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The momentum distribution function n (k) and spin-correlation function S(k) are determined for
the one-dimensional large-U Hubbard model with various electron densities. The present work is
featured with an application of the Bethe-ansatz wave function, which has a simple form in the
large-U limit for any electron density. Namely, its charge degrees of freedom are expressed as a
Slater determinant of spinless fermions, while its spin degrees of freedom are equivalent to the one-
dimensional S =

2
Heisenberg model. The singularity of n (k) at k =kF is analyzed from the system

size dependence. In addition to the kF singularity, n (k) has a weak singularity at k =3kF', however,
no detectable singularity is present at 2kF, which one might expect from the spinless fermion wave
function. The singularity of S(k) at ZkF is also examined in detail. It is concluded from the size
dependence that, when the system is away from half-filling, the nature of the singularity at 2kF is

different from that in the Heisenberg model. The results are compared with the behavior in the
weak-correlation regime examined with the perturbation calculation, the prediction of g-ology, and

recent Monte Carlo calculations.

I. INTRODUCTION

The Hubbard model is the simplest Hamiltonian con-
taining the essence of strong correlation. Recently it has
attracted much attention again in connection with the
high-T, superconductivity. ' Although the doped carriers
in high-T, superconductors mainly occupy oxygen p or-
bitals in the two-dimensional Cu02 plane, the strongly
correlated Hubbard model is often used as an effective
Hamiltonian. '

Notwithstanding its apparent simplicity, our under-
standing of the physics of the Hubbard model is still lim-
ited. Even in the one-dimensional case our knowledge is
far from complete. In fact, although its thermodynamics
was clarified by many authors, ' various important quan-
tities such as momentum distribution and correlation
functions, which require an explicit form of the wave
function, have not been explored yet.

The purpose of this paper is to present the momentum
distribution and spin-correlation function in the large-U
limit of the one-dimensional Hubbard model based on the
exact Bethe-ansatz wave function. To this end we first
observe that the Lieb and Wu wave function has a very
simple form in the large-U limit owing to a decoupling of
charge and spin degrees of freedom. Namely, in the
large-U limit the charge degrees of freedom of the ground
state are expressed as a Slater determinant of spinless fer-
mions, while its spin degrees of freedom are equivalent to
the one-dimensional S =

—,
' Heisenberg model. This not-

able feature holds for any electron density. A similar
decoupling has been used recently to study the two-hole
state in connection with Nagaoka's ferromagnetism.
This observation enables us to calculate exactly the
momentum distribution n (k) and spin-correlation func-
tion S(k) in the strong-correlation regime, which are not

available in other methods. In practice the calculation is
carried out for large but finite systems up to 32 sites.

Both the momentum distribution function n(k) and
spin-correlation function S(k) are interesting quantities,
especially for strongly correlated systems. First of all, we
can learn through n (k) how the dynamics of electrons (or
holes) is affected by surrounding spins. For example, one
might expect from the spinless fermion wave function
that the momentum distribution may have a singularity
at k =2kF. As we shall show, rearrangements of spin
configurations in the hopping process play an essential
role to smear out the 2kF singularity, leading to a singu-
larity at kF instead. Secondly, the momentum distribu-
tion is also related to the problem of whether the low-
energy states in the strongly correlated Hubbard model
(t Jmodel) -can be represented by a Fermi liquid or not. '

Recently, Sorella et a/. have developed a new algorithm
of Monte Carlo simulation and studied the momentum
distribution, which has renewed our interest in this quan-
tity. Thirdly, contrary to a sharp jump of n (k) at k =kF,
that is characteristic to the ordinary Fermi liquid, a
power-law singularity around k =kF,

n(k)=nkF —Clk kFl sgn(k —kF), n„F= —,',
is expected for the one-dimensiona1 Hubbard model.
However, the g-ology leading to Eq. (1.1), as well as the
quantum Monte Carlo simulation, is essentially based on
the analysis of the weakly correlated regime. Therefore it
is extremely interesting to determine n (k) for the strongly
correlated regime, which the Bethe-ansatz solution can
offer.

The spin correlation function S(k) for the one-
dimensional Hubbard model is also of interest for various
reasons. First, in the large-U limit at half-filling it is
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equivalent to what the one-dimensional S =
—,
' Heisenberg

model tells us. When the system is away from half-filling,

the spin-correlation function S(k) should be different

from that of the Heisenberg model due to the presence of
holes. However, the nature of the singularity at k =2kF
has not been clarified yet. ' Needless to say, the incom-
mensurate spin correlation, which has been observed in

La&, Sr, CuO~, " is also our motivation to study S(k)
for the Hubbard model.

Keeping these points in mind, we have studied n (k)
and S(k) for the one-dimensional large-U Hubbard mod-

el by changing the electron density. In addition to the

problems mentioned previously, the present study has re-

vealed a new result, which we had not expected. Namely,
a weak singularity is present in n (k) at k =3kp. It is also

worth noting here that the momentum of the lowest-
energy doped carriers, that was examined in small cluster
studies, ' is closely related to the present study.

This paper is arranged as follows. In Sec. II, we ana-

lyze the Bethe-ansatz ground-state wave function in the
limit of strong correlation. The momentum distribution
as well as the method of calculations will be presented
and discussed in Sec. III. In Sec. IV, the spin correlation
function S(k) is studied; the peak of S(k) at 2kp is dis-

cussed in detail for the quarter-filled band (i.e.,
N/N„= —,'). We study especially the nature of the 2kp
singularity by comparing its size dependence with that of
the one-dimensional Heisenberg model. Section V is de-
voted to a summary and discussions on related problems.

II. BETHE-ANSATZ WAVE FUNCTION
IN THE LARGE-U LIMIT

and

N

F. = 2—t g cosk
j=l

[Q P]= I'!'"[QP']

(2.3)

(2.4)

should hold, where

P =(Pl, P2, . . . , Pi =m, P(i +1)=n, . . . , PN),

and

P'=(Pl, P2, . . . , n, m, . . . , PN) .

The operator Y is defined by

P;, +l —x„
nm

(2.5)

with

x„=i( U/2)/(t sink„t sink—),

ik L
[Q &]=Xj+i,j

' ' '
Xx&Xi&

' ' ' Xj —i j[Q ~]

with

(2.6)

X;, =(1 x;,P, , )/(1+—x;, )

and P, , +, is a permutation operator for the interchange
between Qi and Q (i + 1). Owing to the relation (2.4), we
can determine all [Q, P]'s from, for example, [Q, P =1].
Here 1 means the identity operator.

Eigenvalue equations to determine k 's are obtained by
imposing the periodic boundary condition:

The one-dimensional Hubbard model is given by

H= —t g (c; c +H c )+U.g. n, &n;i,
(ij )o

(2.1)

x(Q) =( —1)~[Q &], (2.7)

It is convenient, however, instead of solving Eq. (2.6), to
define

where (i,j ) means the summation over nearest-neighbor
pairs. The system consists of N electrons on X„sites. In
this section, we show that the Lieb and Wu wave func-
tion for Eq. (2.1) can be reduced to a simple form in the
large-U limit. To this end we start by recapitulating the
Bethe-ansatz analysis for an arbitrary U and then take
the limit of U/t ~ m.

Let f (x, , . . . , x~) be the amplitude in the wave func-

tion when down spins are located at the sites x, , . . . , xM,
and up spins at xM+, , . . . , xz. Within each region of
x&& & x&2 « x&z, f is expressed under the Bethe an-

satz as

N

f (xi, , x~)=g [Q,P]exp i g kp x~, (2.2)

where P =(Pl, P2, . . . , PN) and Q =(Ql, Q2, . . . , QN)
are two permutations of (1,2, . . . , N). The coefficients
[Q,P] as well as (k, , k, , . . . , kA, ) are determined later.
For Eq. (2.2) to satisfy the Schrodinger equation and to
be connected properly on each boundary,

and solve the eigenvalue problem

e X(Q) =Xj'+i j
. Xj'AX'ij Xj', X(Q),

with

(2.8)

=g ~pF(Api yi)P'(Ap2 y2) ' ' F(ApM yM)
P

with

(2.9)

X =(1+x; P; )/(I+xj) .

Here ( —1)~ is equal to —1 when Q is an odd permuta-
tion and 1 otherwise.

As we can see from the definition of X(Q), the antisym-
metric property of the wave function is satisfied when g
has &CM components of the spin wave function, each of
which is characterized by the "coordinates" of M down
spins (y, ,y 2, . . . ,y~ ) in the spin configuration. For

yi &yz « yM, the eigenvalue problem (2.8) has
been solved by Yang with a generalized Bethe's hy-
pothesis as

X=@(y&,
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it sink —i A —U/4
F(A,y)= P

, it sink -+, —i A+ U/4 '

iU
2

A =( —1) P A, —A
i&j

it sink- —i A —U/4

it sink- —iA +U/4

—iA&+i A +U/2
i A—p+i A U—/2

(2.10)

(2.11)

Here A&, A2, . . . , A~ are a set of unequal numbers, which
are related to k 's in a complex manner through Eq.
(2.11).

So far no assumption has been made on the magnitude
of U. A great simplification can be achieved by taking
the limit of U/t~~. In fact, terms containing k s in
Eqs. (2.10)—(2.12) can be neglected in the order of (t /U)
so that A 's and k 's are completely decoupled. In this
limit, the operator Y in Eq. (2.5) becomes —1, and thus
Eq. (2.4) is simply

[Q,I']=( —1} [Q &] . (2.13)

it sink i A——U/4"=n
it sink, i A—p+ U/4

(2.12) Therefore, combining Eqs. (2.2), (2.7), and (2.9), we ob-
tain

N

f(x, , . . . , x~)=g( —1) ( —1) 4(y, , . . . , yM)exp i g k~, x@
P j=1

=( —1)~det[exp(ik;x@)]4(yi, . . . , year) . (2.14)

The determinant depends only on the sites of particles
(x&, «x&z) and not on their spins. Thus it is the
same as the Slater determinant of spinless fermions with
momenta k 's. This means a decoupling between the
charge and spin degrees of freedom for U/t ~~.

Furthermore, we can show that 4(y~, . . . , yM) in this
limit is just the same as the Bethe's exact solution of the
one-dimensional Heisenberg spin system, To do this ex-
plicitly, we introduce from A s new quantities

f (0 «f~ & 2m ) and P i3( n«P~&—
&n ) by

=2m I + —gJ1

a
(2. 18)

which is nothing but an expression for the scattering
phase shift in the Bethe's solution.

Finally we need the momenta k 's to obtain the explicit
form of the wave function in Eq. (2.14). In the large-U
limit, Eqs. (2.11) and (2.12) lead to

k L =2nI, —g 8(2Ap)
p

0(2A ) =m f—
8(A —

A&) =~ P& (mod2~—),
(2.15}

where 8(p) = —2 tan '(2p/U). By taking account of the
branch of tan which shows up in the definition of P &,
we can rewrite Eq. (2.10) as

F(A,y) =exp[i (y —1)f ]

and

with

integer for M even,I ='
half-odd integer for M odd,

integer for N —M =odd,J ='
half-odd integer for N —M =even .

(2.19)

A&=exp (i/2) g (Ppk p~ 7T)

k(I
Then the spin wave function becomes

For example, in the case of N =even and M =odd, the
ground state corresponds to

N —1 N —3 1 1 N —1

2
'

2
' ' 2'2 '

2
M

1
yM ) g "P ' X fPkyk+ X NPk, Pl

P Ic =1 k&1

(2.16)
M —1Ja 2

(2.20}

M —3 M —1

2
) ~ ~ ~ )

—1,0) 1) ~ ~ ~ )
2

0 p 1 f. fpcot =—cot —cot
2 2 2 2

(2.17)

except for a constant phase factor. Equation (2.16) corre-
sponds exactly to the Bethe-ansatz wave function for the
one-dimensional Heisenberg model. The relation be-
tween P & and f is obtained from Eq. (2.11) as

In this case, k 's are just the same as the momenta of
spinless fermions under the antiperiodic boundary condi-
tion. This gives the lowest energy of U = (x}.

Before closing this section several remarks are in order.
(1}We note that all the spin configurations become de-

generate at U = ~. Our wave function in Eq. (2.14) has
been derived by taking the limit of U/t~ ao. Therefore
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it represents for the ground state a singlet wave function
which is connected naturally to the ground state in the
whole region of 0& U & ~. In other words, the degenera-
cy at U = (x) is removed by an infinitesimal perturbation
of the order t /U. This is the reason why the
Heisenberg-type spin wave function shows up. As
demonstrated explicitly in Appendix A, the wave func-
tion of Eq. (2.14) gives the correct ground-state energy up
to the order of t/U.

(2) Our wave function is naturally related to the half-
filled case where it is well known that the Hubbard model
is transformed into the S =

—,
' Heisenberg model.

(3) There is a subtle problem in a system with N =4n
electrons, with n being an integer. In fact, we can see
that the ground state in this case is a triplet if the period-
ic boundary condition is applied. For the singlet lowest-
energy wave function, we have N=even and M=N/2
=even so that

N N NI = ————+1 —101 ——1.j 2
9

2
7 ' ' ' 9 9 % 7 ' ' 7

(2.21)

M —1 M —3 1 1 M —1

2
'

2
' ' 2'2' '

2

In this case, the momenta kj determined from (2.18) are
the same as those for spinless fermions under the periodic
boundary condition. On the other hand, for the triplet
(S=1) lowest-energy wave function (N=even and
M=N/2+ 1=odd), I and 1 are given by Eq. (2.20),
and thus k 's are the same as the momenta for spinless
fermions under the antiperiodic boundary condition.
Comparing the energy E = 2t g~ co—sk~ for both cases,
we find that the triplet state has a lower energy. We have
confirmed this also by an exact diagonalization of the
eight-site Hubbard chain.

To study singlet ground-state wave functions also for
the systems with 4n electrons which are lower than the
triplet ones, we use the antiperiodic boundary condition
for this case instead of the periodic one. For the an-
tiperiodic boundary condition, we only have to change
the left-hand side of the eigenvalue problem (2.8) as

of the permutation, Eq. (2.2) is extremely complicated
and useless for practical calculations: with Eq. (2.2) one
cannot go beyond the system size for which the exact di-
agonalization method is applicable. On the other hand,
Eq. (2.14) is much simpler, as will be discussed further in
the next section.

III. MOMENTUM DISTRIBUTION FUNCTION

exp(iktr ),
with

(3.1)

ki=ka+(1 —1)bk (1=1,. . . , N) . (3.2)

In our case, where k0= (N —1)n/L —and hk =2m/L,
the determinant is simply expressed as

det[exp(ik&r )]= g 2isin
1(m

bk (r, r)—
2

(3.3)

In the preceding section, we have obtained the
ground-state wave function, which is simple due to a
decoupling between charge and spin degrees of freedom.
This simplicity enables us to study relatively large sys-
tems, whose wave functions are almost impossible to han-
dle otherwise.

In practice we construct the ground-state wave func-
tion as follows.

(1) First, we determine 4(y „.. . , yM ) by diagonalizing
the one-dimensional Heisenberg model. In this way the
ground state up to 26 spins can be obtained by using the
Lanczos method and conjugate gradient method. ' '
The z component of the total spin and the total momen-
tum are used to classify the states.

(2) Next, we calculate the Slater determinant describ-
ing the charge degrees of freedom, making use of the
Vandermonde determinant. ' In the one-dimensional
system, each matrix element has the form

This change leads to an alternative relation

half-odd integer for M even,I.= '.
integer for M odd,

(2.22)

(2.23)

This formula reduces computational time drastically. '

The maximum size we treat here is 16 fermions on 32
sites, for which the number of configurations of spinless

fermions is 3pC &6
=601 080 390.

To determine the momentum distribution n (k), we go
back to its definition in real space:

which guarantees that the singlet lowest-energy wave
function (M =N/2=even) becomes the ground state, be-
cause the momenta k =2+I /L are those for spinless fer-
mions under the antiperiodic boundary condition. In the
following sections, therefore, we study two cases, (i)
N =4n +2 with the periodic boundary condition and (ii)
N=4n with the antiperiodic boundary condition. For
these cases, the ground state is always a singlet and the
total momentum is equal to zero.

(4) One may wonder why Eq. (2.2) is not enough to
evaluate physical quantities. The reason is that, because

1 ta(r —r, )
n (k) = (c„c„)= g (c~ c& )e

jl
(3.4)

The average ( ) is taken over the ground-state wave
function (2.14). When an electron with spin o is
transferred from the lth site to the jth site as in the
right-hand side of Eq. (3.4), the spin configuration is
changed in general (see Fig. 1). Therefore (c. c& ) can
be written as
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(ct c, )=
configurations of spinless fermions

( —I )& & (4)'(g)'co(l ~j,o ), (3.5)

where (4) denotes the Slater deterer etermmant of Eq. (2.14) and (/)' is the sam
I

of the change in 4(
si e. co ~j,o ) contains the sum over all the s in c

y&, . . . , yM ) by this transfer:
e spin configurations and takes account

cu(l ~j,o. ) =col ) /2,

coi J'=(( S~' SJ,+ —,')(2'' i S' +—') (2j' —i j' —2 p I'+1 Sl'+ i ) ~H

(3.6)

where the I'th s in corresp' rresponding to the electron on th
t site jumps over som

non e

p r some other spins to become the j'th
spin corresponding to the electron on the 'th site

o cJ cl . ( S' S~', + —,') takes care of the

exchange between the j'th and &

' —1 than (g —1)th spins, and ( )H
eno es the expectation value over the ro

y carried out the calculation throu h tw

, 0. =co& ' 2 was evaluated by fixing the
con guration of spinless fermions' then

'
ns; en tne summation

Before showing the results, it is useful to note a
is ri ution. Since the

e ater determinant of s inless f
may think that n (k m
is not the case

a n must have a jump at k =2k Th'F. is
case, however, because of co(1~j,o . In the

pure spinless fermion case, the factor ni I~ '

q. . is just a difference in the Slater
minant induced b th h e con
our case, on the other han

configurations. In

y, , . . . , yM) are also changed when an elect
transferred from th l h

w en an e ectron is

in 4 shows u
'

I
e t site to the th sitj '

e. This change
ows up m co(t~j, o ) and leads to

difference from the s
'

1

o an essential
m e spinless fermion case. In Fi . 2, we

s ow co& .' for a chain of 26 s iP'"
j —

~. earl 6) ' hy I ' as an oscillatory behavior like

studied systematically. As mentioned in the r

%=4,8, 12, 16 s stems.
antiperiodic one for

nicel tell
systems. These results combined t thoget er

stead, one notices
F. In-

otices a strong singularit at k
F. In order to confirm that th

is really associated
'

h 3k,
a the latter

e wit F, we have stu
'

wi 30 s s own in Fie e ectron density of —'4 A h

, the singularity assigned as 3k haF
wi t e expectation. Figure 5 resen

o onic epen-
o n or the electron density close to half-filling

28 28
'

se o a - ling,

Let us investigate the singularity at k =k
il I T bl Ie, n ) in the vicinity of kF for the

1.0—

7T I f
ni, , -cos (j

' l'(+ ———
2 4

(3.7)
0.6—

0.4—

for large ~j' —I'~. Thishis oscillation smears out the 2k
singularity in the s inles f

u e F
p' ess fermion wave function.

We now present the results of the mo e tu di n

(i.e., N/N =—' is
ig. . s a typical case the, the quarter-filled system
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do t h
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1 )A'/2

s y t e unit lat'ttice constant and thus

l'
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1.0 1.0 1 \ 1
I

I
I

I

quarter-filled case

2kF

3kF

v 8 sites
12 sites
16 sites

~ 20 sites
o 24 sites
~ 28 sites
o 32 sites

NA 28

N-26

~ N-6
o 8
~ 10
0 12
o 14
o 16
~ 18
o 20
~ 22
o 24
~ 26

0.0
0

'e ~

kF
I

x/2

k

Oo~ ~
+~) a eam j

To-

FIG. 3. The momentum distribution n(k) for the quarter-
filled case when Ult ~~. The periodic boundary condition is
assumed for N& =12, 20, and 28 (solid symbols), while the an-
tiperiodic one is taken for N„=8, 16, 24, and 32 {open symbols).
kF, 2kF, and 3kF are indicated by arrows.

quarter-filled case is summarized. Having the formula
(1.1) in mind, we plot in Fig. 6

incan (k) —
nl, z~

—
incan (ko) —

nl, F

as a function of 1n~k —kF ~

—lniko —kF) for nkF =0.4
-0.6. Here ko is the momentum that is the closest to
kF, i.e., ~ko

—kF ~

=m /32 in our calculation. First, we an-
alyze the data by taking n/, F= —,

' as in the g-ology. From
the slope of two points closest to kF, we obtain a=0. 136
for k &kF and a=0. 147 for k) kF. It is evident from
Fig. 6 that if we had larger systems, we would have
a) 0. 136 for k &kF and a&0. 147 for k) kF. Physically
it is natural to expect the value of a to be the same for
both k &kF and k) kF. Therefore we conclude that
0. 136&a &0. 147, i.e., a=0. 14.

0.0
0 x/2

k

FIG. 5. The momentum distribution n(k) for systems with
various electron numbers N =6-26 with N„ fixed at 28. Since
the nature of the singularities has not been determined precise-
ly, dashed lines are drawn around kF and 3kF as guides to the
eyes. Otherwise, the data points are connected by solid lines for
convenience. 3k& is indicated by an arrow for each electron
density. Note that, for N~20, 3kF becomes larger than m and

appears at 2m. —3kF.

Next, we try to change n/, ~ from —,
' regarding it as a

fitting parameter. %hen nI,+)0.5 is assumed, it is im-
possible to obtain an a that is the same for both k & kF
and k )kF, because the two inequalities for a derived
from the size dependence in Fig. 6 are not compatible. In
fact, we find that even for nj,z )0.507, there is no region
for a satisfying the two inequalities. On the other hand,
when nkF &0.5 is taken, the difference between the upper
bound and the lower bound for a becomes large. In this
case it seems difficult to expect that a converges to a
common value for k &kF and k) kF in the larger sys-
tems. Thus it is very likely that n(k) has a power-law

r e i r ]
& ~ ~ '

)
'

I10~ ~

electron density = 14130 TABLE I. The momentum distribution n(k) in the vicinity
of kF for the quarter-filled case.

~ ~

3kF

0.0
0

kF
I

x/2

k

~ ~

FIG. 4. The momentum drstnbution n(k) for the system
with N/N„= —'. Note a weak singularity at k =3kF in accor-
dance with the expectation.

12

16

20

24

28

32

1

8

2
12

3
16
2

20
4
20
3

24

5
24

4
28

6
28

5

32
7

32

n(k) (k &k )

0.699 706 6

0.689 2964

0.682 407 7

0.693 272 5

0.677 181 5

0.690 412 4

0.672 958 7

0.687 776 2

0.669 415 1

0.685 362 8

0.666 3641

k/w

3
8

4
12

5
16
6
20
8
20
7

24
9

24
8

28
10
28
9
32
11
32

n(k) (k &k )

0.177 906 9

0.200 9149

0.215 093 9

0.225 120 7

0.1700330

0.232 767 6

0.181 360 9

0.238 888 3

0.190315 6

0.243 955 4

0.1976560
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nl, F - O.4O

C
I

CD

C

C
I

~ 0.1
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"o.o 0.5
k kFI ln lko kFI

0.2

C
I

C)

C

C
I

~ 0.1
C

I

C

C

la) nkF & G.SO
0.2— k&kF

1.0

singularity at kF with nI,~= —,
' just as the g-ology predicts

for the weak-coupling region.
Although the present work is featured by studies of the

strong-correlation regime, the relation to the weak-
correlation regime is also of interest. In Appendix B, we
summarize the second-order perturbation calculation of
n(k). The second-order correction to n(k), which is
divergent at k =kF as ln~k —kF, is shown explicitly.
This divergence smears out the jump at k =kF even when
an infinitesimal U is present, and n (k) naturally comes to
have the power-law dependence as in Eq. (1.1). These ar-
guments are restricted in the weak-coupling regime.
However, since there is no phase transition in the finite U
region, we think that a formula similar to Eq. (1.1) will
hold even in the large-U limit.

This perturbation calculation presented in Appendix B
also shows a weak singularity at 3kF. According to our
results, the singularity at 3kF is weak even in the limit of
Ult~ ac, so that we will not go into an analysis of the
exact nature of the singularity. However, from the result
of the perturbation calculation in Appendix B and from
Fig. 3, we speculate n (k) to have a cusplike singularity at
3kF.

Finally we examine a case close to half-filling, since a
recent Monte Carlo simulation has reported that the
singularity of n (k) near kF is smeared out at least in the
two-dimensional Hubbard model. Figure 7 shows our re-
sult for the electron density of —'„'. This result is qualita-

tively similar to that for lower electron densities shown in
Fig. 5. The 3kF singularity also shows up at
k =2~—3kF =0.78~. It would be interesting to see what
the Monte Carlo simulation ' predicts for the strong-
correlation regime.

IV. SPIN-CORRELATION FUNCTION

The Fourier transform of the spin-correlation function
is defined by

10 f
I

/ I
I

/
I

/
~0

electron density 26/32

0.0 0.5
ln lk-kF I —ln Iko-kF I

1.0

~ ~ ~ ~

FIG. 6. The momentum distribution ~n (k) nk~—
~

near kF as
a «n«ton of lk —kpl for the quarter-filled case. Several values
are assumed for nkF. (a) n&~ 0.50 and (b) nk+&0. 50. The
value of n (k) is plotted whose momentum k is the nearest to kF,
i.e., ~k

—kF ~

=m IN~ for each N„site system. Solid (open) cir-
cles represent n (k) just below (above) kF. Note that n (k) has a
smooth k dependence even though the results for periodic and
antiperiodic boundary conditions are shown together. The ori-
gin is chosen to be the point for the largest size (N„=32) whose
momentum ko is the closest to kF. The solid (dashed) lines con-
nect two points nearest to kF below (above) kF, thus their gra-
dients represent the exponent a's discussed in the text.

~ ~ ~ ~
~ ~

0.0
0

kF
I

x/2

k

2a-3k

FIG. 7. The momentum distribution n(k) for the system
with N/N„= 32, which is close to half-filling. The 3kF singu-

larity shows up at k =2~—3k+ =0.78~.
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S(k)= g (S'S;&e' (4.1)
E~ .

(

Although the spin degrees of freedom in the ground state
of U/taboo are completely described by that of the
Heisenberg model, the spin-correlation function for less-
than-half-filled systems is, of course, different. The
reason is simply that (S~'S&'& is not identical to (SJSI'&0
in the Heisenberg model because of the presence of holes:

~j—
l~ is, in general, different from the distance in the

Heisenberg model.
As in the case of n (k), we can write (SJ'SI'& in Eq. (4.1)

~
i

~ ~ I
i

f I ~ 1
I

~ ~

1.0- Heisenberg

( SzSz &I

configurations of spinless fermlons

where j' and l' are related to j and I in the same way as
explained after Eq. (3.6). Equation (4.2) has been used to
evaluate S(k) for various electron densities, examples of
which are presented in Fig. g with SH(k) in the Heisen-
berg model. Clearly a peak shows up at k =2kF, which
is incommensurate when the system is away fromm half-
filling. It is much enhanced from a cusp for U =0, that is
shown for a comparison. As discussed in Appendix 8, in
the weak correlation regime the perturbation theory pre-
dicts that the first-order correction to S(k) already con-
tains a stronger singularity, which naturally explains a
peak of S(k) at k =2kF. Our result for Ult~ ~ shown
in ig. s ouF' 8 should be compared with this weak-correlation
behavior. One also notices that the enhancement o S( )

becomes weaker as the system deviates from half-filling.
It is consistent with the dependence on the electron den-

0.30

0.25—

0.20—

—0.15—
CO

0.10—

0.05—

0.00
0

quarter-filled case v 8 sites
t2 sites
16 sites

~ 20 sites
o 24 sites
~ 28 sites
o 32 sites

O

0
0

a
4

O~
'~ ~ ~4~m

UO

0 r
2kF

a~g9
II

0

x/2

k

FIG. 9. The spin correlation function for U/t~~ in the
quarter-611ed case. N& =12, 20, and 28 site systems are under
the periodic boundary condition (solid symbols), while N„=8,
16, 24, and 32 are under the antiperiodic boundary condition
(open symbols). 2kF = m /2 is indicated by an arrow. For a com-
parison, the results for U =0 are also shown by a dashed line.

sity of the perturbation theory discussed in Appendix B.
To examine the singularity at 2kF in more detail, we

h e studied S(k) for various system sizes by fixing theave s u
'

electron density at the quarter-filled case (i.e., NI
=—'). It is readily seen from Fig. 9 that the size depen-

2

dence is evident especially at k =2kF=m/2, suggesting
convincingly a singularity at this point.

Although Monte Carlo simulations' have found this
2k peak, its size dependence has not been studied sys-F pea ,
tematically. The peak S(2kF ) we have obtained is shown
in Table II. It is plotted as a function of the system size
N (=2N) in Fig. 10. For a comparison, we have alsoA

calculated and plotted the peak SH(m ) in the Heisenberg
model. Clearly the peak S (2kF ) for the large- U Hubbard
model is drastically reduced compared to SH(m) in the

0.5

TABLE II. The size dependence of S(2kF) for the quarter-
611ed case in the U/t ~ ao Hubbard model (N„=2N), and that
of SH(~) for the Heisenberg model (N„=N).

S(2kF)

0.0
@12

k

FIG. 8. The spin correlation functions S(k) for the systems
with N/N = —and —' when U/t~ao. S(k) for U=0 with„——an

th arne electron densities (dashed lines) and SH(k) for the 26-e same e
chsite Heisenberg model (open circles) are also depicted. For eac

system, 2kF is indicated by an arrow.

4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

0.211 531 0

0.223 824 4

0.231 591 3

0.237 066 3

0.241 194 3

0.244 452 0

0.247 109 1

0.666 666 7
0.777 350 1

0.860 452 7
0.927 133 3
0.982 908 6
1.030 907 5
1.073 075 9
1.110707 1

1.144 704 7
1.175 725 1

1.204 260 5

1.230 689 3
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1.00—

0.50—
Hubbard U-
quarter-filled case.

(2kF)

COI
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~ 10-2
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N
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N

CO
V

000
4 6 8 1012 162024 32

NA

10 3 I I I

6 8 10 12 16 20 24 32

NA

FIG. 10. The system size dependence of the peak S(2kF ) for
the quarter-filled case. The same quantity for the Heisenberg
model, SH(m), is also shown by open circles for a comparison.
Notice that S(2kF) has a weaker size dependence than in%„
and that its absolute value is drastically reduced from the
Heisenberg case.

FIG. 11. The spin correlation ( S;SI') with the largest

~r,
—rI

~
is plotted in a log-log scale by taking the quarter-filled

case. Open circles represent the same quantity in the Heisen-
berg model, which is shown for a comparison. Note that there
are two series in the size dependence: the systems with
E =N„/2=4n and E =4n +2.

Heisenberg model. This is due to the presence of holes
moving in the system. Furthermore, we can see that the
peak S(2kF ) has a weaker size dependence than lnN„,
while SH(m) has a stronger size dependence than InN„.
In the latter case, Kubo et al. ' have extensively studied
and concluded that

cos[n(r, r, )], —

SH (n. ) — ln
2Tp

(4.4)

It is consistent with the results in Fig. 10.
The size dependence of S(2k+) in the less-than-half-

filled case, which is weaker than that in the Heisenberg
model, indicates that (S'SI') decays faster than
I/~rj rl t In Fig. 11, we plot t—he value of (Sz'Sf ) for
the largest (r —

r&) in a log-log scale. For a comparison,
a similar plot is also made for the Heisenberg model. Fit-
ting two points for the largest sizes with a formula

(4.5)

we obtain g=1.44 for the systems under the periodic
boundary condition (N„=20,28) and g=1.29 for the
systems under the antiperiodic boundary condition

(4.3)

holds for large ~rj rr~ with 0.2(cr &0.3, and—hence
SH(n. ) has a size dependence as

1+0'

(N„=24, 32). As is evident from Fig. 11, we would have
1.29(q&1.44 if we could study larger systems. On the
other hand, a similar estimation for the Heisenberg mod-
el gives q =0.933 from the two points for Nz =22 and 26
and g=0.877 from N„=20 and 24, which are different
from Eq. (4.3). Clearly larger systems have to be studied
to detect a possible existence of a logarithmic factor in
Eq. (4.5). That is beyond the scope of this paper.

The present study showed that the decay of spin corre-
lation in the less-than-half-filled case is different from
that in the Heisenberg model. The physical origin of this
difference can be understood from the wave function
(2.14). Since the number of fermions present between r
and rI varies, the summation in Eq. (4.2) contains
(S&'Sf )H for various (r,' r& )'s. Owing to the os—cillatory
behavior of (S'Sf )H, the absolute value of (S;Sf ) is re-

duced and its decay for large ~r rI ~
should be—come fas-

ter.

V. SUMMARY AND DISCUSSION

In this paper we have studied the momentum distribu-
tion and spin-correlation functions in the large-U limit of
the one-dimensional Hubbard model. It is based on the
Bethe-ansatz wave function of finite, but fairly large sys-
tems. To our knowledge, this is the first attempt to cal-
culate physical quantities by using the Bethe-ansatz wave
function. Let us summarize our main results and discuss
related problems.

(1) Generally, the propagation of electrons in strongly
correlated systems is greatly affected by rearrangements
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of surrounding spins. ' ' In the large-U limit of the
one-dimensional Hubbard model, this interplay shows up
in a simple way. Namely, the ground-state wave function
can be expressed as a product of a Slater determinant of
spinless fermions and the spin wave function of the one-
dirnensional S =

—,
' Heisenberg model. The rearrange-

ment of spin configuration plays an essential role in n (k)
through the "spin transfer" coI ', which is an oscillatory
function of the distance and smears out the singularity of
n (k) at k =2kF of spinless fermions and leads to a strong
singularity at kF.

(2) Since our calculation has been carried out for large,
but finite systems, it was unfortunately difficult to com-
pletely determine the nature of singularity of n(k} at
k =kF. However, present results strongly suggest that
the power-law singularity as predicted by the g-ology [Eq.
(1.1)] also applies to this Ult ~ ~ case. We have tried to
estimate the exponent a from the size dependence for a
typical density, i.e., the quarter-filled system, and found
that a is as small as 0.13—0.15 even in the large-U limit.
In the g-ology, o. is given by

N —1I =
2

N —3

N —3 N —1—1 A 1 y ~ ~ ~ 7

2

M —2
a ~ ~ ~

M —2 M

or

turn of a doped carrier takes a value close to the Fermi
surface. ' This fact has also been checked by the case
with one doped hole in the one-dimensional Hubbard
model. Here we reconsider this problem using the ex-
plicit form of the wave function in the large-U limit. Let
us consider the case with M =even and N =odd
(%=X„—1, M=N„/2) for the one-hole case. Then
both I-'s and J 's are integers

(5.1)

where vF is the Fermi velocity and g2 is equal to U ac-
cording to the mapping from the Hubbard model to the
Tomonaga-Luttinger model. The perturbation calcula-
tion in Appendix B also suggests this exponent. ' In the
quarter-filled case, U~=&2t and thus we have
a= U /16m t This .gives a=0. 1 already at U =4t.

(3) We have found a new singularity of n (k) at k =3kF
or 2m. —3kF. It is due to a pair of electron-hole excita-
tions, as explained in Appendix B. It is natural then to
think that a progressively weaker singularity caused by
multipairs of electron-hole excitations must be present, in
principle, also at k =5kF, 7kF, . . . . Presumably they
are not detectable in our results because they are very
weak and we just have discrete wave numbers due to the
finite system size.

(4) The peak of S(k) shows up at k =2kF, which is in-
cornrnensurate when the system is away from half-filling.
The precise nature of the singularity of S ( k ) at k =2kF is
a subtle problem because a reliable extrapolation to
N„~~ is needed. However, we can say that the size
dependence of S(2k„) for the quarter-fille case is weak-
er than lnN„, in contrast to the half-filled case corre-
sponding to the Heisenberg model.

(5) Sorella' showed that for the weak-correlation re-
gime (U/t =4) their Monte Carlo results on n (k) for a
finite system can be well described by the perturbation
theory. They seem to be consistent also with the predic-
tion of g-ology. As for S(k) a peak at k =2kF is clearly
observed in the Hirsch and Scalapino' and Irnada and
Hatsugai' Monte Carlo results; however, the nature of
the singularity has not been analyzed by them, possibly
because of statistical fluctuations inherent in their Monte
Carlo procedure. A refinement of statistics as well as an
extension to the strong-correlation regime would be ex-
tremely important in the Monte Carlo calculations.

(6) Small-cluster studies have shown that the momen-

MJ =
Q 2

(5.2)

In this case

2m. M
2N

(5.3)

and thus the total momentum is

K =g ki =+nM /L =+a l2,

and the total energy is

1V

E= 2t g cosk-
j=l

= —2t g cos
j=1

7T= —2t cos
2N

(5.4)

XC(yi, . . . , yM

i vrM=e"p + @(yl . yM} .
N

(5.5}

We can interpret the total momentum and energy by
assuming an eft'ective hopping amplitude of the doped
hole. When the system is translated by the unit lat-
tice constant, the spin part of the wave function
4(y, , . . . ,y~) is replaced by '

N(y 1
+ 1, . . . ,y~+ 1)= ( —1) exp i g 9(2A }—
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We may consider that this phase factor exp(+in M/N) is
due to a "gauge" potential induced by the surrounding
spin system. (In this case it is one-dimensional Heisen-
berg system. ) Using this phase factor and assuming that
the effective hopping amplitude of a doped hole is given
by

i AM—t exp +
N

we can readily see that the lowest-energy state of the
doped hole has a finite momentum K =+n /2 and its ki-
netic energy becomes

~M 7T—2t cos + —K = —2t cos
N 2N

which reproduces the exact result.

2tN„
sinn', (A2)

with n =N/Nz =2kF /m. .
(2) The second term of Eq. (Al) is nonvanishing only

when both of the nearest-neighbor sites (i,j} are occu-
pied. The possibility of this case is independent of the

spin configuration so that it is given by

Sin n 7T
(n;n;+i &sp=n

~2
(A3)

where ( &s„ indicates an expectation value within the
spinless fermion system. Once nearest-neighbor sites are
occupied, S; S has a value equal to the exchange energy
in the Heisenberg model. Using the well-known result of
the Heisenberg chain, we have
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APPENDIX A

Let us prove in this appendix that the wave function
Eq. (2.14) gives the correct energy up to the order of t /U
In the large-U limit one can rewrite the Hubbard model

14,23

sin2nm. sin n+
n, Q Qj sF=n 22m 77

(A5)

for each combination of (i,j,j '). Secondly, the spin wave
function also changes. We can easily see that it changes
in a similar way as the exchange interaction but with an
opposite sign. Therefore with respect to the spin degrees
of freedom, we have (ln2)J for each set of (i,j,j '). Count-
ing the number of combination (i,j,j ), we obtain

(3) The third term of Eq. (Al) causes two changes in
the wave function. First, the Slater determinant changes.
This effect is again independent of the spin configurations
and can be taken into account by

H= t g (a—; a +H. c. )+2J g (S; S~
—,'n;n )—

(I,j)o (i,j ) E =2(1„2)N J „sin2n~ sin'n~
(A6)

+ — ~ (a, a, a, a n, a, aj—),
(.i,j )(i,j ')j &j 'o

(Al)
where J =2t /U and a, —:cj (1 n~ ). The e—xpecta-
tion value of each term with respect to (2.14) is as fol-
lows.

(1) The first term gives E, = 2t g, cosk, as—described
in Sec. II. In the limit of N„~ ~, we have

Summing up all these energies, we have

E /N „=——sinn m. —4( ln2 )—n 1—2t . t 2 sin2nm

U 2n~
(A7)

which agrees with the exact result up to the order of
t~U 24

APPENDIX B

Here we sketch the lowest-order perturbation calculation in terms of U to look into the singularities of n (k) and
S(k}. The ground-state wave function f is expanded as

q(0) + q( 1 (+

P g citci' p+q Jc/('JC~JI0&
k, k', q k k' —k+q k' q

where e„= 2t cosk and ~0& den—otes the Fermi sea.
Taking the expectation value over 1((, we easily obtain from Eq. (3.4) the following lowest correction to the momen-

tum distribution function:
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ion function.
11 the energies involved at e e

'
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4qrt sinkF

(83)
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4 vr

S' '(k) =
for k &2kF

4

(84)

is linear in Uas
(&k )f(&k )l1 —f(Ek~ —k)/l1 f(Ek~+k)

in from g

F

16~ t sinkF
~ ~
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