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Nonequilibrium entropy and entropy distributions
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Glasses have nonzero zero-temperature entropies. Because they are out of equilibrium, the "ther-
modynamic" entropy, determined by heat Aow, is not equal to the "statistical" entropy, which mea-
sures volumes in phase space. We discuss the relationship between the two kinds of entropy in

nonequilibrium systems and show that the thermodynamic entropies measured by cooling and heat-

ing form lower and upper bounds to the statistical entropy. In a computer simulation of a glass, the
distribution of thermodynamic entropies measured by repeated fast coolings provides information
about the dynamics of the glass. Entropy distributions are presented for a spin glass and a simple
two-level system, and the distributions are used as a tool to compare the dynamics of the two mod-
els.

I. INTRODUCTION

A. Equilibrium

In equilibrium, there is no history. In computing the
properties of an equilibrium system, such as a gas, we can
safely assume that states are populated according to their
Boltzmann (or Fermi or Bose) weights and derive ther-
modynamic properties, even though we may know that
half an hour ago all the gas molecules were in one half of
the room. It does not matter that the molecules were
unevenly distributed half an hour ago —they rearrange
themselves quickly on the time scale of any measurement.
On the other hand, nonequilibrium systems are sensitive
to their history. The properties of a piece of glass at this
moment will depend upon which half of the room it was
in half an hour ago. Processes in nonequilibrium systems
take place on time scales comparable to the time scale of
any measurement, so measurements made at different
times or under different conditions will yield different re-
sults.

Thermodynamics and statistical mechanics apply in
situations where all processes are either so fast that the
system is in equilibrium or so slow that it is static. This
paper discusses the intermediate regime, where tradition-
al thermodynamics and statistical mechanics do not ap-
ply. The primary motivation is the study of glasses, but
the results cauld be applied to any nonequilibriurn sys-
tem. The examples we will study in detail are a spin glass
and a simple two-level system.

B. Glasses

Glasses are ubiquitous nonequilibrium systems. Be-
cause atomic rearrangements in glasses take place on
anything from phonon (10 ' sec.) to laboratory (min. or
h. ) to astronomical time scales, there will always be pro-
cesses in a glass that are neither fast nor slow on the time
scale of the measurement. Glasses, therefore, exhibit his-
tory dependence and hysteresis. History dependence
means that the state of the glass, and its measurable prop-
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FIG. 1. Specific heat of B203 glass measured while heating
and cooling. The glass was first rapidly cooled from the melt
(500 C~50'C in a half hour), then heated from 33 C to 345'C
in 14 h (solid curve with squares), cooled from 345'C to room
temperature in 18 h (dotted curve with diamonds), and finally
heated from 35'C to 325'C (solid curve with crosses). Data are
from Thomas and Parks.

erties, such as volume or heat capacity, depend on how it
has been treated. Figure 1 shows the heat capacity of a
sample of boron trioxide glass. The two solid curves were
measured the same way, but at different times, and give
different results. Hysteresis is a particular form of histo-
ry dependence —properties measured while cooling a
glass through temperature T will not be reproduced when
the glass is subsequently heated back through T. The
dotted curve in Fig. 1 is the heat capacity measured while
cooling, and has a markedly different character from the
two heating curves. The heating curves have a bump at
275'C, while the cooling curve does not.

The bump in the specific heat in Fig. 1 is a signature of
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the glass transition, during which the sample falls out of
equilibrium. The transition is marked by a diverging
viscosity and rounded discontinuities in the thermo-
dynamic derivative quantities, such as the specific heat
and the thermal expansion coefficient. The glass transi-
tion looks like a second-order phase transition, except
that it is not sharp, and the transition temperature T~ is

history dependent —in particular, it depends on how fast
the temperature is changing. Slower cooling rates lead to
lower T„'s.

C. Entropy

It has been known at least since the early 1920's that
the zero-temperature entropy (the "residual" entropy) of
glasses is not zero. The residual entropies of a number of
glasses are displayed in fable I. These measurements
must be taken with a grain of salt, because the residual
entropy, like all glassy properties, is history dependent,
and we do not know the details of each measurement.
However, it is easy to see that the entropy is of order one
per molecular or atomic unit (here, and for the remainder
of this paper, Boltzmann's constant k~ —= 1). Glasses ap-
parently violate Nernst's theorem, which states that the
entropy of a material at absolute zero is zero. Nernst's
theorem, however, applies only to equilibrium quantum
systems in which the energy is a monotonically increasing
function of the temperature. In glasses, the energy de-
pends on history, as well as temperature, so the theorem
does not apply.

The standard interpretation ' for the residual entropy
is that because entropy is the log of the number of states
occupied by a system, the residual entropy is the log of
the number of ground states of the glass. The measure-
ments in Table I were all made by calorimetry. It is re-
markable that measuring the heat flowing out of a sample
as it is freezing into a particular glassy state gives any in-
formation about the total number of such states.

D. Summary

In Sec. II we discuss the relationship between the en-
tropy that is measured in the laboratory (the "thermo-
dynamic" entropy) and the entropy that counts the num-

Cyclo hexene'
Ethanol'
Glycerol
Isopentane'
Isopropylbenzene'
Vitreous Ice'
Vitreous Silica'
a-Au:Ge:Si'

1.4
1.1

2.8
1.7
1.4

& 1.6
1.0
0.7

'Reference 1.
"Reference 2.
'Reference 3.

TABLE I. Residual entropies for a variety of glasses, in units
in which k& = 1. Entropies are per molecule, except for
a-Au:Ge:Si, which is per atom.

Material

ber of states (the "statistical" entropy). We present the
correct definition of the statistical entropy, and discuss
various approximations that have been used in the litera-
ture. Section III introduces the concept of an entropy
distribution (a distribution of measured values of the
thermodynamic entropy) in the context of a simple spin-
glass simulation. The distribution is a measurable
history-dependent quantity. Section IV introduces a toy
model of a glass —the two-level system —and discusses
the origins of its entropy distribution. In Sec. V, we re-
turn to the spin glass, attempting to use its entropy distri-
bution as a probe of its dynamics. In Sec. VI, we discuss
more realistic simulations and the applicability of these
concepts to real materials. Finally, in Sec. VII, we men-
tion some possible future applications.

II. THERMODYNAMIC AND STATISTICAL ENTROPY

A. Definitions and theorem

Q is the heat flow into the system in question, T is the
equilibrium temperature, and To is some initial reference
temperature where the entropy is known. On the other
hand, when a theorist talks about entropy, he or she is
usually interested in the volume the system occupies in
phase space, and computes what we call the "statistical"
entropy,

Sstat T p lnp, (2)

where p is the density matrix. The two definitions of en-

tropy are equivalent only in equilibrium.
The thermodynamic entropy (1) is easy to measure in

experiments and computer simulations, whereas the sta-
tistical entropy (2) is impossible to measure in experi-
ments and difficult to measure in simulations. Historical-
ly, ' there has been some ambiguity in how it is even to
be defined. How is the density matrix to be computed,
and which states are to be included in the trace? We will
discuss the correct definition below, but first we prove
that the thermodynamic entropy measured on heating
(S„„,) and cooling (S„„)provides upper and lower
bounds, respectively, on any reasonable definition of the
statistical entropy. '

Theorem I: The thermodynamic entropy (1) measured
by heating and cooling provides upper and lower bounds,
respectively, on the statistical entropy, provided that the
statistical entropy meets the following three criteria: (1)
it must be extensive; (2) it must equal the thermodynamic
entropy in any equilibrium system or subsystem; and (3)
in a closed system in the thermodynamic limit, it must in-
crease with time.

Proof: Consider an experiment in which a glass forming
material (by which we mean any material that falls out of
equilibrium as the temperature is lowered) is held in con-

An experimentalist who wishes to know the entropy of
a system uses the thermodynamic definition of tempera-
ture, T '=dSldE, to measure what we call the "ther-
modynamic" entropy,

S,„„(T)=S(To)+f
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S„,)(T))=S); (qT M)+ f '
dr . — (3)

The temperature T is always the temperature of the bath,
since the glass is out of equilibrium and does not have a
well-defined temperature. During the process, the entro-
py of the bath changes by f (Q/T)dt, so the statistical
(and thermodynamic) entropy of the bath at T, is

tact with an equilibrium heat bath, whose temperature
T ( t) is controlled externally (see Fig. 2). The heat bath
may be thought of as infinite succession of heat baths at
infinitesimally different temperatures, so that the temper-
ature of the bath in contact with the glass may be
changed without doing any external work or adding any
heat. Start at some high temperature T~ (the melting
temperature, for example) where the glass former is an
equilibrium liquid and its entropy (statistical and
thermal) is Shq(T~). The liquid could have been ob-
tained by slowly melting a crystal, and since the crystal
had zero entropy at zero temperature, the liquid entropy
can be found exactly from (I). Or, perhaps, the liquid
could have been formed by cooling a gas from a high
enough temperature that the ideal gas law was in effect.
In any. case, assume that Sb„(TM) is known. Then cool
the heat bath quickly through the glass transition tem-
perature to some temperature T, , possibly zero, and mea-
sure the heat flow Q (0 from the bath to the glass. The
measured, thermodynamic entropy of the glass at T, is

(4)

To measure the entropy on heating, Sh„„one would
take the glass at the low temperature T, and measure
how much heat had to be added to reach the liquid state,

r=rM
QS„„,(T, )+f r dt —=S„q(TM ) .

1

(6)

Again, the measured quantity is the change in entropy of
the heat bath, —f (Q/T)dt Since. the total statistical en-

tropy of the whole system must increase,

S„„(T,)+Sb,,„(T, ) S„q(TM)

rM Q+ Sbaih(Ti) —f,
1

which, together with (6) and (5) gives

S, )(ooT) ) S„,t(T) ) Shm, (Ti ) .

Now, the total statistical entropy of the closed glass-bath
system must increase with time, so

S(q( TM )+Sb„„(TM ) S„„(T, )+Sb„„(T, ),
or, using (3) and (4),

S.o.i( Ti ) -S.i.«Ti )

HEAT BATH

I
dQ

Sl (T~)liq M

heat 1

stat 1

That is, the thermodynamic entropies measured on heat-
ing and cooling are bounds to the statistical entropy.
Q.E.D.

A good question to ask is, "How far apart are the
bounds?" If, in any real experiment or simulation, the
upper and lower bounds always agree to within the avail-
able accuracy, then the issue is rather pedantic. Measur-
ing the thermodynamic entropy will be as good as
measuring the statistical entropy, and the distinction be-
tween the two is unimportant. In Sec. VI we will argue
that the bounds should differ by on the order of l%%uo in a
real experiment, and in Sec. III we will show that the
bounds can differ enormously in computer simulations.
There is then a real distinction between statistical and
thermodynamic entropies.

We should point out that the statement "entropy al-
ways increases" is a statement about average systems in
the thermodynamic limit. In a computer simulation, far
from the thermodynamic limit, we may have to average
many computations of Sh„, or S„„before establishing
good bounds on S,j

cool 1

FIG. 2. Schematic of entropy Row for cooling and heating.
A glass is held in contact with a heat bath at temperature T( t)
while the heat Q flowing between the bath and glass is mea-
sured. The vertical solid lines represent the measured thermo-
dynamic entropy of the glass, and the dotted lines represent ir-
reversible, unmeasurable processes within the glass contributing
to the statistical entropy.

B. Statistical entropy

Z=Tre ~ = ge
—PE,

(8)

and the density matrix

When computing the statistical entropy for a glass, it is
clearly incorrect to use standard equilibrium thermo-
dynamics and statistical mechanics. Equilibrium theories
tell us to find the partition function
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e
Pi

—PE
t

Z

—PEo —P(E, —Eo ) —PEOZ=e ' 1+ e ' ~e
i&0

since E; )E0. Hence, at zero temperature, F=U=E0,
S =0, and the system is crystalline. A common solution
to this difficulty is to exclude the crystalline state from
the problem. In other words, just declare that the trace
in (8) is to include glassy states only. This is an artificial
approach, and is not the one we will use.

Palmer and Jackie have discussed various approxi-
mate ways of computing thermodynamic quantities in
nonergodic systems. A system is ergodic if (8) applies—
that is, if its properties can be found by averaging over
phase space. Below the glass transition, glasses are
nonergodic. Palmer and Jackie divide phase space up
into "components" ("cells, " in Jackie's terminology).
Within any one component, the glass is ergodic, but tran-
sitions between components never occur. The problem of
defining the statistical entropy is reduced to the problem
of finding the probability p; of the system's being in the
ith component, and deciding at what stage in the calcula-
tion it is appropriate to average over components. Some
of the methods used in the literature follow:

(1) Each component is treated as an independent equi-
librium system, and the free energy is the average free en-
ergy of the components. The residual entropy is zero.

(2) Ip; I are frozen, at the "fictive" temperature Tf of
the glass, near the glass transition. p;(x) is the probabili-
ty of a given state x within component i, p(x}=p,p, (x}
for x in component i, and S is found from (2). The resid-
ual entropy is

—gp;(Tf )lnp, (Tf })0 .

(3) t p, I are determined by the equilibrium probabilities—13Fof the components. p, =e '/Z, with Z given by (8). F;
is the free energy of component i, treated as an indepen-
dent equilibrium system.

(4) Ip; I are computed from the entire history of the
system.

Of course, it is possible to define components within

in order to compute the free energy

F= —T lnZ,

the internal energy

1 1 PE, — 3
U =—TrHp =—g E;e ' = — lnZ,

Z Z,.
'

BP

and the entropy

U —FS=
T

This is incorrect because most glasses have a crystalline
ground state —a state which has lower energy than all
the others. Call the ground-state energy E0. Then, as
T~P,

components, and so on. This approach was used by
Jackie and Kinzel in discussing the Edwards-Anderson
Ising spin glass. They find an upper bound on the residu-
al entropy, given by InNs(EO), where Ns(E) is the densi-
ty of rnetastable states with energy E, and E0 is the resid-
ual energy. Ettelaie and Moore found agreement with
this result for a one-dimensional Ising spin glass. Jackie'
actually derived S„,& &S„„for a version of item 2.

A different approach to finding the entropy of cornput-
er simulations is to assume that, although the simulated
material is out of equilibrium, it can be described by an
equation of state. Certain coefficients in the equation of
state are determined by measuring I' and V while holding
T fixed, and then changing the temperature and repeating
the rneasurernent. Given the equation of state, the entro-
py is calculated by equilibrium thermodynamics. This
technique was applied to the hard-sphere Quid by Gordon
et al. ,

" and subsequently by Woodcock. ' Both authors
found residual entropies on the order of one per atom.
Cape and Woodcock' applied the same method to a
soft-sphere model, finding a residual entropy of 0.3 per
atom.

Our point of view is that for (2) to hold, the density
matrix p must give the probability of finding the system
in a certain state, given a specijlc thermal history That .is,
p=p(t) is a function of the external variables T(t), P(t),
V(t), etc. To the extent that it is possible to define com-
ponents at all, item (4) is correct. We will determine the
statistical entropy by finding how p changes in time,
starting in a state where p is unambiguously defined, and
computing. The trace in (2) is taken over all states. We
do not explicitly forbid the crystalline state, but if during
its evolution the material rarely finds it, it will not con-
tribute substantially to the statistics. We do not partition
phase space, and we compute the entropy directly,
without using equilibrium thermodynamics. Appendix A
demonstrates that the statistical entropy defined in this
way for a system governed by a master equation fulfills
the requirements set out in Theorem 1.

The entropy given by (2), with time dependent P, mea-
sures the volume of phase space occupied by an ensemble
of glasses, each with the same macroscopic history (the
same cooling schedule, pressure, etc )but di.fferent micro
scopic histories (paths in phase space). If the system is
large, it can effectively explore all of its histories at once:
it can be divided into virtually identical subsystems, each
of which will explore phase space independently. If the
system is small, the thermodynamic entropy (defined for
each member of the ensemble) fiuctuates, forining a dis-
tribution. The statistical entropy is a single number, but
is determined by the whole ensemble. For a small sys-
tern, only the average of the distribution of thermo-
dynamic entropies provides bounds on the statistical en-
tropy.

III. SPIN GLASS I: ZERO-TEMPERATURE ENTROPY
AND ENTROPY DISTRIBUTIONS

A. Simulation

To illustrate the entropy bounds introduced in the last
section, we look at small Ising spin glass. The Ising spin
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HJ= —g JJS;SJ,
(ij )

(9)

glass is often used as a model glass. Randomness in the
model causes it to have some glasslike properties: a mul-
tiplicity of metastable zero-temperature states, nonzero
zero-temperature entropy, hysteresis, and gradual freez-
ing.

We are using the +J Ising model because we need a
pedagogical example, and this model is easy to simulate.
The model consists of a collection of spins (S, j on a
square lattice, where each spin can either point up
(S;=I) or down (S;=—1). The randomness comes in
via the coupling between spins. Nearest-neighbor spins
S; and S are connected by a bond J, , which with a
specified probability is either +J (ferromagnetic) or —J
(antiferromagnetic). Our simulations have equal fer-
romagnetic and antiferromagnetic probabilities. The
Harniltonian for a particular realization (set of J;J s) is

—0.5

—1.0

slow
I I I I

5
0 2 4 6 8 10

where the sum is over all pairs of nearest-neighbor sites.
The simulation uses Monte Carlo heat bath dynamics.

The inputs are the annealing schedule T(t), giving the

temperature T at each time step t of the simulation, and
the set of random bonds I J, I. The equilibrium energy
E«and entropy S«at the initial temperature are com-
puted from the equilibrium high-temperature expansion
of the partition function. ' When initializing a sirnula-
tion, we first use the Harniltonian (9) to find the energy E.
This energy will not exactly equal the equilibrium energy
E, computed from the high-temperature expansion, be-
cause the high-temperature expansion is for the average
energy of a therrnodynarnic ensemble, and E is the energy
of a particular spin configuration. Furthermore, the
high-temperature expansion takes on continuous values,
whereas in the simulation E is quantized in units of 2J.
Because the initial energy is not the equilibrium energy, it
would be a mistake to initialize the entropy to its equilib-
rium value, S«. Instead, we start the simulation with

S=S,q+(E E,q)/T . —

FIG. 3. Energy vs temperature for 5X5 spin-glass sample
789 cooled and heated between T=10J to T=0 in 50 (fast) and
1000 (slow) Monte Carlo time steps. The curves represent an

average over 1000 and 10000 runs, respectively. The dotted line
is the equilibrium energy, computed by the brute force cornpu-
tation of the spin-glass partition function.

porarily negative while heating. This is a history
effect —the glass was above equilibrium when the tem-

perature started to rise, so the energy was still relaxing
downwards towards equilibrium.

Figure 4 shows the average entropy fdQ/T measured

during the cooling and heating process. Two heating
curves are plotted: what is actually measured,

0.4
As the simulation evolves, the energy E and the ther-

modynamic entropy fdQ/T are found by summing bE
and b.E/T for all those spins flipped at each time step.
Averages are computed by averaging over runs of the
simulation, i.e., repeating the whole process with the
same I J;1 ) and T(t), but choosing different random num-

bers during the time evolution. This is in contrast to the

equilibrium method of computing thermodynamic quan-
tities, which is to hold the temperature constant and
average over time in a single run.

B. Average temperature dependence

0.2

cool
0 0 I I

0.0 0.5 1.0
T/J

I I I I I I I

1.5 2.0

Figure 3 shows the energy per spin of a sample spin
glass, averaged over a number of runs of the simulation,
for two different cooling rates. Glasslike properties are
clearly exhibited. The faster cooling rate results in a
higher residual energy, leaving the system farther from

equilibrium. The glass behaves differently on heating and
cooling —the heat capacity dE/dT measured during the
fast run is always positive while cooling, but goes tem-

FIG. 4. Entropy vs temperature for 5X5 spin-glass sample
789 cooled and heated between T=10J and T=O in 1000
Monte Carlo time steps and averaged over 10000 runs. The
solid curves are the cumulative integral of dQ/T To compute.
the upper bound on the zero-temperature statistical entropy, the
heating curve must be shifted upwards (dotted line) to match
the high-temperature cooling curve. The dashed line is the
equilibrium entropy.
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&h„I(T)=&(0)+I dQ/T
T=O

(solid line), and the same curve shifted upwards to match
the cooling curve at high temperatures (dotted line). The
entropy measured in heating, as defined in Sec. II, corre-
sponds to the shifted curve, because changes in entropy
must be referred to the equilibrium high-temperature
value, not S„,I(0). It is seen that at all temperatures the
shifted entropy measured on heating is above the entropy
measured on cooling, in agreement with Eq. (7).

C. Zero-temperature entropy

0'5

0.4—

0.2—

0.1—

I I I I I III I I I I I III

Table II shows the statistical entropy and the bounds
derived from the thermodynamic entropy for a number of
different realizations of a 5 X 5 spin glass at a variety of
cooling rates. The thermodynamic entropies were deter-
mined by averaging over at least 1000 runs of the simula-
tion, and the statistical entropies were found by counting
states, as described below. Figure 5 summarizes the re-
sults for the first spin-glass sample. Notice that the lower
bound S„,& is almost always positive, proving that the
sample indeed has a positive statistical zero-temperature
entropy, at least for some cooling rates. This by itself
does not prove that the sample is glassy —a +J spin glass
typically has multiple ground states, so it will have a pos-
itive zero-temperature entropy even in equilibrium. The
lower bound for the slowly cooled ferromagnet in Table
II is positive because the ferromagnet has two ground
states, and its total entropy per spin at zero temperature
is ln2. On the other hand, if the lower bound to the sta-
tistical entropy is not only positive, but above the equilib-
rium entropy, then the system is definitely out of equilib-
rium. The slowest run of 5 X 5 sample 789 (10 MC steps)
gives a lower bound greater than the equilibrium entropy.

Our spin glasses are small enough that we can actually
compute their statistical entropies and compare them
with the thermodynamic bounds, as in Table II and Fig.

0.0—

—0.1
10

I I I I I I II ! I I I I I I II I I I I I I I II I I I I I I I II

10 10 10 10
cooling time (MC steps)

10

FIG. 5. Statistical entropy (crosses) and upper and lower
bounds (solid lines) on the zero temperature entropy of 5X5
sample 789. The horizontal solid line is the equilibrium residual

entropy. The insert is an expanded view of the points at 10' MC
steps.

5. As mentioned in Sec. II, to find the statistical entropy
it is necessary to define the trace and density matrix in

Eq. (2). We will trace over all states of the spin glass, and
find the density matrix by computing its time evolution
from a known state. To be precise, we assume that at the
initial high temperature all states are equally likely, and
the probability of a low-temperature state is proportional
to the number of times it was found by the simulation.
For the +J spin glass there is one subtlety in this ap-
proach. Because all bonds in the model have the same
strength, any spin with equal numbers of satisfied and
unsatisfied bonds can flip at will, even at zero tempera-
ture. Spin configurations that differ only by such zero-

TABLE II. Zero-temperature entropies for a number of spin-glass configurations. The sample num-
ber is the random seed used to generate the bonds t J„].The samples were cooled and heated between
a T = 10J (well above freezing) to T =0 in the specified number of steps.

MC Steps Scoot Sstat Shoat Seq

10
50

100
1000

10000

0.282+0.004
0.064+0.008

—0.001+0.008
0.033+0.003
0.057+0.001

Sample 789 (5 X 5 +J)
0.292 0.431%0.003
0.205 0.331+0.007
0.176 0.285+0.007
0.072 0.095+0.003
0.062 0.065+0.001

(ln4) /25 =0.055

Sample 1024 (5 X 5+J)

100
1000

10000

0.16+0.16
0.21+0.02
0.220+0.006

0.225
0.220
0.2205

0.26+0. 13
0.22+0.02
0.221+0.005

(ln 248)/25 =0.2205

5 X 5 Ferromagnet

10
100

1000

—0.027+0.010
—0.036+0.003

0.023+0.001

0.192
0.028 285
0.027 725

0.365+0.007
0.070+0.002
0.032+0.002

(ln2) /25 =0.027 726
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energy spin flips must be counted as the same state. The
number of different configurations in a state 0. is the de-
generacy d of the state. If each state was found n

times in a simulation of N =g n coolings, then the sta-
tistical entropy is

n n

statS =- —Y ln

Alternative/y, if each spin configuration S was found mz
times in the N =ps ms runs, then the entropy is simply

III Ill(U(ltj g)J ~&&~gyes&~~

I
lllil II

IIIII))I Itt
' i~i r"

Sstat

m~ m~

N N

As N~ ~, these two expressions agree, but the first is
more accurate for finite N, because it does not rely on bad
statistics to determine the degeneracy of each state. For
a large sample, it may be diScult to determine d, and
the second form will be required.

For all glasses, the dependence of the upper and lower
bounds on cooling rate should have the form shown in
Fig. 5. It is the slow dynamics of the glass that deter-
mines the shapes of the curves. Transitions to higher-
energy states while heating and to lower energy states
while cooling take place later than they would if the sys-
tern were in equilibrium. The entropy measured while
cooling is always below the statistical entropy because
these transitions release more entropy (E/T is larger be-
cause T is smaller) than they would if they were not de-
layed. Similarly, the entropy measured on heating is a1-

ways too high.
If the cooling rate is slow and the system is nearly in

equilibrium, the delays will be small and both the upper
and lower bounds will approach the statistical entropy,
which in turn will approach the equilibrium entropy.
This effect is clearly seen in Fig. 5. If, as the cooling rate
is decreased, the bounds Sh„, and S„,~ approach the sta-
tistical entropy S„„faster than S„„approaches the equi-
ibrium entropy S, there will be a cooling rate below

which S„,))S, .
If the cooling rate is somewhat faster, the glass will be

farther from equilibrium, and the bounds will deviate
more from the statistical entropy. The lower bound can
be negative.

If the cooling rate is very fast, the system does not have
time to react at all. Few transitions will take place, and
the statistical entropy will tend towards the high-
temperature equilibrium value, which is ln2 in these
simulations. The effect is clearly exhibited in Fig. 5. De-
pending on whether or not the simulation updates the
temperature before or after flipping the spins, as the rate
diverges either S„,~(0)=S, ( eo ) and S„„,(0)~+ ao, or
S, ,i(0)~—oe and Sh„,=S,„(ao ). This is not
profound —it is an artifact of the discrete nature of the
time in the Monte Carlo simulation.

D. Entropy distributions

There are error bars on the heating and cooling curves
in Fig. 5 and Table II. These reflect the uncertainty in
finding the mean of a set of values. Each time the simula-

2 4 6 8
Teznperature T/J

10

FIG. 6. Thermodynamic entropy vs temperature for three
runs of a simulation of 5 X 5 sample 789, cooled from T = 10J to
T=O in 1000 MC steps. The dotted lines are the equilibrium

entropy (the curves are displaced vertically for clarity). Al-
though both of the top two traces are from runs that ended in
the ground state of the system, the measured residual entropy is
negative for one and positive for the other. The bottom trace is
from a run that ended in an excited state.

tion is cooled or heated, it evolves through a different set
of states, and makes the transitions between these states
at different times and temperatures. The measured ther-
modynamic entropy, fdQ/T, must therefore differ from
run to run of the simulation. (Figure 6 shows how the en-
tropy fluctuates during three different runs of a spin-glass

10—

0 ll llll J ~ i tM I JLhiP

—0.4 —0.2 0.0
S(0) per spin

0.2 0.4

FIG. 7. Residual entropy distribution for 5X5 sample 1024
cooled and heated between T = 10J and T =0 in 100 Monte
Carlo steps. The solid line is the distribution measured on cool-

ing, so its mean is a lower bound on the statistical zero-
temperature entropy. The dotted line is the distribution mea-
sured on heating, and its mean is the corresponding upper
bound. Each distribution contains 1000 runs of the simulation.
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o e glass is a two-level system MLS) , a system with a
single metastable state. ' ' I thn t is section, we first

ex i its istory depen-emonstrate how and why a TLS h b' h'

ence. We then use the TLS mod 1 te o estimate the
difference in the entropy bounds f 1 1or a rea g ass. Finally,
we examine a TLS's entropy distribution, which will in-
spire experiments for spin-glass simulations.

A. The model

0, , l,
—0.4 -O, Z 0.0 O.Z

S(0) per spin
0.4

FIG. 8. Residual entropy distribution for 5X5 sample 789
~ ~ ~

ig. . e c early defined dou-under the same conditions as in Fi 7 Th 1

e peaks contrast to the single peaks in the distributions for

sample 1024, and show that the sample is behavin like a
level s stem (sy (see Sec. V). Each distribution contains 10000 runs
of the simulation.

The TLSTLS model is possibly the simplest model for a
glass (see Fi . 9). Itig. . t has only one degree of freedom, the
population of the upper well, and, because the TLS is ei-

er in its excited state or not in its excited state, that de-

o er, t e system must be thermally activated over a bar-
rier. (The actual transitions are assumed to h
duration. Th

ume o ave no
The energy of the ground state is 0, and the

energy of the excited state is the "asymmetry" c.. The en-
ergy barrier is of height V, measured from the b f

upper we . The transition attempt freque
small ooscillation frequency at the bottom of th 11

requency, or

I so the
mo ewe s, is

e thermally activated transition rate for h
from thee excited state, over the barrier, and into the

a e or opping

ground state is

I (T)=I oexp( —V/T) . (10)
simulation. ) To get the entropy defined in (1) we have to
average many runs of the simulation. In other words, in
order to measure S or S„,& or Sh„„we have to take the mean
of a distribution of values. The pro t' f 1per ies o g asses are

istory dependent, and this entropy distribution depends
both on the dynamics of the glass and its thermal history.
By the end of this paper, we will show that b var in

ry, we can extract information about the dy-
namics from the distribution.

We define the entropy distribution p(S) so that p(S)dS
is the probability of measuring jdg/T to be between S
and S +dS. p(S) is really a function of S and a fo an a unctional

u t e (t) dependence will usually not be made
explicit. n the computer, we measure p(S) b ry running a

a ion repeatedly and making a normalized histo-
gram of the measured values of S.

Figures 7 and 8 are the zero temperature entropy dis-
tri utions generated by cooling and h t'ea ing two samples
inear y i.e., T(t) is linear in t] between T=10J d

e detailed structure of the distributions will be
an

discussed in later sectictions. For now it suffices to say that
the distribution is clearly sensitive to tho e microscopic dy-
namics of the glass. The simulations differ only b the

, &~, ye the first set of distributions has
one hump while the second set has two. The das wo. e distribu-

are a so sensitive to changes in the cooling schedule
T(t). We will return to this topic in Sec. V.

Consider an ensemble of TLS's all
'

h h

0, and thermal history. If the average population of the

ti
upper wells in this ensemble is n and th
ion of the lower wells is 1 —n, then

n e average popula-

IV. TWO-LEVEL SYSTEMS I: A TOY MODEL

We are interested in the history-dependent dynamic
properties of glasses and their relationship to th 'd 1

py. asses are not in equilibrium because they get

slow and ergodicity is broken. The simplest conceivable

FIG. 9. A tw-two-level system, showing the barrier height V and

asymmetry c, . The small oscillation frequency in the bottom of
the wells is I 0. An individual TLS is always either in its excited
state ('f ) or in its ground state ( $). By taking an ensemble of
TLS's, we define the average population of the upper well n
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where P:—1 IT. This is the master equation for the evolu-
tion of the population n (t), or equivalently, the average
energy en (t). Transitions out of the lower well, at a rate
e ~'1 (T), increase n, and transitions out of the upper
well, at a rate I (T), decrease n Th. e equilibrium popula-
tion is

ture is increasing. The measured specific heat, Edn IdT,
will be negative in this region. This is not a paradox,
since the system is not in equilibrium. As the tempera-
ture rises further, np increases, and when it becomes
greater than n, n will begin to increase. At high tempera-
tures n (np.

We define the statistical entropy of the TLS the same
way we defined it for the spin glass —we use for the den-

sity matrix the probability of finding a state, given the
thermal history. Therefore,

S„„(T)= n ln—n —(1 n—)ln(1 n) . — (14)

Figure 10 compares a numerical solution of (11) (dots)
with the equilibrium population (dotted line) of a TLS.

As a TLS is cooled, while the temperature is high the
transition rate I (T) is much larger than the rate of
change of no, so n(T)=no(T). (see Figure 10). When
the temperature becomes low, 1(T) gets very small, so
n ( T) is nearly constant. The residual population
[n (T=0)] is roughly the population of the system at the
"freezing" temperature, T', where the rate of transitions
over the barrier is comparable to the cooling rate S,q =in(1+e ~')+Pano . (15)

S„„defined this way is zero only if n =0 or n =1. For
any nonzero coupling rate, there will be a nonzero residu-
al population, which implies a positive zero-temperature
entropy, a particularly glassy property.

The equilibrium entropy of the TLS may be found
from the partition function, Z =1+ exp( —Ps), using
E=(—c) IBP)lnZ, F= —T lnZ, and F =E —TS, resulting
in

dnp

dt

The same result may be obtained from (14) with n =no.
(13)

B. Entropy distributions for a two-level system
The residual population will decrease as the cooling rate
is decreased, which is characteristic of glasses.

Glasslike hysteresis effects show up when the TLS is
now heated back up to high temperatures. At first, the
population remains constant at its residual value, be-
cause the TLS is still frozen. Once T gets to be around
T', the TLS unfreezes, and, because n is still greater than
np, the population will decrease although the tempera-

Entropy distributions for a TLS are computed numeri-
cally via Monte Carlo simulation, the same way they are
for the spin glass. The Monte Carlo simulations subject
each TLS in the ensemble to the same thermal history,
but allow them to make transitions independently. n and
p(S) are determined by averaging the final states and ta-
bulating the final entropies, respectively. Figure 11 de-
picts the evolution of the distribution for a particular
TLS, cooled at a rate of 0.01 V per MC step.

0.20 I I I I I 1 I I I

0.15—
60

T=2V

3.10—

0.05—

0 00

ii ~ ~ ~ ~ i ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~

T=O

0.0 0.1 0.2 0.3

0

FIG. 10. Population vs temperature for a TLS with asym-
metry c/V=0. 5 cooled linearly to zero temperature with di-
mensionless cooling rate

~
T

~
/I 0 V= 10 ' and then heated at the

same rate. The data points are the result of direct numerical in-
tegration of (11),and the solid line is the asymptotic result from
Ref. 16. The dashed line is the equilibrium population, no.

FIG. 11. Entropy distributions from a Monte Carlo simula-
tion of a TLS with asymmetry v=0. 5V at three different tem-
peratures while cooling at a rate 5=0.01 (100 MC steps per unit
T/V).
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What should we expect the entropy distribution to
look like? A high temperatures, as in the top trace in

Fig. 11, the TLS is in equilibrium. In equilibrium, histo-

ry is unimportant, so the distribution should depend only
on the temperature. At infinite temperature, S,h„=S,)
and the population is evenly distributed between the two
wells, so

p(S)=5(S —ln2)=5(S —S, (T= ao )) .

Cool the TLS very slowly to temperature T & T*. Since
the system is in equilibrium at all times, the transition
rate is fast compared to the cooling rate, and all the
TLS's in the ensemble make transitions at the same tem-
peratures. Hence, the measured values of f dQ/T for
each TLS in the ensemble will be the same, and p(S) will
be sharply peaked. Whenever a TLS jumps from the
lower well to the upper well, however, it absorbs energy c.

from the environment, and its entropy increases by Ps.
The distribution must therefore have two delta function
peaks, separated by PE. The upper peak, at S&, corre-
sponds to members of the TLS ensemble that are in the
upper well at the time of measurement, while the lower
peak, at S&, corresponds to TLS's in their ground state.

St —S) =Pc,

and

After a run, comparing the measured n versus T to no
versus T verified that the initial temperature was high
enough that the equilibrium approximation was valid.
That is, if the ensemble fell out of equilibrium immediate-
ly, the initial temperature was too low for that cooling
rate.

V. SPIN GLASS II AND TLS II:
USING THE ENTROPY DISTRIBUTION

The entropy distribution of a glass depends on the dy-
namics of the glass. By simulating spin glasses and two-
level systems, we have used the dynamics to predict the
distribution. We would like to be able to go the other
way —to simulate a glass and determine its dynamics
from its entropy distribution. As a concrete example, we
can ask how well the spin glasses of Sec. III are described
as two-level systems. From their entropy distributions,
can we extract their metastable states, energy barriers,
and attempt frequencies?

We will first discuss how to extract information from a
TLS entropy distribution. Then we will apply the same
techniques to spin-glass distributions. Finally, we will ex-
plain the results by examining the microscopic states of
the spin glass.

A. TLS entropy distributions

noSt + (1 no )S) =S, —

implies

St =S,q+(1 no)P —s=l n(1+e t')+Ps,
St =S,

q
noPs=—ln(1+e ~'),

and

(16a)

(16b)

As shown in Sec. IV, the distance between the two
peaks in a zero-temperature TLS entropy distribution,
such as the upper curves in Fig. 12, is roughly P*s, where
T"=1/P' is the temperature at which the TLS falls out
of equilibrium. Therefore, we can measure the ratio

I I I I

) ) I I I I

)

I I I 1

p(S)=no5(S —St )+(1 no)5(S——S() .

As the ensemble is cooled further, to T ~ T*, the TLS's
will begin to fall out of equilibrium. The transition rate
will slow, and not all members of the ensemble will make
transitions at every temperature. The integrals fdQ/T
will not be the same for the whole ensemble, so the peaks
in the entropy distribution will broaden, as in the middle
curve in Fig. 11. The amount of broadening, as well as
the temperature at which it occurs, depends on the histo-
ry T(t).

At temperatures below T*, the equilibrium positions of
the peaks change rapidly (S& ~ ~ as T~O). The peaks
move by means of entropy transferring transitions be-
tween the wells of the TLS, which are infrequent when
T & T*. The peaks in the distribution will be frozen into
place when the TLS freezes. At low temperatures they
will be separated by P e, rather than Ps. There will still
be some transitions from the upper well to the lower mell,
but they will transfer an entropy Ps) P*E, so weight in
the distribution wi11 move from the upper peak to the low
entropy side of the lower peak, creating a long tail. This
e6'ect is clearly seen in the lower curve in Fig. 11.

In the Monte Carlo simulations, the initial states of an
ensemble of TLS's were chosen using Eq. (12). The initial
entropies of the TLS's were assigned according to (16).

Q
l I

0.4 I I I I

f

I I I I

i

i l I I

Q Q
—2

FIG. 12. Three entropy distributions for a TLS with @=0.5,
V=1, and I 0=1 per MC step. The first (solid line in upper
plot) was cooled to zero temperature continuously at a rate of
0.001 V per MC step. The second (dotted line) was cooled twen-

ty times faster. The shift in the peaks refiects the change in T*.
The third (lower plot) was cooled at the original rate, but was
quenched from T =0.30V to T =0.25 V, and shows the resulting
holes in the tails of the peaks. Each distribution was compiled
from 5000 runs of the simulation. Note the different vertical
scales.



41 NONEQUILIBRIUM ENTROPY AND ENTROPY DISTRIBUTIONS 2271

V=T ln
I T*

0
(18)

Once we know c., then, we can get two equations for the
two unknowns V and I o by using (18) with values of T'
obtained at two different cooling rates T. To be precise,
if the cooling rates are T, and T2, and the associated
freezing temperatures (measured from the distributions)
are T*, and T2, then

c/T* directly from the distribution.
With a little more work, we can extract c. and T* in-

dependently. The long tail on the low entropy side of the
lower peak in the distribution comes from transitions
from the upper well to the lower well at temperatures
below T'. Assume that the upper peak is narrow and is
frozen at its equilibrium position S

&
when T= T*. Then

at a temperature T & T*, transitions from up to down are
building the tail at S =S

&

—Ps. If we change the cooling
schedule and quench instantaneously from some tempera-
ture T, & T* to T2 & T&, then there will be no transitions
with changes in entropy between P&e and P2e. The tail
will therefore have no weight between St —P2s and

S&
—

P~E (see the lower curve in Fig. 12). The size of this
"hole" in the tail of the distribution, (P2 —P&)e, deter-
mines c, independently of T*. If the quench is done at a
high enough temperature, a hole will appear in the upper
peak as well, due to transitions (or the lack thereof) from
the lower well to the upper well at temperatures between
T, and T2.

We now know the asymmetry c. and the freezing tem-
perature T* for the TLS. T* is not an intrinsic quantity,
but depends on the cooling rate T. The unknown intrin-
sic quantities are the barrier height V and the attempt
frequency I o. Equation (13) for T' can be solved for V in
terms of I 0.

and

V= ln
1 2

T] T2

T2 T, no(T*, )

T*, T2 nc(Tz )
(19)

E
I T~ I no( T &* )

exp[(V+E)/T~ ] .
1

(20)

Three entropy distributions, from two linear coolings
and one interrupted cooling, therefore suffice to deter-
mine c, I 0, and V. These determinations will be impre-
cise because of the assumption that the peaks in the dis-
tribution are sharp at T*, and because T* itself is not a
well defined quantity. A better theory would take into
account the entire evolution of the distribution, rather
than assuming it begins at T*.

The preceding analysis can be applied to the distribu-
tions in Fig. 12. Actually, distributions were computed
for this TLS for four different cooling rates. The values
of s/T' for the four runs are summarized in the upper
part of Table III. The slowest run (run 1 in the table) was
repeated, but this time was quenched from T =0.3V to
T =0.25V, producing the distribution with two holes in
Fig. 12. Measuring the width of the lower hole, and us-
ing the measured e/T' from run 1 gave a=0.5+0. 1, in
good agreement with reality (e, =0.5). The same calcula-
tion using the hole in the upper peak gave a=0.3+0.15.
Since this is a pedagogical exercise, the better the value of
c. was used for the remaining calculations. The freezing
temperatures T* found from the peak separation for each
cooling rate coincide with the actual freezing tempera-
tures, as shown in Fig. 13. Equation (19) was used for
each pair of runs to compute the barrier heights
displayed in the middle part of Table III. The results are
in agreement with the actual barrier (V= 1), but not
spectacularly so. The attempt frequencies from (20) and
shown in the lower part of Table III are not so good. I 0
in (20) depends exponentially on V, E, and T', so we

TABLE III. Measurements taken from entropy distributions for a TLS with c.=0.5, V=I 0=1. The
cooling rates are in units of V per MC step. Each distribution was compiled from 5000 runs of the
simulation. The upper part gives the positions of the two peaks in the distribution and the value of
c/T* derived from them. T in the last column was derived assuming a=0.5+0. 1 (see the text). The
middle part shows the barrier heights computed from Eq. (19) for each pair of runs, and the lower part
shows the attempt frequencies derived from (20) for each V in the middle part.

Run No. Rate

0.001
0.004
0.01
0.02

Lower peak

0.3+0. 1

0.3+0. 1

0.34+0.06
0.38+0.06

Upper peak

2.0+0. 1

1.7+0. 1

1.4+0. 1

1.2+0. 1

1.7+.2
1.3+.2
1.0+. 1

0.8+. 1

0.3+0. 1

0.4+0. 1

0.5+0. 1

0.63+0. 1

V

0.69+2.0 0.73+ 1.2
0.82+2.7

0.66+0.9
0.63+1~ 2
0.41+1.9

0.22+1 ~ 5 0.63+2.9
0.19+1.3

1.00+3.4
0.23+0.8
0.07+0.3
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FIG. 13. Devieviation of the average measured thermod
entro from its

e ermo ynamic

py i s equilibnum value for four runs of the TLS
simulation used for the entropy d' t 'b t' his ri u tons s own in Fig. 12.

rom top to bottom the r, the runs were cooled at rates of 0.02, 0.01
0.004, and 0.001 V er M

7

cally for clarit
p step. The curves are displaced v t'-

y 'ty by an amount proportional to the logarithm of
e ver i-

the cooling rate. The stars ( + ) m

de
) mark the freezing temperatures

etermined from the entropy dist 'b t' . Eri u ions. ach curve is an
average over 5000 runs —two such runsruns are superimposed for
t e second fastest simulation, showing that the a ar
fl t t tl

should not exexpect the results to be great, but the errors
are too small. There also seems to be a s st

ence on t e cooling rate, which may arise from the a-
proximate nature of (13).

m e ap-

8. Entropy distributions for 5 X 5 spin-glass sample 789

5X5 sa
We now apply the same analysis to a small s

'
1

sample 789. We do not know that the s in lass i
spin g ass,

two-level s stem in fy; in fact, it almost certainly is not. On
the other hand it probably has metastable states, and at
low temperatures it is possible that it behaves like a TLS.
Examination of thehe entropy distributions should tell us

~ ~ ~

the parameters of this effective TLS.

in Fi . 14.
Two entropy distributions from sample 789 h

'g. . For the first (solid line) the sim 1 t'
are s own

cooled to T=O
e simu ation was

o =0 at a rate of 0.01J per MC step. The
second (dotted line) was cool d t he a t e same rate, but was
quenched from T =0.7 to 0.4J ~~ 1. ~~ua itatively, the distri-

The d'
utions are similar to the TLS d' 'bistri utions in Fig. 12.

e istance between the peaks in the first distribution

FIG. 14. Two entro distribu
'

py
'

ri utions for spin-glass sample
e first (solid line wwas cooled continuously from T= 10J

to T=Oin 1000 MC ste s. Thp . e second (dotted line) was cool d
at the same rate

coo e

Each
h te, but was quenched from T=0.7J T=

ach distribution was compiled from 10000
to =0.4J.

tion.
rom runs of the simula-

shows that s/T" =0.15+0.03. Th h 1e o e caused by the
quenc in the second distribution shows th t =0. 1

, and that for this cooling rate T'=0.8+0.3. P
p

' 'ons and freezing temperatures for three differentositions
e range of cool-cooling rates are shown in Table IV. (Th

ing rates is smaller than for the two-1 1wo- eve systems —faster
rates than the ones shown tend to blur th kur e pea s together

e istn utions, and slower rates leave no weight in
the upper peak. ) Using Eq. (19) to compute the barrier
height for the effective TLS '

hin t e spin glass is
amusing —the values obtain d f h'ne rom t e three pairs of
runs are V(1,2)= —0. 14+0.03, V(1 3)=-
and V(2 3' +', =8 49. We can conclude, therefore, that Eq.
13

'
s. ven i t e spin glass13) is not valid for the spin glass E 'f h

oes ook like a two-level system 't ' ' '
p, i s equi i rium po ula-

tion does not behave like (12).
p p

C. Spin-glass microscopy

To check the value of the asymmetr c and to
the inconsis

~ ~

istent barrier height measurements obtained in
the last section we examine the configuration space of
the spin glass. Given a list of the configurations f da ions oun at

eac cooling run of the simulation, and the en-
tropies found onon eac run, we can discover which
configurations contribute to wh h kic pea s of the entropy

istribution. By making zero-ener flgy spin ips, we can

T*
TABLE IV. Same as the ue upper part of Table III, but for 5X5 s in- 1

, c =0.12+0.03 was assumed.
spin-g ass sample 789. To compute

Run No. Rate

0.001
0.01
0.04

Lower peak

0.042+0.006
0.08+0.02
0.08+0.04

Upper peak

0.27+0.01
0.23+0.02
0.22+0. 3

0.23+0.01
0.15+0.03
0.14+0.05

0.028+0.007
D. 8+0.3
D. 9+0.4
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group the configurations into states, and measure the de-
generacy of each state (as defined in Sec. III). If all the
spin configurations making up a state are stable with re-
gard to single spin flips, then the state is stable. For ex-
ample, analysis of the configurations found by the runs
that produced the distribution shown in the solid curve in

Fig. 14 produced the following list of states:

40

30— I~
'~

I

s

IJ
~

I
~

I

stable state 13522626 reached 4696 times

stable state 19999037 reached 4587 times

stable state 16963034 reached 355 times

stable state 12397093 reached 367 times

unstable state 12617282 reached 10 times

unstable state 19931453 reached 5 times

{degeneracy 2),

(degeneracy 2),

{degeneracy 14),

(degeneracy 14),

(degeneracy 157),

(degeneracy 157).

10—

I
I

I
s
I

I

I

I
I

I

I
I

IJ
t

The identifying numbers for the states, when written in

binary, specify the spins in one of the degenerate
configurations (the configuration with the smallest binary
encoding). There are two states with each degeneracy-
one can be derived from the other by flipping all the
spins. For purposes of comparing the spin glass to a
TLS, we can ignore the duplicity of states. The energy of
the first two stable states, those reached most often by the
simulation, is E = —1.36J per spin. The energy of the
next two state is E = —1.20J per spin. Since both of
these states are stable, they form the TLS we were look-
ing for in Sec. V B. The asymmetry c, is 0.16J, not in bad
agreement with the predicted value of 0. 12+0.03J.

The barrier between the two stable states can be
mapped, but not in as much detail as the states them-
selves. There are two configurations of spins, one in the
ground state and one in the metastable state, that can be
transformed into one another by a sequence of eight spin
flips. There are no two such states that can be joined by
fewer spin flips. On going from the ground to the meta-
stable state, the first spin flip breaks four bonds, increas-
ing the energy per spin by 0.32J. (Breaking a bond
changes the total energy by 2J.) The next six spin flips
cost no energy. The eighth spin flip satisfies two bonds,
decreasing the energy by 0.16J. Therefore the barrier
height Vis 0.16J, measured from the bottom of the upper
well.

Two entropy distributions are plotted in Fig. 15. The
first (solid line) is from spin-glass sample 789, and is iden-
tical to the solid curve in Fig. 14. The second is the best
match with a TLS entropy distribution. The asymmetry
and barrier height of the TLS were chosen to match the
asymmetry and barrier height of the effective TLS found
in the spin glass (e=0. 16 and V =0.16). The degeneracy
of the spin-glass states was accounted for by adjusting the
TLS transition rates —the rate for upward transitions
was reduced by the degeneracy d& =2 of the lower state,
and the rate for downward transitions was reduced by the
degeneracy d

&

= 14 of the upper state. ' The cooling
time was adjusted so that the residual population of the
TLS was 0.070, which is the population derived from the
state counts for the spin glass. The TLS entropies were
divided by 25, the number of spins in the spin glass, be-
fore the histogram was compiled, and the whole histo-
gram was shifted horizontally by 0.05 to match the posi-
tions of the upper peaks in the two distributions. (This
shift is legitimate. There are contributions to the entropy

0
—0.2 0.0 0.2

S(0) per spin
0.4

FIG. 15. A TLS residual entropy distribution (dotted line)
chosen to match a distribution for spin-glass sample 789 as
closely as possible. Both distributions were compiled from
10000 runs of the corresponding simulations. See the text for
the details of the matching procedure.

of the spin glass from sources other than its effective
TLS, so the absolute positions of the peaks are not impor-
tant. ) Despite all the manipulation, the two distributions
are quantitatively dissimilar.

The differences in the dynamics of the spin glass and
the TLS can be deduced (with a little hindsight) from the
differences in their entropy distributions. While the
upper peaks are almost identical, the lower peak in the
spin-glass distribution is much broader than its counter-
part in the TLS distribution. This would be the case if
transitions out of the upper wells of the spin glass and the
TLS happen in the same manner, but transitions into the
lower well of the spin glass are delayed, relative to the
corresponding transitions in the TLS. By spending a
longer time in transit between the wells, the spin glass al-
lows the temperature to drop farther during the transi-
tion, so the entropy released when it falls into the lower
well is greater.

What is the spin glass doing when it is between states?
The width of the barrier at its narrowest point is eight
spin flips, so it is unlikely that the system will get across
in a single MC time step (each spin is given one chance to
fiip in one time step). Furthermore, the top of the barrier
actually consists of 5052 degenerate configurations, so it
is possible for the system to wander around on top of the
barrier for a while. Most of these configurations (3224 of
them) are unstable, so it is unlikely that the spin glass will
stay on top long. Although a few of these unstable bar-
rier configurations are connected directly to the ground
state, many of them are connected to a "plateau" of 157
degenerate configurations. Only 23 configurations on this
plateau are unstable (these lead directly to the ground
state), so it is likely that the spin glass will wander around
on the plateau for a long time before finding its way into
its ground state. This is the origin of the delayed transi-
tions and the broadened peak in the entropy distribution.
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heating and cooling 1000 copies of a particular realiza-
tion of a 5 X 5 Gaussian spin glass. As in the +Jmodel in
Fig. 5, the thermodynamic entropy bounds the statistical
entropy, and is greater than the equilibrium entropy, so
the system is out of equilibrium. The measured entropies
are farther above the equilibrium entropy than they are
for the 5X5 J spin glass in Fig. 5. The Gaussian spin
glass has more metastable states (it has no plateaus), so it
is harder to equilibrate. The multitude of metastable
states leads to a multitude of peaks in the entropy distri-
bution, which overlap and merge for the 5 X 5 sample, as
in Fig. 17(a). The smaller samples shown in the figure
have fewer states, and look more like two-level systems.
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FIG. 16. Zero-temperature thermodynamic entropies (solid
lines) and statistical entropies (crosses) for 5X5 Gaussian spin-
glass sample 1012. The horizontal solid line is the equilibrium
residual entropy, ln2/25.

VI. OTHER MODELS, AND REAL DATA

So far we have discussed only small spin glasses and
the toy TLS model, both of which are rather far removed
from real glasses. It is important to know whether the
concepts introduced earlier will apply to real glasses
and/or more realistic models.

A. Real glasses as ensembles of two-level systems

20

20

(b) 4x4

J I I I I I I I

20— c) 3x3

0 I I I

0.0 0.1 0.2
I I } j I I I I

0.3 0.4 0.5

FIG. 17. Entropy distributions for Gaussian spin glasses of
three sizes: (a) 5 X 5 sample 7890, (b) 4X4 sample 4884, and (c)
3 X 3 sample 5835. The cooling rate for all three was 0.001o. per
Mc step, where 0 is the width of the bond distribution. The
mean bond strength was zero.

D. Spin-glasses with Gaussian bonds

The preceding analysis applied to a particular realiza-
tion of a 5X5+J Ising spin glass. The same analysis
could be applied to other realizations, and would do as
well. It is important, though, to make sure that the
structure in the distributions is not an artifact of the
pathology of the +J model —if there were no degenerate
configurations, would the distributions be useful?

Rather than repeating the analysis for a new model, we
simply present two plots indicating that a spin glass with
Gaussian bonds ( t J; I chosen from a Gaussian distribu-
tion) has nontrivial thermodynamic entropy. Figure 16

The low-temperature properties of glasses are under-
stood in terms of two-level systems. ' ' These models
postulate that glasses at low temperatures contain a num-
ber of sites at which atoms can tunnel between two states,
or wells (see Fig. 9). The two states differ in energy by an
asymmetry c.. There is a barrier V to tunneling between
the states. The thermodynamic properties of the glass
are explained in terms of the distribution f ( V, e ) of bar-
rier heights and asymmetries. At higher temperatures,
but still below the glass transition, glassy properties ("P
relaxations") can be understood in terms of thermal ac-
tivation over the barriers of the two-level systems.
The TLS model introduced in Sec. IV describes a single
one of these two-level systems.

In real glasses the distribution of barrier heights and
asymmetries will have some temperature dependence.
We shall model a glass simply as a distribution of TLS's
with fixed barriers and asymmetries, because we can
then use directly the results of Sec. IV. In particular, all
of the average properties of this extended TLS model can
be determined by numerical integration of the master
equation (11). This is a great advantage, because it allows
us to do simulations on the time scales of real experi-
ments. A Monte Carlo simulation could tell us how the
barrier heights change, but Monte Carlo simulations re-
quire on the order of one computation per molecule per
osci11ation. If the oscillation frequency is phononlike, the
simulation requires 10' computations per molecule per
simulated second, which obviously forbids simulations of
real experiments. The master equation can be integrated
on any time scale, simply by changing its parameters.

For the orientational glass KBr„:KCN, , the distri-
bution f ( V, e ) of barrier heights and asymmetries is
known. In this system, football shaped cyanide mole-
cules randomly replace bromine atoms in the crystal lat-
tice. The cyanides introduce lattice strain and interact
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with each other as elastic dipoles. The elastic dipole in-

teraction is symmetric with respect to 180' flips of the
cyanides, so each cyanide has two stable orientations.
Cyanide molecules are also electric dipoles, so the ener-
gies of the two orientations of each molecule are asym-
metric. The data and simulations presented below are all
for the concentration x =0.5. Experimentally, the bar-
rier distribution is Gaussian, peaked at V=660 K with
a width of 210 K. The asymmetry distribution is as-
sumed to be flat for 0& v. & 350 K and zero otherwise. '

If the potential energy of the cyanide is Vcos0, where 0
is its orientation, then the small oscillation frequency
I 0~ & V. I 0 may be taken to be 35 K for V =660 K.

Figure 18 shows the entropy bounds for
KBro 5:KCNO ~ as a function of cooling time, found by
numerically integrating the TLS master equation and
averaging over the distribution f. The statistical entropy,
computed from (14), falls between the upper and lower
bounds, but is not shown on the plot. The upper and
lower bounds differ by about l%%uo for experimentally ac-
cessible cooling rates. Because this model ignores the
structural entropy of the processes that create the two-
level systems (see Sec. VI C), the curve should not be in-

terpreted as a prediction of the zero-temperature entropy
of KBro 5.KCNO 5. It simply suggests that the difference
between the upper and lower bounds may be experimen-
tally detectable, and therefore that the distinction be-
tween the statistical and thermodynamic entropies is of
more than pedagogical interest.

B. Memory erat'ects

The extended TLS model is also useful in illustrating
the long-term history dependence of glasses. Figure 19
depicts the energy and heat capacity of the
KBro 5:KCNO 5 simulation during cooling and heating on

a reasonable experimental time scale. Upon cooling, the
glass was allowed to anneal at a constant temperature for
three (simulated) months. Some of the TLS's in the en-
semble were in equilibrium during these months, and did
nothing interesting. Some were completely frozen, and
also did nothing interesting. Some, on the other hand,
continued to relax, producing a spike in the specific heat
(dEWO although dT=0). More interesting, though, is
the behavior of the specific heat when the sample was
subsequently heated continuously through the annealing
temperature. The TLS's which contributed to the spike
on cooling had a lower population than they would have
led there been no annealing, so they absorbed more ener-

gy when they thawed. The specific heat consequently has
a pronounced bump. The glass has memory —its behav-
ior on heating depends upon how it was treated while
cooling. This effect is seen in real glasses too. See, for ex-
ample, Brawer's discussion of sub-T relaxation in

8203.

C. High-temperature relaxations

Bounds on the statistical entropy can be found for pro-
cesses that do not derive from two-level systems. Figure
20 shows the upper and lower bounds on the statistica1
entropy derived from a Monte Carlo simulation of
KBro 5.KCNO ~ by Eric Grannan. The entropy plotted
is the configurational entropy from the formation of the
TLS's, not the entropy of the TLS's themselves. The
simulation allows the cyanides to interact through their
elastic dipole strain fields, which create two stable orien-
tations for each cyanide, but ignores electric dipole
forces, which create asymmetries in the orientations.
Therefore, this simulation describes the falling out of
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FIG. 18. Upper and lower bounds on the zero-temperature
entropy per TLS as a function of cooling time for an ensemble
of TLS's chosen to mimic KBro, :KCNO &. The ensemble was
cooled from T=100 K to T=O K in the time shown. Note
that the plot is log log, in a way.

FIG. 19. Energy and specific heat vs temperature for the TLS
ensemble mimicking KBro &.KCNO 5 ~ The ensemble was cooled
from high temperature to 0 K at a rate of 45 K per hour but
along the way was annealed at 20 K for 3 months. Upon reheat-
ing at the original rate, a large bump appeared in the specific
heat.
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entropy. Assuming that the residual entropy is approx-
imately one per molecule, though, we see that the bounds
on the statistical entropy differ by about 1%, as predict-
ed.

What about entropy distributions? Can entropy distri-
butions be measured in the laboratory? Probably not.
The entropy distribution gets its structure from the fluc-
tuations that occur during the cooling and heating pro-
cesses. A macroscopic system is made up of many micro-
scopic systems. Although each microsystem may have an
interesting entropy distribution, only the macroscopic
heat flow can be measured. Therefore, only the collective
mean of the microscopic entropy distributions can be
measured. We are forced to conclude that although the
entropy distribution is a useful probe of the dynamics of
glassy computer simulations, it will be of little use in real
glasses.

FIG. 20. Bounds on the statistical entropy (crosses) given by
thermodynamic entropy on cooling (squares) and heating (dia-
monds) for a Monte Carlo simulation of KBrp g.'KCNp 5. The
system contained 16 cyanides, and was cooled and heated be-

tween 1000 K and 0 K in the specified number of steps. The er-
ror bars represent the uncertainty in the mean after averaging
over a number of runs. If there were enough data, we could plot
entropy distributions as well.

equilibrium that takes place at the glass transition (via "a
relaxations"), not the behavior of the TLS's below the
transition. The differences in the bounds are much larger
than in Fig. 18 because the cooling times are much faster.
Appendix B provides details on how to find the zero-
temperature entropy of a system with continuous degrees
of freedom.

VII. FUTURE WORK

A. Susceptibility to the cooling schedule

The methods discussed in Sec. V for extracting infor-
mation from the entropy distribution rely upon making
large changes in the cooling schedule —either changing
the rate or quenching. The response of the distribution
to infinitesimal changes in the cooling schedule might
provide a more systematic method of extracting the same
information. For slow cooling rates, we can think of the
imposed temperature change as a sort of field that is
pushing the TLS out of equilibrium, and the tails of the
entropy distributions as the linear response to this field.

B. Asymptotics for more complicated models

D. Entropy in real glasses

Are the bounds on the entropy really distinguishable in
real glasses? The extended TLS model implies that they
are. Most authors that publish entropy measurements
neglect to provide data on both heating and cooling.
An exception is a paper by Thomas and Parks, which
has the added benefit of being from 1931, when people
still published numbers, rather than just graphs. Thomas
and Parks measured the specific heat of B203 by heating
and cooling it between room temperature and 345'C.
The glass transition temperature is about 275'C. Of the
three curves shown in Fig. 1, the last two are the sort of
experiment described in Sec. II—cooling through the
glass transition to a low temperature, followed by heating
back to the original state. Integrating Thomas' and
Park's specific-heat data from T=112 to 345 C (the
range covered by the two runs) gives a change in entropy
per molecule of 0.869 on cooling, and of 0.858 on heating.
Assuming that the material is in equilibrium at the higher
temperature, we see that the entropy per molecule at the
lower temperature measured on cooling is 0.012 below
the entropy measured on heating, in accordance with (7).
Unfortunately we do not know the entropy at 345 C, so
we cannot determine the actual bonds on the statistical

The TLS model describes the behavior of glasses at
temperatures below the glass transition, but does not de-
scribe the transition itself. Ultimately, we would like to
find a model with a real glass transition (a 3D spin glass?)
and solve it asymptotically. A more modest calculation
would consider generalizations of TLS model which may
reproduce glassy properties ignored in the current theory,
such as the plateau in the thermal conductivity, nonex-
ponential relaxation, and the Kauzmann paradox. Possi-
ble generalizations are an n-level system, an interacting
network of two-level systems, a hierarchical model, a
mean-field spin glass (the infinite-range SK model or the
Bethe lattice spin glass ) or simply a TLS with a plateau.
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APPENDIX A: MASTER EQUATIONS
AND STATISTICAL ENTROPY

Many systems in statistical mechanics are described by
master equations. We wish to show that for these sys-
tems the statistical entropy defined in Sec. II

Sstat = Trp lnp, (2)

with p; defined to be the occupation probability of state i,
given a certain thermal history —satisfies the criteria set
out in Theorem 1: (1) S„„is extensive, (2) S„„=S,h„
in equilibrium, and (3) S„„ increases with time in a
closed system.

Consider a system of X states with energies E; and
populations p;(i = I, . . .N). If the transition rate from
state j to state i is y;, then the master equations for the
populations are

~Stot ripedt, . ' ' dt
= —g (lnp;+PE; )

= —g (lnp, +PE, ) g y,,p,

dStot

dt
= —Q g y,ie 'lnw;(w, —w;),

which, when written as a sum over all pairs of states
(ij ), is clearly positive:

—PE.=2 g y;Je '(lnw; —lnw, )(w; —w ) .
(ij )

= —g (lnp, +PE, ) g y, p — g y,
l J9 l JWl

PE
Defining w; =e 'p, , and using (22) to convert y~; to y;J,
we have

Detailed balance implies
—PE —PE,

while conservation of probability implies

(21)

(22)

Q.E.D. A similar proof, but for a closed system without
a heat bath, is given by van Kampen. '

APPENDIX B: RESIDUAL ENTROPY
OF A CLASSICAL SYSTEM

(23)

and normalization implies

p;=1 .

The statistical entropy is

S„„=—gp, lnp, . (25)

E;dp;S...„=—y f
l

We have

S„„is obviously extensive. When p, is the equilibrium
population of state i, (25) is exactly the equilibrium sta-
tistical entropy, so Criterion 2 is satisfied.

To prove Criterion 3, we need to close the system by
introducing a heat bath. The bath is in equilibrium, so its
thermodynamic entropy equals its statistical entropy.
The entropy of the bath changes only through heat ex-
changed with the N state system:

The thermodynamic entropy (1) of a classical system
with continuous degrees of freedom diverges to minus

infinity as T~0, because dQ =C d T and the heat capaci-

ty C for such a system is constant. The statistical entro-

py (2) also diverges as T~O because the systein sits at
the very bottoms of the wells in configuration space, and

these minima have zero volume. In order to compare the
statistical and thermodynamic entropies we have to sub-

tract off the divergences. This method was used to pro-
duce Fig. 20.

We are interested in part of the entropy that arises
from the multiplicity of metastable zero-temperature
states. Once the system is trapped in a single metastable
state, at a low enough temperature it behaves more or
less like a set of harmonic oscillators. The divergence of
the thermodynamic entropy for the full system is the
same as the divergence of entropy for the harmonic oscil-
lators; the discrepancy between the full thermodynamic
entropy and the oscillator thermodynamic entropy, as
T~0, is the sought after residual entropy. (The residual
statistical entropy is found simply by counting the num-

ber of wells in configuration space weighted by the proba-
bility of finding them, as in Sec. V C.) Because the kinetic
energy factors out of the thermodynamics, for our pur-
poses the Hamiltonian can be written H= g, —,'k;x, ,

where the sum is over the normal modes of the system.
The equilibrium entropy is then

dS tat dp. dp.dt, . dt ' dt
+ lnp;

dp;= —g lnp, ' dt S = —g 1+in1 2' T
el k

l

(26)

[using (24)] and

bath

dt

dp.= —g PQ ' dt

Letting S„,=S„„+S»,h and using (21) and (23) gives

The Monte Carlo simulation of KBro ~..KCNO 5 de-

scribed in Sec. VI C is a classical simulation. The orien-
tations of the dipoles are continuously variable. The
measured entropy S,h„and energy E are found by in-

tegrating dQ/T and dQ while cooling from the initial
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high temperature to some small but nonzero temperature
T . The initial value of S,&„ is determined from a high-
temperature expansion, and T' must be low enough that
the system is trapped in a single well in configuration
space. The normal modes of this well are found, and the
classical diverging equilibrium entropy (26) is found. The
system is forced to make a last transition so that its ener-

gy equals the equilibrium energy F.,~
of the normal modes

at T (in the same spirit as the initial jump away from
equilibrium at high temperature —see Sec. III A). The
residual entropy, plotted in Fig. 20 is then

E,)( T') —& ( T')
S,q„(0)=S,q,„(T')+, —S„(T') .T'
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