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Atomic mobility in Cahn’s diffusion model
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We propose a simple stochastic model for one-dimensional interdiffusion in a binary A4-B solid
solution. By an appropriate choice of the activation energy for the interchange of 4 and B atoms
among neighboring planes, we prove the model drives the system to the correct steady states with
statistical weights identical to those evaluated by the simplest mean-field thermodynamics. Based
on this model an expression is obtained for the interdiffusion flux: The conditions under which the
latter reduces to a linear-response-theory type are discussed, and the microscopic expression for mo-
bility coefficient is elucidated. It is found to be a function of the local equilibrium composition and

composition inhomogeneity.

I. INTRODUCTION

Almost thirty years ago, Hillert' and Cahn? introduced
a model for interdiffusion in which the contribution of
the concentration inhomogeneity to the chemical poten-
tial is taken into account. Indeed, as shown by Cahn and
Hilliard,® the extrema of the free energy of a binary mix-
ture (local equilibrium condition) are reached when a
generalized chemical potential is uniform: The latter is a
function of the local concentration and to the first order
in inhomogeneity, of the local curvature of the concentra-
tion field. Any reliable kinetic model must be such that
in a closed system, the interdiffusion flux J will be zero
when the above chemical potential a is uniform. The
simplest form is

J=—MVa, (1)

where M is a mobility.""? Of course, in the limit of van-
ishing inhomogeneity (a—classical chemical potential),
one must recover the classical expression of the
interdiffusion flux. This requirement prompted Cahn and
others*? to choose Darken’s® expression for the mobility.
Notice that Hillert' pointed out he “was not able to justi-
fy [his] choice of the form of the mobility by applying the
absolute rate theory.”

In this paper, we treat in full detail a simple one-
dimensional model where the cohesive energy and the ac-
tivation barrier for interatomic exchanges are assumed to
be sums of pair interaction energies. We demonstrate the
complete compatibility of our kinetic model with a sim-
ple Bragg Williams description of the thermodynamics of
the system: Indeed, a stochastic version of our kinetic
model yields a steady state probability of a concentration
profile, in a closed system, identical to that evaluated
from the thermodynamics. Based on this kinetic model,
an expression for the interdiffusion flux is deduced which
can be identified to Eq. (1) in the case of weak chemical
potential gradients. It is found that M contains an inho-
mogeneity term much in the same way as a. The impli-
cations of this finding are discussed.

II. THE MODEL: STATICS AND
DETERMINISTIC KINETICS

We consider N lattice planes normal to the X axis (Fig.
1), each lattice plane comprising () atomic sites. Each
site (e.g., in plane n) has z, nearest neighbors in plane n, z
in plane (n +1), and z in plane (n —1) [e.g., in an fcc
structure, planes would be (111) and z;,=6,z =3)]. The
coordinence is Z =2z +z,. Two atomic species A and B
are shared by the N X () lattice sites. For our present
purpose, a configuration of the system is defined by the

set {By;...B,;...By} of the numbers of B atoms in
each plane 1, .. . N or equivalently by the concentrations
c¢,=B,/Q, or the concentration profile c(x) with

x =(n —1)a, where a is the interplanar distance in the X
direction.

The set {B,} may be represented by a vector B with
components B, in an N-dimension space. For each con-
figuration so defined an internal energy E(B) may be
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FIG. 1. Links between neighboring planes: One atom in
plane n has z, (=6) nearest neighbors in plane n, and z (=3)
such neighbors in planes n +1 and n —1. The coordinence is
Z =zy+2z (=12). Each plane contains () lattice sites; the
numbers of B atoms in plane n —1, n, and n + 1 are, respective-
ly,B,_-,B,,and B, .
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computed. The probability for the configuration B to
occur at equilibrium is

P(B)=Z"'W(B)exp[ —BE(B)], (1a)

with B=1/kT, and Z the normalization constant (parti-
tion function)

Z =7 exp[—BE(B)], (1b)
B

where the summation is performed over all the possible
arrangements of the B and A atoms that keep the overall
composition constant.

Equation (1a) may be rewritten

P(B)=Z 'exp[ —BFB)], (1c)
with

HB)=E(B)—TS(B), (1d)

S(B)=kglnW(B) . (le)

F(B) is the Helmoltz free energy function, parametrized
by B or by the profile ¢ (x):F {c(x)}.

A. The free energy function

Much in the same way as in Ref. 5, we assume the con-
tributions of 4 A, AB, and BB pairs to the cohesive ener-
gy are, respectively, € , ,, € 45, and €zp, and the ordering
energy o is defined as

€44 €Epp

W= GAB— )

To the degree of sophistication of the description of the
configuration, all we know is that each atom in plane n
has zyc, [respectively, zy,(1—c,)] B (respectively, A)
neighbors in plane, n,zc,,., [respectively, z(1—c,.,)] B
(respectively, A4) neighbors in planes n+1. Simple alge-
bra yields the following expression for the internal energy
of a configuration B:

N
E(B)=Q|Zo3Sc,(1—c,)
1
N-2
—2z0 Y, c eyt -1 —2¢,)
2
+S+@] , (2a)

where & is a surface term depending on ¢,¢y,¢cy_1,Cx
and @ a constant. For a given configuration (B given),
there are Q!/B, (Q—B,)! isoenergetic arrangements of
the B, B atoms among the Q) sites in each plane n. A
configurational entropy S (B) results:

N
S(B)=—Qk 3 [c,Inc, +(1—c,)In(1—¢,)], (2b)
1

and the following Helmotz free energy function may be
introduced

HB)=E(B)—TS(B) . (2¢)
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F is an extensive quantity in the sense that it is propor-
tional to ), the normal section of the system. The free
energy per unit normal section ({1=1) can be written,
f(B)=FB)/Q, with

N
fB)=Zw Y c,(1—c,)
1

N-2
—2zw 2 Cn(C"+]+Cn_l—2Cn)
2

A\'
+kT 3 [c,Inc, +(1—c,)In(l1—¢,)]+85+C .
1

(2d)

The first and third terms in the right-hand side (RHS)
are nothing but the regular solution model. The second
term in the RHS is due to the inhomogeneity of the alloy.
Simple algebra shows it can be rewritten as well as a gra-
dient energy contribution:

N-—1
S (Cpr—e, . (2e)
1

The probability for the profile B to show up at equilib-

rium is therefore

P(B)=Z 'exp[—BHB)] . (3a)

Since F scales with Q [cf. Egs. (1a)-(1c)], the larger Q,
the more peaked P(B) will be on that profile B which
gives f(B) its absolute minimum value. In the thermo-
dynamic limit, — oo, the only configuration with finite
probability is B, such that

F(B)=—kTInZ . (3b)

For finite values of (), however, P (B) exhibits local maxi-
ma for the local minima of f(B), which define locally
stable configurations.

We now discuss the extrema of the above free energy.
Since we deal here with closed systems, i.e., systems
which contain a fixed number of 4 and B atoms on a
fixed number of lattice sites (N{) the extrema to be
found are those of f(B)+ANC where C is the average
concentration in B atoms in the system:

N
NC=3c, . @
1

A is the Lagrange parameter introduced by the constraint
of having C fixed. The extrema of the above expression
are found by setting its variation with respect to an arbi-
trary change in B (i.e,, a set of 8¢, preserving C =con-
stant) equal to zero. After some algebra, it is found that
this condition yields for2<n <N —1

=a, (5a)

n

—%[ch +z(cy 41+, -1 —2¢,)]+In

or calling a,, the left-hand side (LHS) of Eq. (5a)
a,=a, (5b)

and slightly different conditions for » =1 and N.
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The (local) equilibrium concentration profiles, B.,,,
(with components Qc,) are given as solutions of the
difference equations (5) (see Ref. 7 for an enlightening dis-
cussion thereof). Equation (5) defines a function of ¢ (the
left-hand side) which, at equilibrium, is uniform, indepen-
dent of position. This function of ¢ may be called the
chemical potential by analogy to standard thermodynam-
ics: indeed, the standard expression for the chemical po-
tential { —(2w/kT)Zc, +In[c, /(1—c,)] in kT units} is
recovered if we omit in Eq. (5) the inhomogeneity contri-
bution.

B. Deterministic kinetics

Let us introduce the frequency I',_,, .; with which
one B atom in plane (n) exchanges with one 4 atom in
plane (n+1), I',_,, _, the frequency at which one B
atom in plane n exchanges with one 4 atom in plane
(n —1). The change in B concentration in plane n is
given by

dc
dt :Jn*l—wl

where J,,_,, ., is the net flux of B atoms from plane »n to
n +1 per lattice site:

J

n—>n+1:z[cn(1

n

_Jnan-H ’ (6a)

—Cy +1)Fn-n+l

_Cn+1(l—cn)rn+14‘n] . (6b)

Indeed, ¢, is the probability that a site in plane n is oc-
cupied by a B atom and z(1—c, ) the probability it is
linked to one site in plane n +1 occupied by an 4 atom.
Under steady state, dc, /dt =0; since we are in a closed
system (no exchange of atoms with the exterior), the
latter condition implies J, _, , =0 whatever n.

From Eq. (6b), the steady-state concentration profiles
fullfil the condition

cn(l_cn+l)= Lovin (7a)
cn+1(1_cn) Fnan-#l ’

and we want this condition to coincide with Eq. (5). Let
us choose I',, _, . as

r =vexp(—BE, ., +1) (7b)

n—n+1

with E, , ., the activation barrier for an exchange be-
tween B in plane (n) and 4 in plane (n +1). Equation
(7a) together with (7b) can be rewritten, after taking the
log:

¢
—E, ., 1 +tkTIn e

n

C’l
—E, ., +tkTIn——  (7¢)

1 T Ch+
There are many choices of E;_,; which fulfill Eq. (7¢).
We use the following model: E; ; s the energy required
to extract one B atom from plane i, one 4 atom from
plane j, and to insert the 4 and B atoms into a saddle
point position with a fixed energy E°® Simple but
lengthy algebra yields

E, ..+1=E°+(€,5—€pp)zc, +zc, 1 +2oc,)

+(e 4 —€45)zc, tzc, 2 tzoc, 1), (8a)
E i1 .n=E°+(€,5—€gp)zc, +zc, 2+zoc, 1)

+(e, 4 —€4p)Mzc, 1 Fzc, 1 F2zoc,) . (8b)

Introducing Egs. (8) into (7¢c) reveals that the steady-state
condition [Eq. (7¢)] is identical to the condition of equi-
librium [Egs. (5a) and (5b), a, =a]. In other words, the
configurations B which are a steady-state solution of the
kinetic model [Eq. (8)] are the configurations B, which
make f(B) an extremum. The model, however, does not
reproduce the property (3a). For that reason, we intro-
duce a stochastic version of the deterministic model.

ITII. STOCHASTIC DESCRIPTION
OF THE KINETICS

As just seen, the model (6a), with the definitions (7b),
and (8), guarantees that B,=B,, where B and B, are,
respectively, a steady state and an equilibrium
configuration. Let us now assess the respective probabili-
ty of two steady states B{!’ and B{?). We define P(B,1)
the probability for one system to have the configuration
B at time ¢: If we prepare a large number of samples with
the configuration B'”’ at time ¢ =0, a fraction P (B, ) of it
will get the configuration B at time z. The time evolution
of P(B,t) is governed by the master equation

dP(B,t)

" 2 [—P(B,))Wy_ .5 +P(B,0OW

_.B] ’ (9)

where {B’} represents the set of configurations which
may be reached from the configuration B by one atomic
interchange, and Wy_, g, the probability that the transi-
tion from the configurations B to B’ occurs per unit time.
Since atomic exchanges take place between neighboring
planes only, each configuration B is linked to 2(N —1)
configurations B’, such that either

B)V=B,+1 and B,.,=B,,,—1
or

B)Y=B,—1 and B, ,,=B,,,+1,
and B,,=B,, for all m#n and m#*n +1.

As an example, the probability that, per unit time, a
transition occurs between B and B'™! defined by

B, =B,, except for B,=B,+1and B, .,=B,,,—1is
B, Q—B,
WB-B""‘I): ()" —Q"__‘F"Hn +1» (10)

with ' given by Egs. (7b) and (8) evaluated in the
configuration B. () factorizes in the RHS of Eq. (10)
since W is larger the more numerous the atoms in each
plane.

Under steady-state conditions, dP /dt
ance implies that in Eq. (9),

=0, detailed bal-

P (B)Wgy =P (B )Wy 5. (11)
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Let us choose one of the configurations as a reference
state B, and define a path {B;} by which the steady state
of interest B may be deduced from B°. Recursive use of
Eq. (11) along this path {B'} yields

P(B) _ v Wy .p
P(BO) ;'f WB-»B’ ’

(12)

where the subscript “steady state” has been omitted on P.
I1;;; is the product along the path.

Taking advantage of the expression of W [Egs. (10),
(7b), and (8)], detailed careful examination of the RHS of
Eq. (12) yields

1}:((:0)) = exp(—B{E(B)—E (B°)
—T[S(B)—S(BY]}) (13)
or
P (B)x exp[ —BQf(B)] . (14)

As a summary, the stochastic model just discussed has
been built in such a way that the probability of a steady-
state concentration profile B is identical to the probabili-
ty of that profile as estimated from the thermodynamical
model. We may therefore trust the expression of the
interdiffusion flux which appears in the model [Eq. (6b)]
since it drives the system to the correct configurations
with the correct weight.

IV. INTERDIFFUSION FLUX

The expression of the flux of B atoms from plane n to
n +1 (and of A4 atoms in the opposite direction) as given
by Eq. (6b) may be rewritten as

Jyon+1=P—9q, (15a)
with
p :zcn(l—cr1+l)rn n 1
(15b)
g=zc, 4\ (1=¢, )04y s
or following Polkowicz’s identity:
Jon1=VPg(Vp/qg —Vaq/p). (15¢)
From Eqgs. (5a), (5b), and (15b),
- a,  —a,
Vp/q = exp __HE— , (16)

where a, is the chemical potential (in kT units) defined in
Egs. (5). If the system is close to equilibrium, a,, is almost
uniform, so that (@, ;—a,)<<1 and Eq. (15¢) may be
expanded as

—M(an+1—an) > (17a)

Jn~—>n+l’=‘

with
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M=Vpq , (17b)
M=zv[c,(1—c,)c, +,(1—c,+1)]"?

Ena +En —n
X exp | —B L 3 s (17¢)
Simple algebra shows that the activation energy of M is
€, eyt ¢y 4
E°+(e, —€pp) |Z 5 tz—— , (17d)

where ¢, is the curvature of the concentration profile at
the plane n (¢,'=c, ,,+c, -, —2c,).

As a summary, the flux may indeed be written as a mo-
bility times a chemical potential difference between
neighboring planes; but if the chemical potential contains
a non-negligible contribution of the concentration inho-
mogeneity, such will also be the case for the mobility. To
our knowledge this contribution has been omitted up to
the present time.

V. DISCUSSION AND CONCLUSION

As just discussed, Eq. (1) only holds in the limit of
small chemical potential gradients (a, ;,—a, <<1), i.e.,
close to equilibrium (a,,,=a,=a). The question
remains as to how does the mobility M [Egs. (17b) and
(17¢)] write in this limit.

Let us introduce a smallness parameter 1 which mea-
sures the departure from equilibrium:

a,=all+mna,), (18a)

c,=c,(1+nb,) , (18b)

where a, and b, describe the form of the actual chemical
potential and concentration profile as compared to the
profile at equilibrium (e,c,). It is easily shown that
a,;—a, is of order one in 7 while M contains a
zeroth-order term:

(19a)
(19b)

a"+1—an:na(a"+1—a”) ’
M=M+nM' .

As a consequence, to first order in 7, the flux J can be
written

J=Mnala,, —a,), (20)

i.e., the mobility which is consistent with Eq. (1) is M.
Taking advantage of Egs. (5), (8), and (17¢), it is readily
found that

B €4

A E
M=M,exp |—BEyj+a— |, (21a)
®
with €, =€ 4,5 —€, (i = A or B) and
My=vz[(1—¢,)(1—c, , D12 (5,c, . > 21b)

From Eq. (21b), we learn that the mobility is indeed a lo-
cal function, but not a point function, and that it has to
be evaluated along the equilibrium profile in the vicinity
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of which diffusion is being studied. M in Eq. (21b) is un-
changed by the permutation n<>n +1. In a continuous
model, M, should therefore be a function of the local
value of the concentration ¢ (x) and of the curvature of
the concentration profile d’c /dx2, or/and of the square
of the concentration gradient.

Obviously, when used to describe the early stages of
spinodal decomposition starting from a uniform solution,

the mobility is uniform and can be written
M=vze(1—¢)exp{ —BlE,+Zc(ez—€ )} . 22

Another simglifying situation obtains when €,
M reduces to

=€B’ i.C.,
€44 €BB-

M=vz[c,(1—¢,)E, . (1—C, )] 2exp(—BE,) , (23)

where ¢, is the equilibrium profile in the vicinity of which
diffusion is being studied. Notice the prefactor in Eq.
(23) is the geometrical mean of ¢,(1—¢c,,) and
¢, +1(1—c,) rather than the arithmetical mean as chosen
arbitrarily by Hillert.!
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Finally we may argue that in the course of the coherent
decomposition of a solid solution the concentration
profile will never be too far aw }5 from a (local) equilibri-
um profile so that the mobility M [Eq. (21a)] may be eval-
uated using the actual value of ¢,,c, +, and the average
value of the chemical potential a={a,). Such a con-
clusion deserves a careful numerical check which is in
progress at the present time.
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