C4

o

I I

2 4

o ~ I

I

-4 —2

~

I
1

2 4

WSSB Reconstruction ME Image

I
I

I

(e)
1 ps 0 07

O

I,'
I

o

0.3

1.05 + 0.15
A

0.7 0.2

I,'
I

. ( ~,

7

1p3 + 008

I I

2 4
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data G(~) with relative Gaussian random error of 1%; (c) reconstruction using the WSSB algorithmj (d) WSSB reconstruction with

extra smoothing, i.e., g =2.0y,
„

instead of the recommended y =1.1y,„;(e) WSSB reconstruction with further smoothing,
10 Og~ttt j (f) ME reconstruction.

Gb(r)= —(T,[b(r)b (0)]) . (15)

For a variety of choice of parameters, we can generate
mock Gb(r) data by discretizing in r and adding Gauss-
ian random noise. We then examine the ability of ME to
recover the impurity spectral function from such data.

Figure 4 shows the resulting simulations with parame-
ters as indicated in the figures. In all cases the spectral
function has a continuum between —1 and 1 and two 5
function peaks on each side with total contributions Z+

and Z to the sum rule, Eq. (4). The Gb(r) data generat-
ed now has many more ~ points and much greater statis-
tical accuracy than in the simulations of Figs. 2 and 3 in
order to provide sufficient information to reconstruct the
more complex spectral function. These errors are smaller
than those used in Refs. 8, 9, and 11, but they are within
the range of the current state of the art in quantum
Monte Carlo simulations. The data shown in the middle
of the figure are clearly insensitive to the detailed struc-
ture in the spectral function, which is what makes this
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A(s),}
)t,

Likelihood Function: Prob[(G(w)) ~A(ry, ),A(u, )]

FIG. 5. A section through a schematic likelihood function.
The data constrain the distribution well in some directions but
poorly in others. The good directions are associated with large
eigenvalues of the Hessian matrix (log-likelihood function) and
the bad directions with small ones.

V. THE LIKELIHOOD FUNCTION

OF THE ANALYTIC CONTINUATION PROBLEM

(5A);—:A (co;)—AM(co;) .

It can be written as

P[Gd(r)l A(co)]~exp( —
—,'5A .H 5A),

where the Hessian matrix is

(16)

(}2g 2

aA(~, )aA(~, )
17)

Since the eigenvectors of H form a complete set, the true
spectral function can be decomposed into a linear sum of
eigenvectors. Only the coefficients of eigenvectors with
large eigenvalues can be reliably determined from the
data. Eigenvectors associated with small eigenvalues cor-
respond to properties of the spectral function about
which there is a lack of evidence in the data. A schemat-
ic likelihood function is illustrated in Fig. 5, showing
good directions and bad directions. Any successful
image-reconstruction technique must recover the com-
ponents of the spectral function along the good directions
while suppressing the components along the bad direc-
tions. (Some readers may note that this is the basis of im-

age reconstruction by the method of singular value
decomposition. )

In this section, we address error propagation features

of the analytic continuation problem that are indepen-

dent of the choice of image-reconstruction method.

These features are embodied in the likelihood function

given by Eqs. (7)—(9).
The image that maximizes the likelihood function,

AM(ro), can be obtained by setting to zero the functional

derivative of the likelihood function with respect to the

pixels, ( A); —= A (co;). That is, A~(co) is the solution of
&,P [G, l

A]=0. Then the likelihood function contains
information about the probability of Auctuations about
this maximum

The open circles in Fig. 6 shows specific calculations of
the eigenvalue spectrum of the Hessian matrix (or log-
likelihood function) for the analytic continuation prob-
lem. The parameters are as in Fig. 2, but the statistical
errors are approximated as constant to emphasize
features of the analytic continuation problem that are in-

dependent of the particular spectral function under con-
sideration. One can see that the eigenvalue spectrum is a
very steep function, so that the only credible information
in the data is the few components of the spectral function
along the good eigenvectors. Figures 7(a)—7(d) show
some of the eigenvectors. Good eigenvectors have cuspy
structure for small leo —

lMl and only broad structure for
large ltd —

iM . Sharp structure at large lcm
—

iM corre-
sponds to bad eigenvectors about which there is little in-

formation in the data. These are suppressed by ME or
any other valid image-reconstruction method. Just such
tendencies are seen in the images of the Fano-Anderson
model shown in Fig. 4.

One can use these calculations to estimate the sensitivi-

ty of the reconstruction to the parameters of the quantum
Monte Carlo simulations, which can aid in the design of
simulations. The triangles in Fig. 6 shows changes to the
eigenvalue spectrum when the Monte Carlo parameters
are changed. The open circles correspond to the same
parameters as in Fig. 2. The altered parameters are as
follows: Fig. 6(a) decreasing the statistical noise from
0.01 to 0.001; Fig. 6(b) decreasing the time interval from
b r =0. 125; Fig. 6(c} increasing the temperature from
P=10 to 2.5. In Figs. 6(a) and 6(b), the eigenvalue spec-
trum retains its shape and simply scales with the changes
in parameters corresponding to the increasing amount of
data available. However, in Fig. 6(c) the eigenvalue spec-
trum changes its shape with changing temperature, indi-

cating that lower temperatures have more information
about the spectral function.

These calculations have an extremely important
caveat: Are the data obtained by quantum Monte Carlo
simulations in fact statistically independent? As far as we
know, this issue has not been addressed either theoreti-
cally or numerically. We suspect that there is nothing in
the logic of the quantum Monte Carlo method to assure
statistical independence. This may not be a serious con-
sideration if all one wants is a "pretty picture" of a possi-
ble spectral function that fits the data. A more careful
Monte Carlo calculation would provide not merely the
errors, O. k, but the full covariance matrix, C; . Clearly,
one has Ckl, =o-z. The statistical independence assump-
tion fails if C; has significant ofT'-diagonal components.
The obvious generalization of the likelihood function
would be

P [Gd l
A ] ~ exp( —

—,'5' .C ' Mx),

(5G); =Gd(~; )
—Gf(r;),

where C ' is the inverse of the covariance matrix.
Significant covariance in the quantum Monte Carlo data
will complicate the algebra of any image reconstruction
method, but it is essential to propagate statistical errors
correctly. In the classical ME method, for example, ig-
noring significant covariance would limit the ability to
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choose the appropriate weighting between the data and

the prior knowledge (or 1/a), or to estimate the statistical
reliability of the integrated intensities of features in the
spectral function.

The covariance matrix is real and symmetric. There-
fore, in principle, it can be diagonalized by an orthogonal
(unitary) transformation in the data space, and it should
have only positive eigenvalues. This should allow the ap-
plication of existing image-reconstruction algorithms to
the quantum Monte Carlo data, albeit in a transformed
data space. The nonindependence of the data will result
in many large eigenvalues of the covariance matrix that
do not significantly constrain the spectral function, and
the corresponding eigenvectors may be ignored. This
procedure might be implemented, for example, by singu-
lar value decomposition of the covariance matrix.

VI, CONCLUSIONS

We have shown' that the analytic continuation of
imaginary-time quantum Monte Carlo data to obtain
real-frequency spectral functions can be addressed as an
image-reconstruction problem. We have described and il-

lustrated the use of the maximum-entropy method for
this problem, and we have reported encouraging prelimi-

nary results for the spectral function of the Fano-
Anderson model of an impurity state coupled to a contin-
uum. We have compared our results to other proposals
for analytic continuation in the literature. We have also
addressed issues of statistical error propagation in the an-
alytic continuation of quantum Monte Carlo data, which
are independent of the choice of image-reconstruction
technique.

The success of the maximum-entropy method for the
analytic continuation problem opens the door to studying
the dynamical properties of quantum many-body systems

by quantum Monte Carlo methods. ' What remains is to
resolve the issues of statistical error propagation in
Monte Carlo calculations, and to begin to apply ME to
real data.
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