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Instability of the Nagaoka ferromagnetic state of the U = ac Hubbard model

B.S. Shastry*
AT&TBell Laboratories, Murray Hill, New Jersey 07974

H. R. Krishnamurthy and P. W. Anderson
Joseph Henry Laboratories of Physics, Prt'nceton University, Princeton, New Jersey 08544

(Received 24 April 1989)

We identify a "kF instability" of the Nagaoka ferromagnetic state of the U = ~ Hubbard model.
We show rigorously that for a large enough hole concentration the ferromagnet possesses an insta-

bility with respect to overturning an up-spin electron at the Fermi surface and placing it at the bot-
tom of a down-spin band made very narrow by correlation effects. We find a low-energy scale for
spin waves in this strong-coupling limit, in the form of a spin-wave stiffness that is much smaller

than its random-phase-approximation value.

In this paper we present some variational and exact re-
sults concerning the Hubbard model in the limit of large
U —pertaining mainly to the stability or otherwise of the
Nagaoka ferromagnet. The result of Nagaoka' (see also
Thouless ) is of considerable importance since it is a non-

perturbative and exact statement about the Hubbard
model for strong coupling, i.e., U= ~. The recent re-
vival of interest in the Hubbard model for large (but not
infinite) U, following Anderson's suggestion of its
relevance in high-T, superconductivity, has focused
mainly on the so-called Heisenberg-Hubbard model,
which in fact contains the U= ~ Hubbard model kinetic
energy as one of its two pieces. In addition, the theory of
itinerant electron ferromagnetism has traditionally relied
upon the Nagaoka ferromagnet as a clearly demonstrable
case of the existence of ferromagnetism in a one-band
Hubbard model.

Given the importance of the Nagaoka ferromagnet, the
"thermodynamic frailty" of the methods used to prove it
have been a source of concern to several workers over the
years. Nagaoka shows that the fully saturated ferromag-
net is a ground state in the case of one hole (measured
from half-filling) for U= oo and on appropriate lattices.
This method fails to prove ferromagnetism for a few as
two holes. In fact in the case of two holes we can readily
show, by essentially a Peierls construction, that a singlet

state must exist with an energy only 0(1/L ) above that
of the ferromagnet (we could cut the lattice into two
equal domains and confine one hole into each, and fur-
ther form the largest spin state for each domain and cou-
ple these two domain ferromagnets into a singlet —the
energy cost is only a boundary effect). For a thermo-
dynamic concentration of holes, such considerations real-
ly do not serve as proper guides. However, the one-
dimensional Hubbard model, with U = ~, has a separa-
tion of charge and spin, and so it is impossible to find a
state with lower energy than the Nagaoka state at any
concentration of holes. This leads to a possible scenario
in which the ferroxnagnet could survive (at U = ~) in two
and three dimensions for any hole concentration.

It is the purpose of this paper to show that the preced-
ing scenario is false —we present a variational wave func-
tion with one spin down with a finite wave vector, kF,
which has a lower energy than the Nagaoka state in two
and three dimensions for a sufficiently large concentra-
tion of holes. Our "excitation energy" is a strict upper
bound to the true excitation energy, and becomes nega-
tive for large enough 5 (density of holes) but it remains
non-negative in one dimension. In fact, our criterion for
the instability of the ferromagnet (namely the "excitation
energy" going negative) captures the subtleties of the
Nagaoka theorem (related to the signs of the hopping ma-
trix element on nonbipartite lattices). We also present
variational estimates on how large the Coulomb interac-
tion U must be in order to stabilize the ferromagnet.
These are, however, not optimal for all 5. We believe
that this is the first published demonstration of the insta-
bility of the Nagaoka state for any hole concentration (at
U=oo) which has a variational (and hence rigorous)
basis, and which is thermodynamically relevant.

In order to motivate our wave functions, we would like
to review, briefly, the work of Richmond and
Rickayzen, who performed an interesting calculation
with a similar objective to ours. These authors also con-
sider the problem of Nt =N, (1—5) up (-spin) electrons
and one down (-spin) electron N, being the number of lat-
tice sites) and construct a variational wave function ob-
tained by freezing the motion of the down electron and
solving exactly for the up electron gas which now sees a
simple potential scatterer (strength U) at one site. The
up-electron energies are shifted by 0 (1/N, ) each, and the
net cost is O(1), whereas the possibility of virtually ad-
mixing the doubly occupied site gains an exchange ener-
gy. The final conclusion of this study is that the Nagaoka
ferromagnet is unstable with respect to reducing U from
infinity —however, they find that at U = 00 the Nagaoka
ferromagnet is always stable for any 6.

It appears that the preceding stability of the Nagaoka
ferromagnet arises in their calculation by the inability of
the wave function to allow the down-spin electron to hop
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around. The overturned electron would prefer to be in a
highly delocalized state. For, if we imagine the fully
spin-polarized Stoner state (which is just the Nagaoka
state at U = ~) and switch off U, then the leading insta-
bility would correspond to destroying an up electron at
the (Stoner-Nagaoka) Fermi surface and creating a down
electron at the band bottom. This picture immediately
suggests that an appropriate strategy for the large-U
problem would be to take such a "Fermi surface restor-
ing" excitation and to correct for strong Coulomb repul-
sion by a variational projection.

Explicitly we write the Hamiltonian

H= —gt;, C, C, +Urn, tn, i .

In the U = ~ limit, the above considerations lead us to
the variational wave function

~X )=(E, )
' pe C &(I n t)C„&~—F), (2)

k, (q)=(p c~)+cq5(—1 IJ, Iz t ) . —

Here p=—1 —5, P—= Eol(N5), —and cz =ck, with

ik (r, —r )

ck = —(I/X, ) g t;, e

V

(3)

z =coordination number and further we assume that
t, . =t for i,j nearest neighbor and zero otherwise. In
terms of the density of states p(c) per site and per spin we
have

where ~F ) is the ferromagnetic Nagaoka-Stoner state

~k &k Ck& ~vac ), and k+ refers to one of the Fermi

surface vectors. A straightforward calculation gives the
excitation energy

&x. I(H —Eo) lx. &/&x„lx„&,

where Eo is the energy of the Nagaoka-Stoner state, as

W„z &z~t~. Case (a) applies to the square lattice, the tri-
angular lattice with t (0, the simple cubic, the bcc lat-
tice, and the fcc lattice with t &0. Case (b) corresponds
to the triangular and fcc lattices with t & 0. We assert for
all the lattices in case (b) that the ferromagnet is unstable
for arbitrarily small 6; the instability is of course exactly
what Nagaoka's theorem would predict for a single
hole —it arises in (3) because the first term is a positive
number of O(5) and the second is also of O(5) but nega-
tive, with a larger coefficient. Case (a) is, however, more
subtle. The fact that W„=z~t~ and Eq. (4) imply that
(P/zt) tends to 1 as 5~0, whence the second term in (3)
is of O(5 ). This guarantees that there must exist a
nonzero region around 5=0 where A, , is non-negative—
this robustness of the Nagaoka ferromagnet in this case
stems from the rather curious fact that the hole-
density —hole-density correlation function of the fer-
romagnet, at nearest-neighbor separation, is of O(5 )

rather than O(5 ) as one might naively expect. In effect
holes repel very strongly in this case thereby enhancing
the stability of the Nagaoka state. Table I lists the criti-
cal values of 5 above which A, , goes negative in various
cases. It is seen that there are surprisingly stable
cases —the case (a) triangular lattice and fcc lattice,
which appear to be good candidates for itinerant fer-
romagnetism.

Having found an excitation with possibly vanishing en-

ergy, we observe that the preceding instability has a wave
vector corresponding to the Stoner-Nagaoka Fermi
momentum relative to the band bottom state's momen-
tum. This is a generalized spin wave with a (fixed)
nonzero wave vector q =k„; and brings us to the ques-
tion of the (Goldstone) long-wavelength spin waves,
which must on symmetry grounds possess a vanishing en-

ergy. We therefore construct a variational wave func-
tion which contains long-wavelength spin waves and also
interpolates to contain the leading instability already dis-
cussed as

P5= f '
cp(c)dc and 5= f '"p(c)dc,

KF EF
(4) qI, C'(( I n t )C, t lF—),

V P(&, &),k—
where W$ p

is the band top energy, whence Ep p ~$pp .
In Eq. (3), the two terms are, respectively, the energy loss
of the up spins brought about by the up electrons having
to avoid the inserted down spin (it is a net loss since

P ~ c~) and the energy gain of the down electron that can
move around on the vacant sites left behind in the fer-
romagnet. The coefficient of c in (3) represents the
effective "band width" reduction factor of the down
electron —which is, in fact, the hole-density —hole-density
correlation function at nearest-neighbor separation in the
Nagaoka ferromagnet divided by 6. The physics of this
term is simply that given a hole at a site, a down spin is
inserted there, and its hopping requires a hole at a neigh-
boring site —thus we need the conditional probability of
finding a second hole at a nearest-neighbor site given one
hole at a site.

Clearly the lowest value of k, (q) is obtained by setting
c as the band bottom energy —

~ Wb„~. We distinguish
two cases here depending on whether (a) W„„=z~t~ or (b)

where Pk is an unspecified amplitude for the wave vector
k. The wave function

~ P ) is characterized by the wave
vector q, and is motivated by the RPA (Ref. 9) which can
be recovered by neglecting the (projection) factor
(1 n&). If—we choose 1(k to be a Kronecker 5 function
at k =kz, this reduces to our wave function ~X, ) in Eq.
(2). If we set q =0 and let $1, be independent of k, then
~P) is simply the state obtained by acting on ~F ) with the
total spin lowering operator, and hence is degenerate
with ~F).

The constant P in (5) is determined by normalization as

&= Q

leak

I'fl, + ~ 5 Q pp &I,fpfk,
k S p, k

where fk =8(c~—c„) restricts the sum to the Stoner-
Nagaoka Fermi sea. We calculate the "spin-wave" exci-
tation energy [i.e., & P (H Eo ) ~P )] to be—
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TABLE I. The spin-wave stiffness in our scheme and in the RPA, in units of zt where z is the coordi-
nation number for different lattices, and the critical hole concentration 5„where Eq. (3) is zero.

5=0.1 DRPA
D

Square

0.023
0.009

Triangle

0.03
0.016

sc

0.012
0.006

bcc

0.01
0.005

fcc

0.006
0.004

DRPA
D

0.044
0.014

0.056
0.026

0.024
0.007

0.015
0.006

0.01
0.006

0.49 0.32 0.32 0.62

1
«q) =—& ~k(q)PI*Pkfk

+ ~ &f1,f,&;WkK(k p'q»
s kp

where

and

A, „(q)=P—s„+5(1 P lz—t )E„

K(k,p;q)—= (ak+q+s~+ )+(p/zt)(c+sl, + +. ) .

(9)

Varying with respect to Pk, with the preceding normali-
zation constraint, we find the eigenvalue equation

T

[s(q) —Ak(q)]gk = g fz K(k,p;q) ——c(q)
1 1

S p

(10)

gk = 1+q stsk +0 ( q„),

This integral equation has two classes of solutions, the
continuum of scattering states obtained by omitting the
right-hand side [which shifts the energies only by
O(l/N)] and a bound state, the (Goldstone) spin wave,
starting at zero energy at q =0. The scattering continu-
um is analogous to the Stoner particle-hole continuum in
the weak-coupling ferromagnet, and is bounded from
below by the minimum of A, t, (q) for a given q. Its value at

q =0 is the effective exchange splitting in this strong-
coupling theory. The instability discussed in the previous
sections is precisely contained in this scheme, since A.k(q)
at q=kf has a minimum at k = —kF, thus our previous
discussion is tantamount to the statement that the lower
edge of the scattering continuum has a minimum at

q =kF, and that this minimum comes down with increas-
ing 5, until at some critical value, it hits the abscissa, sig-
nifying the instability of the ferromagnet. ' This scheme
also contains the Goldstone mode, since a calculation
shows that Eq. (7), in the limit of q =0, has a zero eigen-
value with the eigenfunction 1(„ independent of k. (This
phenomenon is a statement of the rotational invariance of
our scheme. )

The small-q spin-wave spectrum can be extracted from
the (separable kernel) integral equation (10). We find the
eigenfunction

and $1, is obtained as

where

1

1+zpI /( 28 )

vt, =(8/Bk„)s„,

and

~sw(q)=Dq„a +O(q ),
with the stiffness given (in units of zt) by

D =DRPA
Iz

P8( 1 +PIz /28 )
(12)

where DRPA =ep6/z. Note that I is always positive, and
hence the spin waves are always softer than what RPA
suggests. In Table I we list the stiffness for two typical
values of 5 (0. 1 and 0.2) and also the RPA values for
comparison.

It is remarkable that the stiffness is much smaller than
DRpA and 2 orders of magnitude less than zt is almost all
the eases considered. This low-energy scale of the long-
wavelength excitations would lead to a transition temper-
ature that is considerably lower than the Stoner-Hartree-
Fock estimates, and has a bearing on the question of why
the T, of itinerant ferromagnets is so low" (spin-wave
theory' for the simple cubic lattice for 5=0.2 would give
a T, =0.029 z~t~). In any case our calculation gives an
upper bound on the spin-wave stiffness. A finite ex-
change energy (t /U) would reduce this further.

For general nonzero q, the integral equation (10)
reduces to a set of algebraic equations by using the separ-
ability of the kernel, and was solved numerically. In Fig.
l we sketch the bound-state spectrum and the scattering
continuum for the square lattice in two cases; one case

I=(1/sV, ) g ft, vt, /i, k(0) .
k

These are appropriate in all the lattices of case (a), with
energy measured in units of 8'„. In the remainder of
the paper, we use the same units. The constant e= I in
all cases except the triangular lattice where 8=2, and we
treat this lattice as a square lattice (with lattice constant
a) and all diagonal bonds running, say, northeast. The
spin-wave energy goes as
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FIG. 1. The spin-wave energy (solid and dashed curves) and

the bottom of the scattering continuum (dot-dashed and dotted
curves) for 5~5,„and 5-0.34, respectively, on a logarithmic
scale, against q [along (1,1) direction].

corresponds to a small enough 5 for which we only have
positive-definite excitations, and the second corresponds
to 6-0.49 at which the Nagaoka ferromagnet is close to
being unstable.

From Fig. 1, it is seen that the spin-wave bound state is

at a much lower scale than the single-particle continuum,
and unlike in the usual weak-coupling case, does not
enter the continuum for any q. The effect of increasing
the hole density is to bring down the entire continuum

rapidly, and the dip at q =kF precipitously. This situa-

tion is somewhat reminiscent of soft modes in ferroelec-
trics, but is a more severe instability since essentially an
infinite number of states are going soft. The spin waves

respond by going soft slightly before q =kF, and hug the
bottom of the continuum for larger q.

We have also used a simple generalization of the wave
function of Eq. (2) to determine the critical value of U

below which the Nagaoka state is definitely unstable.
The variational function is chosen as a Gutzwiller incom-
plete projected version of Eq. (2) and written as

ic energy of the down spin which is of 0 (5 )], and we find

the leading behavior goes as (P —EF)—5P /U. Thus,
both terms are of order 5 and hence we find that in order
to stabilize the ferromagnet we must have U ) U, with

U& an O(1) energy I =lims o[5P /(P —EF)]I. This is

not as good as the result of Richmond and Rickayzen,
who find the exchange contribution [i.e., term of
0 ( t / U)] to be independent of 5, whereby U„~ cc as
5~0. Their result is of course more reliable in this limit
since their calculation is exact whenever the down-
electron kinetic energy is neglected. In Fig. 2, we juxta-
pose for the square lattice our result for the stability re-
gime with that of Ref. 4 for the case of the square lattice,
to get a rigorous limit on the regime of stability of the
Nagaoka ferromagnet.

In summary, we have shown in this paper that the
Nagaoka ferromagnet is unstable for a sufnciently large
concentration of holes at U=~ by identifying a soft
Fermi-surface restoring excitation. The Nagaoka-Stoner
Fermi surface forces the kinetic energy of the up electron
to be much greater than that in the Luttinger, or normal
(Fermi liquid) Fermi surface, and the instability corre-
sponds to the rectification of this state of affairs —for
large enough 6, the down-electron band width becomes
large enough to benefit from this collapse. Our estimate
of the down-electron band width as 0(5 ), rather than
0 (5) is specific to the use of our variational wave
function —if this is true in general then we have a generic
argument for the stability of the Nagaoka ferromagnet
for small enough 5. If a state can be found that has a
band width for down electrons of 0 (5) while costing only
an energy of 0 (5) for the up spins, then it would be possi-
ble to destabilize the ferromagnet for any 5)0. Al-
though we cannot rule out this possibility categorically,
we feel it is unlikely since our wave function can only be
improved upon by an admixture of particle-hole excita-
tions in the up-electron Fermi surface, which should be
quite small [to keep the up-electron energy cost low, of
0 (5)].

The instability, with respect to reducing U from

l&G&=+[1+(g —1)n tn t]C,'tCk„l+& (13)
I I ~ 1 1 7 ~

I
1 1 I l

where g is the usual Gutzwiller parameter. The varia-
tional energy now reads

k„,(g, q, U)=C 'I(g —1)~$5—CeF+g pU

(14)

0.8

0.6

0.4

where C=5+pg, p=l —5, and the various terms are
recognizable in analogy with Eq. (3) (obtained by g~o},
except the third which is the Coulomb interaction ener-

gy. For a fixed 5 and U, we can minimize Eq. (14) with
respect to g; and U„ is defined by X„=O. 'We believe that
this estimate of U„ is a reasonably good guide for 5~6„,
where U„diverges [like (5„—5) ']; but is far from op-
timal for 6~0. In the limit of small 5 and large U, the
main contribution to the excitation energy comes from
the first, second, and last term [i.e., by ignoring the kinet-

0.2

0.0
0.2

s I s, , t I a ~

0.6 0.8

FIG. 2. zt/U, „vs 5 for the square lattice as found from our
Eq. (14) (solid line) and from Ref. (4) (dashed line). The Nagao-
ka ferromagnetic is then definitely unstable outside the area
bounded by the two curves and the abscissa.
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infinity, occurs in two physically distinct ways. One is
that at low 5 the exchange energy of O(t /U) competes
with the ferromagnet and leads, presumably through a
first-order transition, to an antiferromagnetically corre-
lated state. In the other regime of 5~5„, we find that
terms of O(1/U) bring down the strong coupling contin-
uum to a lower energy, and the kF instability becomes
more pronounced —leading again, we suspect, via a first-
order transition —to a metal with a normal Luttinger-like
Fermi surface and strong antiferromagnetic correlations.
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