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Quantum Monte Carlo methods are used to study the physical properties of the two-dimensional
Hubbard model for various band fillings. Results for the energy, magnetic moment, magnetic struc-
ture factor, and integrated optical spectral weight are presented. A comparison of the half-filled
((n ) =1) and quarter-filled ((n ) =0.5) bands is made using results for the momentum distribution
( n& ), the compressibility E, and the one-electron self-energy X(k, itv„), which shows that a gap ex-
ists in the one-electron excitations at half-filling but is absent for the one-quarter-filled case. At a
filling of (n ) =0.87, the locus of k values for which (n„)=0.5 is found to be close to the free Fer-
mi surface for this filling.

I. INTRODUCTION

In the Hubbard model, the competition between the ki-
netic and Coulomb energies gives rise to strong electron-
electron correlations. In spite of a variety of perturbative
and variational calculations, the physical consequences
that arise from this competition are not yet fully under-
stood. Here we continue to explore the properties of the
two-dimensional (2D) Hubbard model using recently
developed quantum Monte Carlo methods. ' To begin
with, in Sec. II, we examine the dependence of kinetic
and potential energies on the band filling (n ) for ratios
of the on-site Coulomb energy U to the bandwidth St,
ranging from weak to intermediate coupling. The kinetic
energy is related to the integral of the optical spectral
weight and provides further insight into the behavior of
the system as (n ) is changed. Results for the magnetic
structure factor S(q), the electron momentum distribu-
tion ( ni, ), and the coinpressibility E are obtained for lat-
tices with up to 16X16 sites. The behavior of S(q) is dis-
cussed for various band fillings, and a detailed compar-
ison of (nk ) and K for the half- and quarter-filled cases is
made. In addition, the irreducible one-electron self-
energy X(k,ito„) is calculated and shown to provide a
useful microscopic probe of the insulating and metallic
phases.

It is interesting to contrast the half-filled and quarter-
filled bands, and in Sec. III we focus on these two fillings.
At half-filling, the electron momentum distribution (nk )
appears to be continuous at kF, while d ( n ) /d p vanishes
over a range of p around @=0. Both these features are
expected for an insulating spin-density wave ground state
with a gap in the one-electron spectrum. For the
quarter-filled case, the low-temperature variation of (nk )
is consistent with the existence of a Fermi surface, and
the compressibility appears to be finite. Further micro-
scopic support for this picture is obtained from simula-

tions of the one-electron self-energy X(,k, ito„) The r.e-
cently developed quantum Monte Carlo techniques pro-
vide a natural framework for the numerical calculations
of the standard Matsubara thermodynamic Green's func-
tions. These have previously been used to determine vari-
ous equal-time expectation values as well as static suscep-
tibilities. However, it is also possible to use these same
techniques to calculate such quantities as the irreducible
one-electron self-energy, and in this way explore the
physics contained in selected parts of infinite classes of
Feynman graphs.

We conclude Sec. III with results for (nk ) for a band
filling of (n ) =0.87. Along with preliminary X(k,ito„)
behavior, the (nk ) suggest that at this doping the system
is a Fermi liquid, with the locus of points where
(nk ) =0.5 close to that of the noninteracting system at
this same filling. We conclude with a brief summary.

II. ENERGIES AND THE MAGNETIC
STRUCTURE FACTOR

We consider the two-dimensional Hubbard model on a
square lattice with

H= t g (c; c +c—c, )+Up n;tn;i . .
(ij )o I

In Ref. 1, results for the energy for the half-filled ( n ) = 1

case and various U/t values were given. The dependence
of the kinetic and potential energies on the band filling
( n ) for various ratios of the interaction to bandwidth,
U/8t, shows the role of correlations that suppress the
double occupancy of a site.

In addition to the energy per site

(2)
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we have calculated the square of the magnetic moment
per site

0.8

&(m )'&=&(n;, —n;, )'),

and the effective one-electron transfer-matrix element

(3)
V
0.6

(c(~cJ~+c)~ci~ & U

lV~J(T ~J(7~lCJ )0
(4)

0.4

The square of the magnetic moment per site is directly re-
lated to the probability of double occupancy
5=&n, ,n, , &,

O. P,

((m,')') = (n ) —25 .

This probability of double occupancy 5 versus (n ) for
various values of Ult is shown in Fig. 1. For U=0,
5=(n) j4, and as Ult increases, 5 decreases for all
values of ( n ), clearly indicating the role of U in

suppressing double occupancy. At the same time, larger
values of Ult increase the square of the site magnetiza-
tion. The enhancement of the mean-square local moment
versus (n) is shown in Fig. 2. The energy per site E
versus (n ) is plotted in Fig. 3. These results are for a
12X12 lattice with P=6lt Based u. pon the extrapola-
tions carried out for ( n ) = 1 in Ref. 1, we estimate that
the systetnatic error (due to finite b,r, finite P, and finite
size) for E in Fig. 3 is less than 5%.

0.0
0 0.5

(n&

For the Hubbard model, Baeriswyl et al. have shown
that the optical spectral weight o(t0) is related to the
square of the plasma frequency by (f-sum rule)

~2 = 8 f 1c0 cr( co ) =4rre ( t„) . (6)

FIG. 2. The mean-square local moment ((rn, '}') vs the band
filling (n ) for various values of U.
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FIG. 1. The probability of double occupancy 5 vs the band
filling & n ) for various values of U. In all of the figures we have
set t =1. FIG. 3. The energy per site vs & n ) for different values of U.
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FIG. 4. The effective one-electron transfer matrix element
t,~/t vs (n ) for U/t =4.

S(q)= —g e '(m, '+Im, .'),
I

(7)

peaks at q=(m, m.) diverging as the system size N and the
inverse temperature P go to infinity. At low tempera-
tures, when the system is initially doped away from half-
filling, a random-phase approximation (RPA) predicts
the formation of an incommensurate spin-density wave

Here (t„)=Eot,a/4t, where Eo is the energy per site for
U =0 calculated at filling (n ), and t,a/t is given by Eq.
(4). For ( n ) =1, t,ir/t decreases as t /U for large values
of U and co goes to zero. As one dopes away from
half-filling, "adding mobile carriers, " we expect that the
integrated optical spectral weight will increase. As
shown in Fig. 4 for U/t=4 t,e/t initially increases
linearly with (1—(n ) ) as ( n ) changes from 1. Phenom-
enologically co& is given by 4irn 'e /m ' so that one could
argue that n ' has an additional hole contribution propor-
tional to 1 —(n ); however, it seems more appropriate to
say that the effective mass m ' has decreased as vacancies
are put into the lattice.

As previously reported, ' a finite-size scaling analysis
of the antiferromagnetic structure factor for the half-
filled band (( n ) = 1) implies that the ground state has
long-range antiferromagnetic order. At weak to
moderate values of U/t (U/t & 8), this state may best be
described as a spin-density wave state, while when U
exceeds the bandwidth, a description in terms of an anti-
ferromagnetic Heisenberg model with J =4t /U is more
appropriate. In both cases, the magnetic structure factor
S(q), defined as

state with wave vector g„=( m' —Aq, vr) or
Q =(n, m

. —hq), with bq =p/t at T =0. When the dop-
ing exceeds a critical value (e.g., ( n ) =0.85 for U/t =2),
the system becomes paramagnetic. A conserving approx-
imation predicts the following features as a function of
temperature and doping in the intermediate coupling
range (U/t=4): (a) for fillings between 1 and approxi-
mately 0.94, a finite-temperature crossover from a high-
temperature paramagnetic phase to a low-temperature
commensurate phase (with "nearly" long-range order);
and (b} for fillings between 0.94 and approximately 0.82, a
crossover from a paramagnetic phase to a d-wave super-
conducting phase. (This work did not investigate the
crossover between the commensurate phase and possible
incommensurate phases which presumably occurs near
half-filling for T~0.} Both the RPA and the conserving
approximation imply that when the peak in the magnetic
structure factor moves from (n, ~), it moves along
(n hq, —ir) or (ir, m. —hq) rather than simply moving in
along the diagonal (n hq, n b—q). —

To explore this, we have studied the behavior of S(q)
as a function of doping. In Figs. 5(a)—5(c) we show re-
sults for S(q) obtained on an 8X8 lattice with U/t =4,
P=6/t, and (n ) =1, 0.83, and 0.72. The solid line was
obtained from a simple interpolation. At half-filling,
S(q) clearly peaks at (ir, m.). Decreasing the filling to
( n ) =0.83, we observe a much smaller peak that appears
to have shifted out along the (~, n b,q) edge, —with
Aq =—0.3, rather than down along the diagonal
(ir —b,q, m. —hq). The results are symmetric with the same
form observed along the (ir —b, q, m} axis not shown in the
figures. Thus, the simulation results are consistent with
the peak at (ir, ir) splitting into two peaks, as predicted by
the RPA analysis and conserving approximation stud-
ies. For (n ) =0.72 we find a still smaller peak, as
shown in Fig. 5(c), with a larger value of b,q [using the in-
terpolation shown in Fig. 5(c) one finds b,q=0.4]. De-
creasing (n ) further, it appears that the maxima in S(q)
moves towards (ir, O) and (O, ir), although they become
very weak. %e observed related behavior on 4X4 and
6X6 lattices, but on these smauer lattices it is naturally
even more difficult to determine details of the Aq shifts.
It is clear, however, that S(q) peaks along (n., m. —hq) and
(n b,q, n)rathe—r than . the diagonal (m. —bq, ir —bq) or at
(ir, ir).

A key question, of course, is to determine whether
these peaks in S(q) diverge for ( n ) & 1 as the lattice size
and inverse temperature are increased. Over the temper-
ature range presently accessible to us, P& 6/t, we find no
evidence indicating the growth of long-range incommens-
urate order. Unfortunately, we are presently unable to go
to lower temperatures for the densities of interest (e.g. ,
( n ) =0.7—0.9) because of calculational probleins associ-
ated with fluctuations in the signs of the fermion deter-
minants. As previously discussed, this sign problem is
absent for (n ) =1 and causes minimal difficulties for
(n ) &0.6. Thus, in the following we turn to a compar-
ison of the half-filled (( n ) = 1) and quarter-filled
((n ) =0.5) cases. Having studied these two limits, we
will return to an intermediate filling, (n ) =0.87, at the
end of the next section.
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(a)
III. MOMENTUM DISTRIBUTION

COMPRESSIBILITY, AND X( kt;, i m„)

U'

U'

M
4

&n&=1,P=6,N=8 In order to obtain further insight into the nature of the
correlations in the antiferromagnetic ( n ) = 1 and
paramagnetic (n ) =0.5 states, we have calculated the
momentuin distribution (n„), the compressibility K, and
the one-electron self-energy. All of these can be obtained
from the one-electron Green's function,

(8)

q„(rr,o)
qy=O

qy
q„=7T

&n&=0.83,P=6,N=8

qx
qy=qx

(o,o)

(b)

which, along with the energy, has the smallest statistical
fluctuations of the quantities evaluated in our Monte Car-
lo simulations. Thus we are able to obtain reliable infor-
mation for these one-electron properties on larger lat-
tices. This is very important for the momentum distribu-
tion ( nk ), where the spacing of the allowed momenta de-
pends on the lattice size.

The electron momentum distributions ( n„) for a half-
filled and quarter-filled band with U/t=4 and P=6/t are
shown in Figs. 6 and 7. Here k =k„=k, so that Figs. 6
and 7 show (nt, ) with k along the (1,1) direction. The
solid line shown in Figs. 6(a) and 7(a) is the noninteract-
ing Fermi function

f(e )=Iexp[ —P(e„—p)]+1I
with

0
(o,o) q„

qy=O
qy

q„=7T
q„

qy=qx
(o,o)

ez= —2t(cosk, +cosk )

and )u is adjusted to give (n ) =1 and 0.5, respectively.
The open triangles are for a 16X 16 lattice. The remain-
ing triangles are from different sized lattices ranging from
6X6 to 14X14.

At T =0, a mean-field spin-density wave approxima-
tion gives

&n&=0.72,P=6,N=8

(c)—
k

(nk) f=-,' 1—
k

with Ek =(ek+5 )', where b, is determined by

1 1 1—=—XU N k Ek

(9)

(10)

0
(o,o) q„

qy=O
qy

qx=7T
q„

qy=qx
(o,o)

FIG. 5. S(q„,q„) vs (q„,q ) on an 8XS lattice with U/t =4,
P=6/t, and (a) (n ) =1, (b) (n ) =0.83, and (c) (n ) =0.72. The
solid line is a fit to guide the eye.

For U/t =4, Eq. (10) gives b, /t =1.38. The mean-field
prediction (nk ) f, Eq. (9), is compared with the Monte
Carlo results for (nk )Mc in Fig. 6(b). While the mean-
field result gives a reasonable qualitative fit to (nk ), it is
clear that the mean-field gap is too large, causing ( nk )
to lie below ( nk )Mc for k values near m/2. Fluctuations
are known to reduce b. The dashed curve in Fig. 6(b)
shows Eq. (9) for (nk ) with b, =1.15, which gives a better
fit near m/2.

For the quarter-filled case, we have evaluated the
lowest-order self-energy graph shown in Fig. 8:

f (e~)—f (ek ~)f (ep) f (ep+q)f (ep)+f (&—k q)f (ep+q)
X(k,ia)„)=

N pq tCO„(Ek q+Ep+q Ep)'



41 NUMERICAL STUDY OF THE TWO-DIMENSIONAL HUBBARD. . . 2317

1.0

&n&=l, p=6
U=4 &n&=0.5, P=6

U=4

0
0

1.0

k„=ky

(n) =1, 16x16
(bj

0
0

1.0
o 5' )cL

k„=ky

Jkg 1 4 A k ls

&n&=0.5, P=6

(b)

A

A
~0 5—

~ MC—MF, 6=1.38
——MF, 6=1.15

A

A
~ 0.5—

i MC

~ SE, N=16

o SE, N=32

0
0

k„

0
0

0
Ch 4$ Aa

k =ky

FIG. 7. The momentum distribution ( n„) vs k = (k„,k„) for

(n) =0.5. As in Fig. 6, U/t=4 and p=6/t. (a) Results for
6 X 6, . . . , 16X 16 lattices are shown with the open triangles cor-
responding to the 16X16 lattice. The solid line is the Fermi
function for a quarter-filled band at p=6/t (b) Compari. son of
the Monte Carlo results solid triangles with the results for (nl, )
obtained by keeping the lowest-order self-energy graph shown

in Fig. 8.

FIG. 6. The momentum distribution (n„) vs k=(k„,k„) for
(n ) = l. Here U/t =4 and P=6/t. (a) Results for
6X6. . . 16X 16 lattices are shown. The open triangles are for
the 16X16 lattice. The solid line is the Fermi funct' func ion or a

a -filled, noninteracting system at a temperature P=6/t (b).
Monte Carlo results for a 16X16 lattice, shown as open trian-
gles, are compared with the predictions of mean-field spin-
density wave approximation.

Here f (ei, ) is the usual Fermi function, and

co„=(2n +1)nTis a fermion .Matsubara frequency. The
momentum distribution can be expressed as

culated (nt, ) from Eq. (13) for a 16X16 and 32X32 lat-

tice with (n ) =0.5, Ult=4, and p=6/t. The results are
in reasonable agreement with the Monte Carlo data as
shown in Fig. 7(b).

(n„)=T+ e "
Gt (ice„), (12)

where 0 represents an infinitesima number less than 0.
Adding and subtracting the noninteracting result pro-
vides a convenient form for the numerical evaluation of
(nt, ); we have

(n„)=f (e„)+T g (ice„—et, )[ice„el,—X(k,ice„]—)

Using the lowest-order self-energy, Eq. (11), we have cal-
FIG. 8. The lowest-order self-energy graph for a Hubbard

model.
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Another probe of the electronic correlations and the
metallic or insulating character of the system is the
compressibility

1 d&n)
(14)

&n)' dp

Here &n ) is the average site occupation for a given
chemical potential. For a noninteracting (U =0) 2D
Hubbard model on a square lattice

K=
NT g f(ek)[1 f(ek)]= 2

k

4 —,

BXB, U=-4, P=12, (n&=1—
k=(0, 7T), k=(7T/2, 7T/2)

At low temperatures E =N(p), where N(p} is the density
of states at p. Near half-filling p~O, the saddle points at
the corners of the Fermi surface give rise to a logarithmic
Van Hove singularity, and

(16)

Because of this, E diverges for the noninteracting system
as p~O. However, the interacting UAO system has been

I I I I I I I I I I I I I I I

(o)
7
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shown to exhibit long-range antiferromagnetic order, and
as we have seen, the behavior of & nk ) is consistent with
the occurrence of a gap. In this case, we expect
d &n )/dp to vanish. In Figs. 9(a) and 9(b) we show &n )
versus p for U jt =4 and 2. The dashed line shows the
U =0 result. Similar results are also found for U/t = l.
It therefore appears that when UAO, dn/dlM vanishes as
+~0.

As discussed, the quantum Monte Carlo method gen-
erates the standard thermodynamic, temperature-ordered
Green's functions. Thus, for example, we can calculate
the one-electron Green's function

FIG. 10. The imaginary part of the self-energy X(kr, ice„) vs
co„/n T for a halffilled band (& n ) =1) and kF =(O, m) (squares)
and kF=(m/2, m. /2) (triangles). These results were obtained
from Monte Carlo runs on an 8X8 lattice with U/t =4 and
P=12/t

G (k, r) = —
& Tck (r)ck (0) ) (17)

/
/05 II I

—2 —1.5

with ck(r) =e 'eke '
by simply taking the spatial

Fourier transform of Eq. (8). Then, taking the r-Fourier
transform of G(k, r) at the fermion Matsubara frequen-
cies co„=(2n +1} Tl,rwe have

I I I I I I I I I I I I I I I I

( )
4X4, t, =1, P=1

G(k, ico„)=J e " G(k, r)dr . (18)
0

The irreducible electron self-energy X(k, ico„) can then be
determined from the Dyson equation

———U=O
X (k, leo„)=G (k, leo„) leo„(Ekp) . ' (19)

/
/

/

P 5 I I I

—2 —1.5 —1 —0.5 0
P

FlG. 9. The average electron occupation per site & n ) vs p on
a 4X4 lattice. The dashed line is for U =0 and the points are
Monte Carlo results for (a) U/t =4 and P= 8/t, and (b) U/t =2
and P=12/t.

We have carried out Monte Carlo calculations of G,"(r)
and then determined X(k, i co„) At half-filling. , ek =0 and
in this case, X(k~,ico„) is pure imaginary. Figure 10
shows ImX(kF, i co„) with k~ = (O, lr) and (lr/2, n /2), plot-
ted versus co„/n T, for an 8X8 lattice with P=12/t and
U/t =4. This can be compared with Im[X(kF, ico„)],
with kF=(lr/4, n/2), and for a quarter-filled band with
/3= 8/t and U/t =4, shown in Fig. 11.

For a normal Fermi liquid it is useful to write the
imaginary part of X in the form

X(k,ico„)= [1—Z(k, i co„)]ico„.

At low temperatures with k =kF, Z ( kF, i m T)) 1 is the
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FIG. 11. The imaginary part of the self-energy X(kz, iso„) vs
co„ /rrT for a quarter-filled band (( n ) =0.5) with k~
=(m. /4, m/2). These results were obtained from Monte Carlo
runs on an 8XS lattice with U/t =4 and P=S/t.

quasiparticle wave function renormalization parameter.
Thus, as seen in Fig. 11, we expect that for a Fermi
liquid, the imaginary part of X(k~, iso„) will have a nega-
tive slope for small values of co„. In perturbation theory,
the leading contribution to X, Eq. (11), is plotted in Fig.
12. The perturbation theory result is in good agreement
with the Monte Carlo data for ( n ) =0.5 and clearly indi-
cates a Fermi-liquid-like behavior.

Alternatively, for the half-filled case in which Monte
Carlo simulations show that long-range antiferrornagnet-
ic correlations develop in the ground state, we expect that
there will be a gap in the one-electron spectrum. In
mean-field theory

Q2
X(k, ir0„)= .

l COf1 +E'k

with 5 given by Eq. (10). Then when k is put on the Fer-
mi surface and ek =0, we expect ImX(kz, i ro„)

——6 /co„. This is what is qualitatively seen in the
Monte Carlo data shown in Fig. 10. We conclude that
the behavior of X(k,ice„), which can be directly obtained
from the Monte Carlo calculation, can provide informa-
tion on the formation of a gap.

Thus the Monte Carlo data on (nk ) and X(k,ice„) sup-
port the notion that the half-filled band has a gap at the
noninteracting Fermi surface, while the quarter-filled
band is a normal fermi liquid (at least within the tempera-
ture and momentum resolution of our simulations). With
this in mind, we returned to the important problem of
what happens when the systein is only doped slightly off
half-filling, e.g. , ( n ) =0.87. As previously noted, the fer-
mion determinantal sign problem makes it difficult to go
to low temperatures at such fillings. However, we were
able to obtain some data with ( n ) =0.87 on a 16X 16 lat-
tice with U/t =4 and P=6/t Res.ults for (nk) are
shown in Fig. 13. Here the Brillouin zone of allowed k
values is shown and a solid square is put at k points
where ( nk ) & 0.5. Then extrapolating from the mea-
sured ( nk ) to determine values of k in the Brillouin zone
where (nk) =0.5 gives the X's shown in Fig. 13. For
comparison, the solid line is the noninteracting U=O
Fermi surface for (n ) =0.87, while the dashed line is the
U =0 Fermi surface for (n ) =1.0. Finally, limited data
on X(k,iso„) for ( n ) =0.87 gave no indication of the for-
mation of a spin-density wave gap for k points where
( nj, ) was near 0.5.

IV. CONCLUSION

Using quantum Monte Carlo techniques, we have con-
tinued our study of the two-dimensional Hubbard model.

0.5

BxB, U=4, P=B, &n) =0.5

k=(~/4, ~/z}

3

0

10

FIG. 12. The imaginary part of the lowest-order self-energy
graph (Fig. 8) vs co„ for kF ={a/4 m /2) for ( n ) =0 5. These re-
sults were calculated from Eq. {11)for an 8XS lattice with
U/t =4 aud P=S/t in order to compare with the Monte Carlo
results shown in Fig. 11.

FIG. 13. This shows the a11owed k points in the Brillouin
zone for a 16X16 lattice. The solid squares mark k points at
which (nk ) )0.5 for a band filling of (n ) =0.87 with U/t =4
and P=6/t Extrapolating the Monte Ca. rlo data for (n„) on
the 16-site lattice to the points in the Brillouin zone where (nk )
would equal 0.5 gives the crosses (X). The solid line is the
noninteracting (U =0) Fermi surface for (n ) =0.87 and the
dashed line is the noninteracting Fermi surface for the, half-
filled band ( n ) = 1.0.
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At half-filling and low temperatures we find evidence in

(ni, ), K, and X(kF,ice„) for a one-electron gap. This is
consistent with the existence of long-range antiferromag-
netic order in the ground state. As the system is doped
away from half-filling, the peak in the magnetic structure
factor is found to split, moving along (vr —b,q, m.) and
(m, n. b,q—). It also becomes much weaker, and over the
temperature regime and for the lattice size that we can
simulate, we do not find evidence for long-range incom-
mensurate magnetic order.

For ( n ) =0.5, corresponding to a quarter-filled band,
the system appears to be in a Fermi-liquid state. The
one-electron momentum distribution sharpens relative to
the (n ) =1 case, and the self-energy varies linearly with
co„, having a negative slope as co„~0. For (n ) = 1.0, the
one-electron momentum distribution does not sharpen
and is consistent with the mean-field spin-density-wave
(SDW) result using a reduced value of the gap. In addi-
tion, the compressibility changes from being infinite to
going to zero in the presence of U. A clear signature of a
gap is also seen in X(k, ice„), which diverges as I/co„as
co~ ~0.

While determinantal sign problems make it dificult to
go to low temperatures at fillings near half-filling, calcula-

tions of (nk ) for (n ) =0.87 show that the locus of k
values where (nk ) =0.5 is close to the noninteracting
Fermi surface for this filling. Furthermore, limited data
on X(k, ice„) showed no evidence for a spin-density wave

gap near the (n„)=0.5 locus of k points. However, as
noted in Sec. II, the integrated optical spectral weight
shows the effect of U in altering the effective (n /m) value
that enters the f-sum rule. In addition, we have previ-
ously found that there is an attractive pairing vertex in
the two-particle d wave channel at this filling. What hap-
pens at temperatures lower then 1/50 of the bandwidth
for ( n ) =0.87 remains unresolved.
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