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Simulation of solitons in an Ising-like S = —antiferromagnet on a linear chain
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The dynamics of quantum solitons in an Ising-like S=—, antiferromagnet on finite linear chains

with spins N ( ~ 15) is studied by integrating the Schrodinger equation of motion. Space-time corre-
lation functions S"(r,t) and their Fourier transforms, i.e., dynamical structure factor S"(q,co), are
calculated for both even and odd N. A slow but large oscillation of S"(r,t) is seen, which gives a
direct evidence of the occurrence of propagating domain walls, i.e., solitons. The oscillation leads

to a low-energy component of S"(q,co) whose line shape greatly depends on whether N is even or
odd and on the temperature. We analyze in detail the dependence of soliton number in the line

shape and give a plausible conjecture that S"(q,co) for N = 00 should exhibit a very broad double

maximum at low temperatures. We estimate S"(q,co) at various temperatures. Our results repro-
duce experimental observations of S"(q,co) on CsCoC13 and CsCoBr3 very well over a wide tempera-

ture range.

I. INTRODUCTION

Propagating domain walls or solitons in a one-
dimensional (1D) magnetic system have been a subject of
great interest in the past decade. For example, the Ham-
iltonian of classical planar spins on a 1D chain in a mag-
netic field can be reduced to a sine-Gordon Hamiltonian
in which a well-known broad soliton solution exists. '
Ferromagnetic compound CsNiFe3 (Ref. 3) and antiferro-
magnetic compounds (CH3)4NMnC13 (Ref. 4) are known
realizations of the model. Many experiments have shown
evidence of the occurrence of solitons in the compounds,
and now there is no doubt that solitons really occur.
However, low-lying excitations in the compounds are
magnons and the contribution of solitons to magnetic
quantities are difficult to know quantitatively because of
interferences between magnons and solitons. ' On the
other hand, in an S =

—,
' antiferromagnetic Ising-like mod-

el, low-lying excitations are solitons characterized by
propagating distinct domain walls, and their contribution
to magnetic quantities can readily be investigated. Vil-
lain first gave the soliton picture and predicted that soli-
tons lead to a low-energy component of the longitudinal
neutron scattering, S"(q,co). The compounds CsCoC13
and CsCoBr3 are known to be good realizations of the
Ising-like model, and solitons in these compounds have
been extensively studied using various experimental tech-
niques such as Raman scattering, NMR, ' ESR,"' and
neutron scattering. ' ' However, there remains a
strong discrepancy between Villain's prediction on the
scattering function S"(q,cu) and experimental observa-
tions. Square-root singularities are predicted to occur at
cutoA energies +Q(q), whereas experimental observations
reveal the occurrence of a very broad maximum or shoul-
der around A(q). ' '' '' The discrepancy has been said to
occur because of neglect of the interactions of solitons,
and several attempts have been made to take into account
the interactions. ' ' Comparisons between the theoreti-

cal and experimental results, however, have remained un-

satisfactory. Exact calculation of S"(q,co) of a finite
chain with the spin number up to N = 10 was also made. '

It clearly revealed the occurrence of the soliton mode
peak, but, because of the smallness of the system, it did
not predict the line shape of S"(q,co) in a larger system.

Our question is whether the purely 1D Ising-like model
reproduces the experimental structure factor S"(q,co) or
whether any other mechanism is necessary in order to ex-
plain the experimental results. To answer this question,
we need to make an accurate calculation of the interac-
tions of solitons andlor to make an exact calculation of
S"(q,co) in a larger system. In this paper, we propose a
quantum Monte Carlo method of studying the dynamics
of a larger system. Our method is based on a numerical
integration of the Schrodinger equation of motion. To
obtain the thermal averages of quantities of interest, a
Monte Carlo method of random sampling of states is also
used. ' ' Correlation functions of two spins S"(r,t) are
calculated and the structure factors S"(q,co) are obtained
in terms of Fourier transforms of the correlation func-
tions. We calculate S"(q,co) for different N at different
temperatures and show that the line shape depends on
whether N is even or odd and on the temperature. We
argue in detail about the mechanism responsible for the
line shape of S"(q,co) and give a plausible prediction
about the line shape for a larger N. To support the argu-
ment, we also calculate S"(q,co) of the model in a sub-
space consisting of low-lying Ising states by using a con-
ventional diagonalization technique. Using the results,
we make an extrapolation of S"(q,co) to a larger X. Our
results are compared with experimental results on
CsCoC13 and CsCoBr3.

The model and the soliton picture are briefly reviewed
in Sec. II. A quantum Monte Carlo method is explained
in Sec. III. In Sec. IV, the structure factor S"(q,co) is ob-
tained using the method, and its properties are discussed
in detail. In Sec. V, S"(q,to) is calculated by the diago-
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nalization technique, and the contribution of individual
soliton states to S"(q,co) is analyzed. In Sec. VI, compar-
isons between our results and experimental observations
are made. Section VII is devoted to conclusions.

II. MODEL AND SOLITON PICTURE

3
0

I

We start with the model of N spins on a linear chain
described by

q -TT/2

H =2J g [S S +, +e(S;"S,"+, +SEES(+, )], (2.1)

where S =
—,', e &(1, and the periodic boundary condition

is assumed. Before giving the results of our analyses, we

briefly review the soliton picture of the model and a re-
sulting structure factor S"(q,co). Since e «1, the ground
state of the model is close to the doubly degenerate Neel
states. This is realized when N is even because of the
boundary condition. For odd X, the lowest energy states
are ones in which a single localized domain wall exists.
This domain wall exhibits a propagating behavior and is
called a soliton. A single soliton characterized by a wave
vector q has energy

to =J[1+2e cos( 2q ) ]

0 v I

2

FIG. 2. Schematic line shapes of S"(q,co) obtained using the
soliton picture of the 1D Ising-like model.

solved the problem and showed that the excitation spec-
trum of two solitons is given by

and moves with velocity U =4eJ sin(2q), where 0 &
q &n..

A resulting structure factor S"(q,co) exhibits a square-
root singularity at cutoff energies

+Q(q) [=4' l sin(q) I ] .

Odd N Even N

$-so li ton Neel state

Low-lying states described by solitons for odd and even N
are schematically illustrated in Fig. 1.

For even N, low-lying excitations are described by a
domain-wall pair (two solitons). Ishimura and Shiba'

co =2J[1+2ecos(q) cos(q +P)]

with n&P&—nUsin. g. the solution, Nagler et al. '

showed that two-soliton states also lead to the same
square-root singularity of S"(q,co). From the results,
they conjectured that any calculation in which the num-
ber of domain walls is conserved should yield essentially
the same line shape of S"(q,co).

At finite temperatures, many solitons are thermally ex-
cited, and interactions between them occur. Villain
qualitatively discussed this problem and suggested that
the square-root singularity will be broadened due to col-
lisions between solitons. A quantitative treatment of the
collisions was made by Boucher et al. ,

' and, in fact, a
rounded off double peak is obtained at just below Q(q).
The line shapes of S"(q,co) obtained so far are schemati-
cally illustrated in Fig. 2, for which experimental resolu-
tions are also taken into account. ' ' We note that, as
pointed out in Sec. I, the line shapes differ from those ob-
served in the experiments on CsCoBr3 (Ref. 15) and
CsCoC13 (Refs. 13 and 16). The theoretical ones shown in
Fig. 2 have distinct humplike peaks, whereas those ob-
served in experiments exhibit much broader peaks or
shoulders as will be cited in Sec. VI.

3-soli ton 2- so li ton

FIG. 1. Schematic illustrations of soliton states for odd and
even A; Open and solid circles indicate up and down spins, re-
specti vely.

III. MONTE CARLO METHOD
FOR QUANTUM DYNAMICS

We consider pair-correlation functions of spins

S»(r, t) [=(SP(0)S(+„(t)) ]

defined by
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S""(r,t)= g &aISqe' 'S,'I+, e ' 'e ~ la) g &ale ~ la), (3.1)
a=1 a=1

where p= 1/T Here t and T are time and temperature measured in the units of fi= 1 and k~ =1, respectively. I la) j is
an arbitrary complete orthonormal set. Here we choose Ia ) as Ising states. The correlation functions are approximate-
ly calculated using a Monte Carlo method of random sampling of states. ' ' That is

M M
S""(r,t)= g &f»IS,"e' 'S,"+„e ' 'e ~

IP» ) g &P» le
k=1 k=1

M

I Sqe iHtS q
—iHt

I q )
k=1

where
I P» ) is defined as

(3.2)

(3.3)

and lg» &
=e ~""lp» ) Here C

'
is a random number for —1&C"&1. Numerical errors in obtaining the correlation

functions by using Eq. (3.2) instead of Eq. (3.1) are estimated to be of order I/v'M; since C is a random number then

C "C".~5 +O(1/VM ),
M k

(3.4)

(3.5)

holds for M~ oo.
Equation (3.2} is calculated by the following procedure. (1) We first give a state

I g» ) according to Eq. (3.3), which is
one at T = oo, then operate exp( pH/2) t—o the state yielding a state at a temperature 2T. (2) Wave functions

I 1(t„) an
& p» IS, at t =0, r, 2r, . . . , for Jr «1, which are denoted as It(»(n) ) and & g»S,"(n }I

hereafter, can successively be cal-
culated by operating exp( —/Hr) to the functions. In this calculation, since the model considered here is Ising like and
the wave functions are expressed in terms of Ising states, one can use the following expansion of e

I

0 0 0

with

H, =2J g S,'S,'+), H, =2Je g (S;"S;"+,+SEES)+, ),

(3.6)

Time evolution of each Ising state la) is then described
as

The correlation functions S""(r,t) for discrete times
t =nJ~ are calculated by

M
S""(r,t)= g &P„S;"(rt)IS;"„lf„(q)))

k=1

The structure factor S""(q,co) is a Fourier transform of
the correlation function:

e '"'la)=e
—IE,~ —tE

a'
W ~ a')

—
—,'r gee " W ~ W la"),

a' a"
(3.7)

Q(q~)g+S7fq(r t )e& t qr —ut) (3.g)

where q is the wave vector measured in units of a =1,
with a being the lattice constant and, hence, 0 ~ q & 2m.
We note that, since

where H, Ia) =E Ia) and W, =&alH, Ia') and, in the
third term of the right-hand side, only the lowest power
in J~ is taken into account for simplicity. This method
can also be used to obtain Ig» ). In the course of calcu-
lating the time evolution of the wave functions, numerical
errors also occur. These can roughly be estimated by cal-
culating conserved quantities such as the energy of the
system and the norms of the wave functions. To avoid
compounding the errors, we renormalize the wave func-
tions for every step and calculate the energy to check the
accuracy of the approximation. Typically, when @=0.1
and Jv.= —,', the relative difference in the energy is less
than 0.5% for Jt =400.

S""(2 qqr, co)=S""(q,co)

holds in the periodic lattice, only S" ( qcqo) for 0 q &qr
will need to be presented in later sections.

Computer CPU time and memory size needed to ob-
tain the correlation functions are roughly estimated to be
of order (M)(2 }(time/q. ) and constX2, respectively.
These are much less than those of a diagonalization tech-
nique used conventionally, which are of order (2 ) and
(2 ), respectively. We note that, in principle, the num-
ber of states "M" should be sufficiently large, but, as seen
later, we can obtain reliable results using only several
states (M —5). Using this method, we can treat systems
larger than those treatable by using the diagonalization
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technique. In the following sections, we apply the
method to obtain the correlation function S"(r,t) and the
structure factor S"(q,co).

IV. RESULTS

10-

I

05 —/
/6

N =14 T/J =0.5

—Re ----- Imxlp

We treat the model of @=0.1 on the 1D chain with a
periodic boundary condition. The number of spins treat-
ed in this paper is up to N =15. We choose the number
of states M =4 or 5 and time interval J~=0.2.

A. Correlation function S"(r, t)
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FIG. 3. Correlation functions S"(r,t) of the model of @=0.1
for odd X. Solid and dashed lines represent real and imaginary
parts of them, respectively.

We first present typical results of S"(r,t) for systems
with odd and even N in Figs. 3 and 4, respectively. Here,
we only show them for r =2n, which are positive at t =0,
since those for r =2n + 1 exhibit a time dependence simi-
lar to those for r =2n but have opposite signs. The re-
sults depend on whether N is even or odd. This is be-
cause for the lattice with an odd N, at least one soliton
exists, whereas for an even N, the ground state is close to
the doubly degenerate Neel states (see Fig. 1). From
S"(r,t), we readily see the following dynamical proper-
ties of the model.

(i) S"(r,t) slowly oscillates in time and its wave is not
simple. This shows that several modes with their fre-
quencies iv/J-0 occur. Their periods are roughly es-
timated to be longer than Jt -20. That is the frequencies
are estimated to be ~rv, „~ &0.3J. This is consistent with
the Villain's result, i.e., co~ (4' with a=0 l. .

(ii) The solitons exhibit a propagating nature. This is
seen in the time delay of the appearance of the imaginary
part of S"(r,t) Using Jt —. 15 for r —6, we estimate the
velocity of solitons to be v -0.4J. The velocity may also
be estimated from a behavior of an individual correlation
function S"(r,t). The sign of Sv(0)S„'(t) changes when-
ever one soliton passes the position r Then, .S"(r,t) for
odd N changes its sign as the time goes on. This change
in sign occurs in a time interval Jt -40 for N=15, which
leads to v-0.4J. The two estimations are consistent
with each other and also consistent with the Villain s es-
timation u =4Je sin(q) for 0 ~ q ~ ~.

(iii) Besides the slow oscillations, S"(r,t) exhibits a fast
small oscillation, which is seen in the imaginary part of

FIG. 4. Correlation functions S"(r,t) of the model of @=0.1
for even N. Solid and dashed lines represent real and imaginary
parts of them, respectively.

S"(r,t) in the figures. The period of the oscillation is es-
timated as Jt -3, which leads another peak of S"(q,cv) at
co/J —+2. The occurrence of the oscillation, or the peak
of S"(q,rv), was already pointed out by Ishimura and Shi-
ba 18

All the results support the soliton picture of the spin
dynamics of the model. In Sec. IVB we quantitatively
analyze the dynamics using the structure factor S"(q,co).

B. Central peak of S"(q,co)

The structure factor S"(q,ro) is given by Eq. (3.8) in
Sec. III. In the calculation, we suppose that the time
span in the transformation, which is denoted by "t,„"
hereafter, is enough to be much longer than N/u, where v

is an averaged velocity of solitons. That ist,„»Nlv -40/J, since v -0.4J and N-15. To exam-
ine this, we made calculations of S"(q, co ) using three
different t,„, i.e., Jt,„=200, 400, and 600. The line
shapes of S"(q,rv) obtained for those three cases do not
differ much, except for the difference in resolution of Aco

( =2m/Jt, „). Hence, we make a calculation of S"(q,co)

using data for Jt =0—400. The S (q, co) is real in nature,
whereas that obtained in this way is not. Hence, we take
the absolute value of it and present it hereafter.

We first consider the peak of S"(q,rv) at co-0. The
small peak at co/J-+2 will be considered later. We
present results of S"(q, co ) at three temperatures
kT/J=0. 3, 0.5, and 0.8. The correlation length r's
defined by

for these temperatures are r-10, 3, and 1, respectively.
At low temperatures, the results for odd and even N
differ both in the line shape and in magnitude, whereas
they become similar as the temperature increases. Only
for odd N and at low temperatures do we find a distinct
sharp double peak at co=+A(q). We discuss those in de-
tail.

In Fig. 5, we present the results for odd N (N = 15). In
this case, S"(q,co) describes the dynamics of odd-soliton
states. At low temperatures, only one-soliton states are
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FIG. 5. S"{qco)of the model of a=0.1 for %=15 described in an arbitrary unit at various temperatures. Arrows indicate the
cuto6' frequencies +0{q).
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realized and S"(q,co) is described by the states. Al-
though S"(q,co) consists of several spikelike peaks due to
the finiteness of the system, it clearly predicts the oc-
currence of a sharp double peak at co=+A(q) in a larger

I

system. As the temperature increases, the height of the
peak becomes lower and a continuous scattering arises.
This is readily recognized, if we remember that S"(q,co)
is formally expressed as

S"(q ~)= & g I & pls; Iv &
I'e ~E,5(co E+E„—)

gg l&pls;Iv) I'5(m E„+E„)—+e ' 'gg l&)ulSqlv) I'5(co E„+E„)+—.
1s 3$

y+e —2JP y +. . .
1s 3$

where Ip, ) and Iv) are eigenstates (soliton states) of the model,

S'=(1/v'X )gs„'exp(iqr),

(4.1)

and 1s and 3s mean the summations over one- and three-soliton states, respectively. Here, since e((1, we use
E —Eg +J for one-soliton states and E —F +3J for three-soliton states, respectively, where E is the ground-state en-

ergy. The number of the one-soliton states is of order N, and that of the three-soliton states is of the order of the com-
bination ~C3. As the temperature increases, the relative contribution of the one-soliton states to S (q, co) decreases,
whereas that of three-soliton states increases, being expected to dominate the former. This occurs when &C3e ~ -N,
which gives T/J-0. 5 for X =15, and a change in the line shape is seen around this temperature. As the temperature
increases more, states with more solitons are also excited and S"(q,co) becomes almost flat for

I ral (Q(q).
We note that a similar argument is also possible when N is changed. Since the number of n-soliton states is of order

~C„, the number of multisoliton states increases much more rapidly than that of one-soliton states as N increases. In a
larger system, the contribution of multisoliton states dominates that of one-soliton states even at low temperatures.

Results for even X (X = 14) are presented in Fig. 6. For even X, the ground state is the doubly degenerate nonsoliton
state and excited states are ones with even number of solitons. In this case, S"(q,co) may be expressed as

S"(q,~) -25(co)5(q n)i 2+e—.
2$

e g g I & pls~ lv) I 5(m E„+E,)+e-'~'—y y 1&qlS; Iv& I'5(~ E„+E,)+ . —
2$ 4s

2+e "i'y+
2$

(4.2)
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FIG. 6. 5"(q,co} of the model of a=0.1 for N= 14 described in arbitrary units at various temperatures. Arrows indicate the cutoff
frequencies +Q(q }.
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FIG. 6. (Continued).

The first term in the right-hand side describes the Bragg-
like scattering and the second term the scattering of soli-
tons. As expected, the Bragg-like peak at q =m and m =0
reduces as temperature increases. At low temperatures,
the main contribution to S'*(q,m) for quan comes from
two-soliton states. Since the two-soliton term in the
numerator has the factor of e ~, S"(q,co) will be very
sensitive to temperature. In fact, at T/J =0.3, S"(q,co)
is much sinaller than that for n =15, and it becomes of
the same order as the temperature increases. At low tem-
peratures, S"(q,co) exhibits only a weak trace of the dou-
ble peak. As the temperature increases, four-soliton
states are also excited and S"(q,co) is described by both
two- and four-soliton states. Since N =14, the two parts
become comparable at T/J-0. 5 and the line shape of
S"(q,co) changes around this temperature. At high tem-
peratures, we get the line shapes similar to those for odd
N except for q

—m, where the Bragg-like scattering
occurs.

C. S"(q,co) at u/J-2

As mentioned before, S"(q,co) should also have finite
values at co/J-+2. The mechanism responsible for the
appearance of S"(q,co) at co/J-+2 is different from that
at co-0. In this range of co, S"(q,co) is described by
different soliton states. At low temperatures, those for
odd and even N are described by

S (q, co)-
2/I(p, ls'l%' &I 5(a) E„+E )—+

2+e -')"g+
2$

for even N, (4.4)

where I+s & is one of the ground states approxiinately de-
scribed by

V. DIAGONALIZATION IN SUBSPACKS

2$

where lipN, „is one of the Neel states. Results for N =15
and 14 at co/J-2 are presented in Figs. 7 and 8. The line
shapes are different from those for co/J-0. Only for
even N and at low temperatures, can we see a distinct
structure of S"(q,co). As the temperature increases, it
becomes smaller and disappears. This is because, in both
Eqs. (4.3) and (4.4), the denominators increase with the
temperature. In contrast to that for co/J-O, S"(q,co)

appears in wide frequency ranges for q-0 and n. and in
narrow ones for q —ir/2. This is consistent with that pre-
dicted by Ishimura and Shiba. ' The line shape of
S (q, co), however, is asymmetric with respect to co, in
contrast with their prediction.

1$

for odd N, (4.3)

To support the arguments given in Sec. IV, we also cal-
culate S"(q,co) by an alternative method, i.e., a diagonali-
zation technique. Although this method gives the exact
result, it is costly in CPU time and memory. Here, since
e &(1, we calculate it in subspace consisting of low-lying
Ising states. For odd N, we take all Ising states with one
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FIG. 7. Side peak of S"(q,~) of the model of @=0.1 for N= 15 at a low temperature described in arbitrary units.
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FIG. 8. Side peak of S"(q,co) of the model of a=0.1 for X= 14 at a low temperature described in arbitrary units.
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or three domain walls. For even N, we take the two Neel
states and all Ising states with two or four domain walls.
Eigenstates obtained in this way, of course, consist of Is-
ing states with different numbers of domain walls. How-
ever, we can readily classify them into different soliton
states according to the number of domain walls included
in the main Ising states. For odd N, 2N eigenstates with
lower energies are one-soliton states and the others are
three-soliton states. For even N, we obtain two- and
four-soliton states in addition to two nonsoliton states.
We denote the structure factor calculated by using a set
of n-soliton states as S„"(q,co) for distinguishing it from
S"(q,co). That is expressed as
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FIG. 10. Contributions of two- and four-soliton states to
S"(q,co) for even N (=16) calculated in a subspace described in
the text.

where Z„=g,exp( PE„},—and p and v run over all n

soliton states. The contribution of n-soliton states to
S"(q,co), which is described by S „(q,co) hereafter, is
straightforwardly obtained from the relation

S '„'(q, co) =(Z„/Z )S„"(q,co)

with Z being the partition function calculated by using all
eigen values.

A. S '„'(q, co) of each of the soliton states

We first consider the individual S '„'(q, co) and their con-
tribution to S (q, co). We present the typical results of
S„"(q,co} in Fig. 9 for odd N, in Fig. 10 for even N, and in

Fig. 11 for different odd N. The line shapes for different
n's are not similar with each other. For S, (q, co}, a dis-
tinct double peak is seen for all q. For Sz'(q, co), although
the double peak is seen for q -m /2, it is not so sharp as
that found for S (q, co). The larger the number of soli-
tons, the broader the line shape that follows. Results in
Figs. 9 and 11 reveal that the contribution of one-soliton
states to S"(q,co) decreases as N increases. These line
shapes of S„"(q,co) do not change much when the temper-

—PE„
ature is varied, because e "-e "~ for all n-soliton
states for T/J & 4e. But, their relative intensities
markedly change. This leads to the temperature depen-
dence of the line shape of S (q, co). As seen in the
figures, at temperatures above T/J=0. 5, three- and
four-soliton states contribute considerably to S"(q,co)
even for N-15. All these results are what we have dis-
cussed in Sec. IV.

It is worthwhile to note that, at low temperatures,
S"(q,co) obtained here are very similar to those presented
in Sec. IV, although both are obtained based on different
approximations. This proves the reliability of both the
methods used in this paper.

B. Extrapolation to a larger N

Since a large number of solitons are thermally excited
in a larger system, the line shape is not the same as pre-
dicted by previous theories in which only one- and two-
soliton states are treated. Which line shape is obtained
for N~oo? To answer this question, it is necessary to
treat much larger systems of N »r, where r is the corre-
lation length of the model. For T/J&0. 5, since r ~3,
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FIG. 9. Contributions of one- and three-soliton states to
S"(q,co) for odd N (=21) calculated in a subspace described in
the text.

FICr. 11. Contributions of one- and three-soliton states to
S"(q,co) for diferent odd N calculated in a subspace described
in the text.
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FIG. 12. S„"(q,co) at a fixed soliton density of p {= n /N) =
—,'.

Note those for W~ ao are regarded as S"{q,m) at T/J -0.4.

the systems treated in this paper (N ~ 15) are not small
and, in fact, give results almost independent of N. At
lower temperatures, since r rapidly increases with de-
creasing temperature, it is diificult to obtain S"(q,co) in
the same manner.

For a larger N, S"(q,co) will be approximately de-
scribed by the n-soliton states with n -pN, i.e., S"~(q,co),
where p-I/(2r) is the density of solitons. In Figs. 12
and 13, we show Szz(q, to) for different N for two densi-
ties of p (=n/N)- ,' and——,'. In fact, those converge rap-
idly as N increases. This fact may be used to estimate
S (q, co) in a larger system. A procedure for the estima-
tion of the line shape at a given temperature To is as fol-
lows. We first estimate the density p at To using the rela-
tion p- I/(2r), with r being determined by
(SOS„*)/((So) ) =

—,'. Then S"~(q,co) is calculated with

increasing N like those discussed earlier. When the func-
tion converges, we regard it as S"(q,co) at To. Since
p- —,

' and —,
' are realized at T/J-0. 4 and 0.55, we may

regard S„(q,co) shown in Figs. 12 (and also in Fig. 9) and
13 as S*'(q,co) at those temperatures, respectively. Note
that, as pointed out before, the line shapes of individual
S„(q,ro) do not depend much on the temperature.

At much lower temperatures, the method also becomes
useless to estimate S"(q,cu), because we need to treat
much larger systems. For example, at T/J-0. 3, we
need at least to calculate S3'(q, co) of a system with
N-50. However, we can guess the line shape from the
results presented here. In particular, the results in Figs.
12 and 13 are suggestive. For a fixed density p, the peaks
become broader as N increases. We also see that the line
shape does not change qualitatively when the density is
lowered from p- —,

' to —,', although the peak positions
move to the higher frequency side. We believe, hence,

TIJ = 0.5 Qzz
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n/N= 2/8 pp8-
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FIG. 13. S„"(q,co) at a fixed soliton density of p ( = n /N) = —'.
Note those for N ~ ~ are regarded as S"(q,~) at T/J -0.55.

that S"(q,co) exhibits a broad double maximum at all
temperatures below a certain temperature, above which
the soliton picture breaks down.

VI. COMPARISON %ITH EXPERIMENTS
ON CsCOBr3 AND CsCOC13

Now we make a comparison between our results and
the experimental observations of the central peak. First
we consider CsCoBr3, for which @=0.10 or 0.14 (Refs. 14
and 15) is estimated, together with J=77.8 K. Using the
values of J=78 K and @=0.1 and the method in Sec. III,
we calculate S (q, co). Our results reproduce the line
shape very well. However, the frequency range of the
peak is about 1.8 times as narrow as compared with ex-
perimental observations. We think this difference comes
from the difference between the values of e. So long as
e &(1, the line shape will depend little on the value of e,
except the frequency range increases in proportion to e.
Assuming a=0.18, we expand the frequency range 1.8
times and plot the results in Figs. 14 and 15 for different
wave vectors and temperatures, together with experimen-
tal observations by Nagler et a1. (Figs. 17 and 18 in Ref.
15). Since in our calculation S"(q,co) has a background
associated with the finiteness of time span t,„, we sub-
tract the background so as to fit our results and the ex-
perimental results at higher frequencies. Then, the ordi-
nate scale is chosen so that our result for q =8m/14 at
T=0.65J ( -51 K) fits the experimental result for
q=(1.2, 0, 0.5) at T=50 K [Fig. 17(b) in Ref. 15]. This
scaling factor is commonly used in all histograms in Figs.
14 and 15. Note, since we can only take distinct values of
q because of the finiteness of the system, we choose the
nearest value of q, which is shown in brackets in the
figures.
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Considering the fact that the scaling factor and e
(=0.18) are the only adjustable parameters used in this
comparison, the agreement is quite remarkable both in
the line shape and in the temperature dependence. Note,
our estimation of e is a little greater than that estimated
from an analysis of a dispersion of central modes based
on the Villain's theory, in which the peak position is
given by the cutoff frequency co=Q(q). ' The discrepan-
cy comes from the fact that the peak of S"(q,e) does not
occur at Q(q) but inside Q(q). Hence, we believe the
present estimation is more plausible.

Next, we consider experimental observations on
CsCoC13 by Yoshizawa et al. (Fig. 5 in Ref. 13) in which
@=0.14 and J=74 K are estimated. ' Our results for
@=0.1 reproduce the line shape very well except for the
frequency range. Assuming @=0.15 and following a simi-
lar method given earlier for the scaling, we plot our re-
sults in Fig. 16, together with the experimental results.
Here we also take into account the small deviations of q
between the experiment and the calculation, which lead
to differences in Villain's cutoff frequency Q(q). We
again see a very good agreement between the experimen-
tal and calculated results. Experimentally observations
on the same substance at low temperatures (T-~30 K)
were made by Boucher et al. ' for q &m. It is difficult to
make a similar comparison at the temperatures, because
our simulation results depend on the number of spins. By
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FIG. 16. Comparison between our results (histogram) ob-
tained for J=74 K and a=0.15 and experimental results on
CsCoC13 by Yoshizawa et al. (Fig. 15 in Ref. 13).
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using the extrapolation method given in Sec. V, however,
S"(q, co ) at the highest temperature T= 30 K can be es-
timated. Since T/J-0. 4 for T=30 K, then the line
shape of S3'(q, co) for N=21 is compared with the experi-
mental one, which is shown in Fig. 17. A good agree-
ment is also seen. The comparison at lower temperatures
is difficult to do at present. We note, however, that ex-
perimental results for q &~, reveal the occurrence of a
shoulder and a gradual decrease outside the co=A(q).
These are consistent with those suggested in Sec. V.

VII. CONCLUSIONS

A simulation of solitons in an Ising-like antiferromag-
net on a finite 1D lattice with N spins has been made.
Space-time correlation functions S"(r,t) and their
Fourier transforms, i.e., the dynamical structure factors
S"(q,co), have been obtained for different N at various
temperatures. A slow but large oscillation of S"(r, t) has
been seen, which gives a direct evidence of the oc-
currence of propagating domain walls, i.e., solitons. The
oscillation leads to a low-energy component of S"(q,co)

whose line shape depends a great deal on whether N is
even or odd and on temperature. Only for odd N and at
low temperatures, a sharp double peak of S"(q,co) is seen
at cutoff energies +Q(q) predicted by previous theories.
As temperature increases, the peak becomes very broad
irrespective of N being even or odd. These points have

been argued in detail by using a soliton picture of the
Ising-like model.

To support the argument, we have analyzed the model
in a subspace consisting of low-lying Ising states using a
diagonalization technique. Eigenstates are classified into
different soliton states. We have shown that different sol-
iton states give their own line shapes of S"(q,co), i.e., the
larger the number of solitons, the broader the peak. As
temperature increases or N becomes larger, the line shape
becomes broader, because the number of thermally excit-
ed solitons increases. From the results, we have conclud-
ed that, in an infinitely large system, the line shape is
broad at all temperatures in contrast with that predicted
by previous theories.

Comparisons between our results and experimental re-
sults on CsCoBr3 and CsCoC13 have been made. Very
good agreements are obtained in both the line shape and
the temperature dependence. We conclude that the spin
dynamics of the substances are well described by the
Ising-like model on the purely 1D chain. Other interac-
tions such as interchain interactions need not be taken
into account to explain the dynamics of the substances.

Finally, we should mention that the dependence of soli-
ton number on the line shape of S"(q,co) is dramatic.
The larger the number of solitons, the broader the line
shape becomes. We believe that the broadening comes
from an inherent nature of solitons in this model. That is
when two solitons collide with each other, they are re-
bounded like two hard rods. Then, each soliton moves in
a space between two neighboring solitons. Of course, the
size of the space distributes around an averaged value of
order 2r, with r being the correlation length of the model.
Moreover, the two neighboring solitons also move in time
being governed by the same dynamics. These will con-
tribute to the broadening of the line shape. This will be
discussed separately. In this paper, we have studied the
longitudinal response function S"(q,co). Our method is
also applicable to the analysis of the transverse response
function S""(q,co). This will be given in a future paper.

ACKNOWLEDGMENTS

The authors would like to thank Mr. H. Ohhara for
helping with the numerical calculations.

'H. J. Mikeska, J. Phys. C 11, L29 (1978).
~T. Tsuzuki and K. Sasaki, Prog. Theor. Phys. Suppl. No. 94, 73

(1988)„and references therein.
J. K. Kjems and M. Steiner, Phys. Rev. Lett. 41, 1137 (1978).

~L. P. Regnault, J. P. Boucher, J. Rossat-Mignod, J. P. Renard,
J. Bouillot, and W. G. Stirling, J. Phys. C 15, 1261 (1982).

5See references cited in Ref. 2.
M. D. Johnson and N. F. Wright, Phys. Rev. B 32, 5798 (1985).

7H. Benner, J. Wiese, R. Geick, and H. Sauer, Europhys. Lett.
3, 1135 (1987).

8J. Villain, Physica 79B, 1 (1975).
H. Shiba, Prog. Theor. Phys. 64, 466 (1980); W. P. Lehmann,

W. Breitling, and R. Weber, J. Phys. C 14, 4655 (1981).

'oK. Adachi, M. Hamashima, Y. Ajiro, and M. Mekata, J. Phys.
Soc. Jpn. 47, 780 (1979).
K. Adachi, J. Phys. Soc. Jpn. 50, 3904 (1981).

' J. P. Boucher, G. Rius, and Y. Henry, Europhys. Lett. 4, 1073
(1987).

' H. Yoshizawa, K. Hirakawa, S. K. Satija, and G. Shirane,
Phys. Rev. B 23, 2298 (1981).

' S. E. Nagler, W. J. L. Buyers, R. L. Armstrong, and B. Briat,
Phys. Rev. Lett. 49, 590 (1982); S. E. Nagler, W. J. L. Buyers,
R. L. Armstrong, and B.Briat, Phys. Rev. B 27, 1784 (1983).

' S. E. Nagler, W. J. L. Buyers, R. L. Armstrong, and B. Briat,
Phys. Rev. B 28, 3873 (1983).

' J. P. Boucher, L. P. Regnault, J. Rossat-Mignod, Y. Henry, J.



41 SIMULATION OF SOLITONS IN AN ISING-LIKE S=—' . . . 2297

Bouillot, and W. G. Stirling, Phys. Rev. B 31, 3015 (1985).
' W. J. L. Buyers, M. J. Hogan, R. L. Armstrong, and B. Briat,

Phys. Rev. B 33, 1727 (1986).
N. Ishimura and H. Shiba, Prog. Theor. Phys. 63, 743 (1980).

' M. Imada and M. Takahashi, J. Phys. Soc. Jpn. 55, 3354
(1986).
F. Matsubara and S. Inawashiro, Solid State Commun. 67, 229
(1988).


