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Mode locking and spatiotemporal chaos in periodically driven Gunn diodes
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Numerical simulation is applied to study the highly nonlinear-dynamic phenomena that can arise
in Gunn diodes by interaction between the internally generated domain mode and an external mi-

crowave signal. By adjusting the time of domain formation and the speed of propagation, the inter-
nal oscillation entrains with the external signal. This produces a devil s staircase of frequency-
locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-
converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos.
At still higher microwave amplitudes, transitions to delayed, quenched, and limited space-charge
accumulation modes take place.

I. INTRODUCTION

Instabilities in dissipative systems can give rise to a
wealth of complex nonlinear-dynamic phenomena, in-
cluding (i) cascades of period-doubling bifurcations, (ii)
entrainment between an internally generated oscillation
and an external signal, and (iii) various types of deter-
ministic chaos. The study of these phenomena has at-
tracted a rapidly growing interest during the past decade,
and examples of chaotic behavior have been reported
from almost all branches of science. ' A considerable
number of studies have been concerned with nonlinear-
dynarnic phenomena in electronic circuits, including
circuits involving semiconductor devices such as tunnel-
ing and varactor diodes. ' In these studies, the active
element has typically been characterized by means of a
time-independent current-voltage characteristic. In no
case, it appears, has the extended nature of the device or
its complex internal dynamics been taken into account.

It is well known that n-type GaAs and a number of
other corn. pound semiconductors can exhibit self-
sustained current oscillations in the microwave range
when the applied drift field exceeds a characteristic
threshold value. " Because of inefficient energy relaxa-
tion, the electron gas heats up to temperatures well above
that of the crystal lattice, and a transfer of carriers from
the high-mobility conduction-band minimum to a set of
low-mobility satellite valleys takes place. If this transi-
tion is fast enough, a bulk negative differential conduc-
tivity may arise. The spatially homogeneous electron dis-
tribution then becomes unstable, and propagating high-
field domains are formed. ' In the external circuit, the
formation and propagation of these domains give rise to
current oscillations with a typical frequency of 7-9 GHz
for a 12-pm sample.

The Gunn effect has been extensively studied by experi-
mental' and various analytical and numerical tech-
niques. ' ' In particu1ar, Copeland' has shown that the
presence of a microwave signal of sufficient amplitude
and frequency can suppress the formation of domains and
produce an alternative mode of operation for the Gunn
diode, which is referred to as a limited space-charge accu-

mulation (or LSA) mode. This mode allows high dc-to-rf
conversion efficiencies and worthwhile microwave output
powers to be attained in the 50—120-GHz regime.

Based upon a relatively detailed model for the forma-
tion and propagation of subsequent high-field domains,
this paper describes the highly nonlinear-dynamic phe-
nornena that can arise in a periodically driven Gunn
diode. As the frequency of the applied microwave signal
is changed, a devil's staircase of frequency-locked oscilla-
tions develops. At higher microwave amplitudes, period
doubling and other forms of mode-converting bifurca-
tions can be seen. In this regime, spatiotemporal chaos is
also observed. For even higher microwave amplitudes,
transitions to delayed, quenched and limited space-charge
accumulation modes take place. Several of these modes
have been experimentally observed. However, the de-
tailed distribution of modes in parameter space does not
appear to have previously been obtained.

II. THE TWO-VALLEY MODEL
OF DOMAIN FORMATION

The Gunn effect is associated with a transfer of elec-
trons from the high-mobility conduction-band minimum
to a set of low-mobility satellite valleys approximately
6=0.35 eV higher in the conduction band. For small
applied fields, only the low-lying I minimum is popu-
lated, and the current-voltage relation is approximately
Ohmic. As the drift field is increased, the electron gas
starts to heat up, and at a threshold field of about 3.5
kV/cm (for GaAs), the average electron energy becomes
sufficient for a population of the higher-lying satellite val-
leys to begin. These valleys have an effective density of
states that exceeds that of the conduction-band minimum
by a factor of the order of 60, ' and at sufficiently high
electric fields, a majority of the electrons will therefore
occupy states in the satellite valleys.

Direct experimental evidence for the electron-transfer
mechanism was first established by Hutson et al. ,

' who
observed a reduction in the threshold field for current os-
ciHations as the valley separation 6 was reduced under
hydrostatic pressure. Detailed calculations by
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McCumber and Chynoweth' and by Kroemer' have
subsequently shown that the two-valley model can satis-
factorily account both for the observed small-signal insta-
bility and for the formation of traveling high-field
domains. The purpose of the present paper is to investi-
gate the nonlinear dynamic phenomena that arise when
the formation of domains takes place in the presence of
an external microwave signal. For this purpose a slightly
simplified version of the two-valley model suffices. In
particular, to avoid calculation of the temperature of the
electron gas, we have applied results for the equilibrium
distribution of electrons between the two sets of valleys
obtained through detailed Monte Carlo calculations of
electron transport properties in GaAs. '

Let us consider a one-dimensional model of a GaAs
Gunn diode of length L. The electric field is applied
along the x direction, and we assume that electrons are
distributed in the high- and low-mobility states with con-
centrations n, (x, t) and n2(x, t), respectively. For sim-

plicity, the electrons are assumed to carry a positive
charge e. The total current density j (t) is considered to
consist of drift and diffusion terms from each of the two
groups of electrons. In addition, there is a dielectric dis-
placement term that secures conservation of charge.
Thus

dFj=n &ev&(F)+n2eIMzF —eD, eD2 —+e, (1)
X X

where F=F(x, t ) is the local electric field as determined
from Poisson's equation

BF e
(n, +—n2 no) —. (2)

Here, e is the static dielectric constant, and no is the
thermal equilibrium electron concentration. In the nu-
merical calculations, we have taken no=2X10' /cm,
and the relative dielectric constant for GaAs has been in-
serted as e, = 12.5. The assumptions of a constant
diffusion constant and a linear relation between velocity
and drift field for electrons in the satellite valleys agree
well with numerical results. ' ' ' Because of relatively
efficient intervalley scattering, the electron distribution in
the upper valleys remains almost Maxwellian, with a tem-
perature close to that of the crystal lattice. The values
that we have chosen for the mobility p,2=320 cm /Vs
and diffusion constant D2=8 cm /s also seem to be in

agreement with numerical calculations.
Although common in studies of high-field domain for-

mation, ' the assumption of a constant diffusion constant
for electrons in the conduction-band minimum is more
difficult to justify. Diffusion plays a relatively significant
role as a mechanism that stabilizes the spatially homo-
geneous electron distribution, and thus counteracts
domain formation. Without diffusion, the electron densi-
ty gradients in the Gunn domain could become infinitely
large. Diffusion also influences the velocity of the stably
propagating domain. ' ' However, as long as the magni-
tude of the diffusion effects is approximately correct, the
variation of these effects with field are presumably less
significant. In our numerical calculations we have taken

D, =200 cm~/s.
Using detailed Monte Carlo techniques, Fawcett

et a1.' have calculated the stationary electron transport
properties of GaAs as a function of the applied field.
With these techniques, the motion of a single electron is
simulated through a large number of scattering processes,
and the time spent by the electron in each little element
of momentum space is recorded. After a sufficient num-
ber of scattering processes, the distribution of visiting
times is taken as being expressive of the distribution of
electrons. The scattering processes are simulated by
drawing random numbers for the time of flight between
collisions, for the actual scattering mechanism, and for
the final state in the scattering process, all in accordance
with theoretically derived probability distributions for
these processes.

In their calculations for n-type GaAs, Fawcett et al. '

included polar-optical and acoustic-phonon scattering for
electrons in the conduction-band minimum, intravalley
and equivalent intervalley scattering for electrons in the
satellite valleys, as well as nonequivalent scattering of
electrons between the two sets of valleys. Nonparabolici-
ty of the conduction-band minimum and wave-vector
dependence of the periodic part of the Bloch functions
for electrons in this minimum were also included.

Figure 1 reproduces results obtained by Fawcett
et al. ' for the fraction of electrons that occupy states in
the satellite valleys as a function of the drift field. These
results apply under stationary and spatially homogeneous
conditions without domain formation. The fraction of
electrons in the upper valleys is very sensitive to the value
of the nonequivalent intravalley deformation potential

By comparing with experimental results obtained
among others, i.e., Ruch and Kino, Fawcett et al. con-
clude that a value of:-; =1X10 eV/cm gives the best
overall fit to the total velocity-field characteristic. In our
calculations we have assumed a simple analytical relation
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FIG. 1. Fraction of electrons that occupy states in the satel-
lite valleys as a function of the drift field. Fine curves obtained
by detailed Monte Carlo calculations (Ref. 19) for different
values of the nonequivalent intervalley deformation potential (a)
:-;,=2.0X10 eV/cm, (b) 1.0X10 eV/cm, and (c) 0.5X10
eV/cm. These results apply under stationary and spatially
homogeneous conditions. The heavy curve shows the simplified
analytical approximation applied in the present study.
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for the fraction nz0(F)/n0 of electrons in the upper val-

leys under conditions of equilibrium at the local field.
This analytical approximation is shown by the heavy
curve in Fig. 1.

Similarly, we have assumed a simple analytical relation
for the velocity-field characteristic v i (F ) of electrons in
the conduction-band minimum. This relation has been
adjusted such that the low-field mobility is

p, =5000 cm /Vs, and the saturation drift velocity for
fields in excess of 4.0 kV/cm is U„=2.3X10 cm/s. This
again corresponds to the results of the detailed Monte
Carlo calculations' for =; =1X10 eV/cm. For higher
values of:-;, Fawcett et al. found a negative differential
conductivity for electrons in the conduction-band
minimum considered alone. %ith these approximations
for nz0(F)/n0 and Ui(F), the resulting velocity-field
characteristic will be in good agreement with experimen-
tal curves up to the highest-field strengths arising in our
calculations.

Under the dynamical conditions considered in the
present model, population equilibration between the two
sets of valleys is expressed by

n&0(F ) nz(x,—t )
(3)

n, (O, t ) =n Dand nz(0, t ) =0

at the cathode end, and neutrality

n, (L, t)+nz(L, t)=n0

(4a)

(4b)

at the anode end. Here L =12 pm denotes the length of
the sample. Our results are not sensitive to the precise
form of these conditions, however. To facilitate the for-
mation of domains, we have assumed that there is a slight
(0.1%) enhancement of the specific resistance in that 1%
of the crystal that is closest to the cathode end. Finally,
we have applied the normalization condition

LI F(x, t )dx = Vd, [1+3 sin(2n ft )], (5)
0

with a relaxation time v=2 ps. The rates at which hot
electrons scatter from the conduction-band minimum to
the higher-lying L and I valleys in GaAs have recently
been measured by Ulbrich et al. They found scattering
times of rr L

=0.48 ps (for 0.48 eV electrons) and

~rx =0.16 ps (for 0.58 eV electrons). In calculations of
the response of the electron gas to changes in the applied
field, Rees ' concludes that this response is controlled by
the relatively slow relaxation of electrons in the central
valley for energies between 0.1 (below which polar optical
scattering is strong) and 0.35 eV (above which intervalley
scattering is significant). This picture seems to agree with
the observation by Kash et al. that an electron scat-
tered into the central valley relaxes towards the bottom
of this valley through a cascade of typically 10-12 opti-
cal phonon emission processes, each requiring approxi-
mately 165 fs. Also McCumber and Chynoweth' in
their description of the dynamics of electron heating ar-
rive at response times of the order of 2 ps.

As boundary conditions we have assumed thermal
equilibrium

where Vd, is the applied dc voltage. f and A denote the
frequency and the relative amplitude of the applied mi-
crowave signal, respectively. In all calculations we have
taken the average dc field to be Vd, /L =4.0 kV/cm.

Figure 2 illustrates the formation of the first high-field
domain as calculated by the above model. Figure 2(a)
shows the variation of the electric field F(x, t ) along the
crystal at different times after a dc-voltage corresponding
to an average field strength of 4 kV/cm has been applied.
Figure 2(b) shows the corresponding variation in the total
electron concentration n, (x, t)+n&( xt), and Figs. 2(c)
and 2(d) show the variation in the lower and upper valley
populations n, (x, t ) and n i(x, t ), respectively.

Immediately after the voltage is applied, the field and
carrier distributions are uniform, the assumed small irre-
gularity close to the cathode end being invisible on the
scales of Fig. 2. Within a period of the order of the inter-
valley relaxation time, ~, a redistribution of carriers be-
tween the two sets of valleys takes place. By virtue of the
negative differential conductivity created by this redistri-
bution, the crystal hereafter yields to a convective insta-
bility: Small random fluctuations in the carrier distribu-
tion become unstable and grow to form a traveling dipole
layer with carrier depletion in the leading edge and accu-
mulation of carriers in the trailing edge.

As the carrier-density —electric-field fluctuations be-
come sufficiently large, nonlinear restraining mechanisms
set in. The increasing voltage drop across the domain
forces the field outside the domain down into the Ohmic
region. This sets a stop to the formation of competing
domains. At the same time, the domain itself stops to
grow, and it hereafter propagates stably towards the
anode end of the crystal. For longer samples, the de-
pletion of the electron gas in the leading edge of the
domain may be almost complete. A more detailed pic-
ture can be obtained by following the variation of n, (x, t )

and nz(x, t) separately, as shown in Figs. 2(c) and 2(d).
Through the agreement between the numerical results
and our physical intuition, these figures serve as a check
on the model.

Simulating the model over a somewhat longer period of
time gives the results presented in Fig. 3. Here, the
upper panel shows the stationary current oscillations that
persist in the crystal after the initial transient has died
out. The lower panel shows the formation and propaga-
tion of subsequent high-field domains. In this panel, the
vertical axis represents the position along the crystal with
the cathode end at the bottom. The time axis is common
to both panels. At a given time, the contour curves in the
lower panel demarcate that part of the crystal in which
the field is more than 10% higher than in the rest of the
crystal. The current density is seen to rise to its Ohmic
value of about 65 A/mm each time a domain disappears
at the anode contact. The current remains high during
the initial phases of the formation of a new domain.
However, as the domain reaches macroscopic
significance, the current density decays to a saturated
value of about 40 A/mm, and the current remains sa-
turated during the period of stable domain propagation.
This again agrees with our physical intuition as estab-
lished through earlier work in the field. The undisturbed
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FIG. 5. Series of phase plots obtained by increasing the mi-
crowave frequency from 12 to 18.55 GHz. The Gunn mode
maintains a 2:1 frequency-locked solution up to microwave fre-
quencies of approximately 18.4 GHz. At f=18.55 GHz, a
quasiperiodic solution (or a periodic solution with a period
longer than 5 ns) is observed.
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FIG. 4. Onset of a 2:1 frequency-locked solution upon appli-
cation of a microwave signal of frequency f= 12.5 GHz and rel-
ative amplitude A =0.20. (b) Shows a phase plot for the sta-
tionary 2:1 solution. By comparison with the undisturbed
domain mode of Fig. 3, it is observed how the domains adjust
their time of formation and their speed of propagation so as to
entrain with the microwave signal.

phase plot it is observed how the current drops during
the formation of a domain, remains low during a negative
swing of the microwave signal, and then rises again as the
domain leaves the crystal. Awaiting that, the average
field F,„becomes suSciently high for a new domain to be
formed, the current density remains high during a second
negative swing of the microwave signal. The Gunn mode
thus primarily adjusts to the microwave signal by delay-
ing the formation of a new domain. At the same time,
however, the speed of domain propagation is slightly re-
duced, and all together the reduction in the frequency of
the domain mode amounts to approximately 27%.

As the frequency of the microwave signal is increased,
the 2:1 frequency-locked solution is maintained up to
about 18.4 GHz. At this frequency, the period during
which the microwave field remains positive after the exit
of a domain becomes too short for a new domain to be
formed, and the oscillation becomes quasiperiodic. This
is illustrated by the series of phase plots in Fig. 5.

For higher microwave frequencies, intervals exist in
which the domain mode entrains into 3:1, 4:1, 5:1, etc. ,
frequency-locked solutions. As an example, Fig. 6 shows
the 6:1 frequency-locked solution that exists for f=50.0
GHz and 3 =0.20. With this solution, the microwave
signal performs three oscillations during the period of
domain formation, and three oscillations during the
period of domain propagation. In the lower panel of Fig.
6(a) we observe how the width of the domain and its
speed of propagation are modulated by the microwave
signal. It is also interesting to observe how a new domain
is nearly formed during the second positive swing of the
microwave signal in the high-current state, and then al-
most quenched to finally reappear and stabilize during
the next positive swing of this signal.

In between the main tongues, more complex
frequency-locked solutions are observed. As an example
Fig. 7 shows the 8:7 frequency-locked solution obtained
for A =0.40 and f= 10.0 GHz. Altogether, the interac-
tion between the internally generated domain mode and
the external microwave signal produce the Arnol'd
tongue diagram, characteristic of periodically perturbed
nonlinear oscillators. ' For fixed microwave ampli-
tude, the interaction gives rise to a devil's staircase of
frequency-locked solutions, interspersed with quasi-
periodic behavior.

With increasing microwave amplitudes, the tongues
broaden. Since it is easier to delay domain formation
than to speed up this process, the broadening is most
significant on the low-frequency side of the tongues. In
the region where the tongues start to overlap, various
forms of period-doubling and mode-converting bifurca-
tions take place. A more detailed investigation of the re-
gion between the 3:1 and 4:1 tongues has thus revealed
the existence of 13:4, 10:3, 14:4, 7:2, 11:3, and 8:2
frequency-locked solutions. In this region, we also find
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FIG. 6. Stationary 6:1 frequency-locked solution existing for

f=50.5 GHz and A =0.20. (a) Temporal variation of current
density, applied field, and internal field distribution; (b) corre-
sponding phase-space trajectory.

FIG. 7. Stationary 8:7 frequency-locked solution existing for
f=10.0 GHz and A =0.40. (a) Temporal variation of current
density, applied field, and internal field distribution; (b) corre-
sponding phase-space trajectory.

chaotic solutions. Figure 8(a), for instance, shows a
phase plot for the attractor existing for A =0.56 and

f=30.0 GHz. Figure 8(b) shows the corresponding tem-
poral variation of the current density and electric-field
distribution, and Fig. 8(c) shows a stroboscopic map ob-
tained by plotting simultaneous values of the current den-
sity and the rate of change for this variable each time the
microwave signal has completed a full oscillation. These
figures illustrate the irregular temporal behavior and the
characteristic folding of the attractor.

To illustrate the spatially chaotic nature of the solu-
tion, Fig. 9(a} shows a stroboscopic map obtained by plot-
ting simultaneous values of the electric field in two points
of the crystal situated x, =L/2 and x2 =3L /4 from the
cathode contact, respectively. The insert illustrates the
layered structure of the chaotic attractor in more detail.
Figure 9(b) shows a similar stroboscopic map obtained by
plotting simultaneous values of the electric field in two
points of the crystal situated x, =3L/8 and x2=5L/8
from the cathode contact. In this figure we have illustrat-
ed how three neighboring points a, , a2, and a 3 move on
the attractor under subsequent itterations. After nine
periods of the external microwave signal, a, has been

mapped into b „a2 into b2, and a3 into b3. The mixing,
which is characteristic of chaotic systems, is revealed by
the interchange of the order of the points. After an addi-
tional five periods of the external signal, b& is mapped
into c&, etc. , and the points that initially were relatively
close to each other have now been scattered over a good
deal of the attractor. All of the stroboscopic maps were
obtained with the phase of the microwave signal equal to
~, i.e., at times when the microwave signal is zero and on
its way to become negative.

As the microwave amplitude is further increased, a
transition to a different set of modes takes place. If the
frequency of the microwave signal is relatively low ( (30
GHz), and yet higher than the undisturbed Gunn fre-
quency fo„„„,a quenched domain mode can be observed.
This mode is illustrated in Fig. 10 for A =0.50 and

f=10.0 GHz. With this mode, a domain is formed and
starts to propagate during a positive swing of the mi-
crowave signal. However, before the domain reaches the
anode contact, the microwave signal turns negative, and
because of the amplitude of this swing, the domain is
quenched. With the next positive swing of the mi-
crowave signal, a new domain is formed, and the two
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FIG. 9. (a) Stroboscopic map obtained by plotting simultane-

ous values of the electric field in two points of the crystal situat-

ed x, =L/2 and x2 =3L/4 from the cathode contact; (b) simi-

lar plot obtained for x~ =3L/8 and x2=5L/8. These plots il-

lustrate the folding and mixing properties of chaotic systems.
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modes thus lock into a 1:1 solution over a relatively
broad frequency interval. In the phase plot, the
quenched mode is characterized by the fact that the
current rises to its Ohmic value at a time where the aver-
age field is below the threshold for domain formation.

For a large amplitude microwave signal of a frequency
below the undisturbed Gunn frequency, a delayed
domain mode is observed. This is also a 1:1 frequency-
locked solution, but now the domain is allowed to propa-
gate all the way through the crystal. Instead, the entrain-
ment occurs as the diode in each swing of the microwave
signal awaits a sulciently high average field before a new
domain is formed.

Finally, at microwave frequencies above approximately
30 GHz, a transition to a limited space-charge accurnula-
tion (or LSA) mode takes place. This mode, which is il-
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FIG. 8. (a) Phase plot of the chaotic solution existing for

f=30.0 GHz and A =0.56. (b) Corresponding temporal varia-
tion of the current density and the electric-field distribution. (c)
Stroboscopic map obtained by plotting simultaneous values of
the current density and the rate of change of this variable each
time the microwave signal has completed a full cycle.
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FIG. 10. (a) Quenched domain mode existing for f=10.0
GHz and A =0.50. Temporal variation of current density, ap-

plied field, and internal field distribution; (b) corresponding
phase-space trajectory. In this mode, the domain is quenched

by a negative swing of the microwave signal before it reaches
the anode contact.

FIG. 11. Limited space-charge accumulation mode obtained
for F=55.0 GHz and A =0.60. (a) Temporal variation of
current density and applied field; (b) corresponding phase-space
trajectory. This mode is characterized by the complete suppres-
sion of domain formation.

lustrated in Fig. 11 for A =0.60 and f=55.0 GHz, is
characterized by an almost complete suppression of
domain formation. During a positive swing of the mi-
crowave signal, domains start to build up from irregulari-
ties or thermal noise. However, before the domains have
grown sufficiently to reach macroscopic significance, the
microwave signal again turns negative. The amplitude
and duration of this negative swing are sufficient to allow
the electron gas to relax back towards a spatially homo-
geneous distribution.

By performing a large number of simulations with the
model, we have determined how the type of solution
varies with the amplitude and frequency of the applied
microwave signal. This has provided the phase diagram
of Fig. 12. In this diagram, Arnol'd tongues of
frequency-locked behavior are seen to arise in intervals
around rational ratios of the external frequency to the
internally controlled domain frequency. With increasing
microwave amplitudes, the tongues broaden and start to
overlap. This produces various types of mode-converting

bifurcations and chaos. As the microwave amplitude ap-
proaches 60—70% of the applied dc field, a transition to
delayed and quenched domain modes occurs for relative-
ly low microwave frequencies, while at higher frequencies
LSA oscillations are observed. Although the general con-
ditions for obtaining some of these modes are relatively
well established, the complicated distribution of
behavioral forms that can arise in periodically driven
Gunn diodes has not previously been studied in detail.

IV. DISCUSSION

The developments in nonlinear science that have oc-
curred during the past 10—15 years have completely re-
volutionized our understanding of complex behavior.
With recognition of the fractal geometry underlying
chaotic behavior, and with the discovery of universal
quantitative relations governing the onset of chaos, we
can now describe the behavior of systems that were previ-
ously regarded as hopelessly complex and, for that
reason, often overlooked. At the same time, a set of new
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FIG. 12. Phase diagram showing the distribution of
behavioral forms as a function of the frequency and amplitude
of the applied microwave signal. Interspersed with the Arnol'd
tongues of frequency-locked behavior, we can observe quasi-
periodic behavior. At high microwave amplitudes, delayed,
quenched, and limited space-charge accumulation modes are
observed.

governed by a few coupled ordinary differential equations
or to constraint systems, where the number of modes are
relatively small. However, most physical systems of in-
terest do not belong to these classes. Usually, the spatial
extension of the system means that the motion will be
chaotic not only in time but also in space; i.e., that
snapshots of the system will show spatial disorder.

During the past few years a number of interesting re-
sults pertaining to extended systems have started to ap-
pear. Through the study of coupled map systems, a
richness of new phenomena have been discovered which
relates both to low-dimensional chaos and to collective
phenomena such as phase transitions.

The present study has followed a somewhat different
line of approach. The aim has been to represent the
physical mechanisms of the bulk negative differential
resistance oscillator in sufficient detail to make the
analysis applicable to real diodes. While on one hand il-
lustrating the universal phenomenon of entrainment in
nonlinear systems, the phase diagram also reflects the
specifics of our problem. In particular, the transition to
delayed, quenched, and limited space-charge accumula-
tion modes are not encountered in simpler models.

diagnostic tools for chaotic systems such as Lyapunov ex-
ponents and fractal dimensions have been developed.

Although much of the inspiration for this break-
through came from the urge to understand turbulence,
most of the results obtained so far pertain to systems
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