
PHYSICAL REVIEW B VOLUME 41, NUMBER 4 1 FEBRUARY 1990

Structure function of linear polymers in a good solvent: A self-avoiding-walk model
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The fourth moment (r ) of the average monomer-monomer separation is calculated in a self-

avoiding-walk model on a lattice in two and three dimensions. The universal ratio g=(r )/(Rs)',
with Rg the averaged squared radius of gyration of the polymer, is found to be 0.606+0.003 and
0.690+0.007 in two and three dimensions, respectively, which are both smaller than the ideal
Gaussian-chain value of 0.75 in all dimensions, with the deviation being stronger in the lower-

dimensional case. Using the result for g, the scaled structure function for small values of the
momentum transfer can be calculated and compared with that of the ideal chain.

I. INTRODUCTION

Information about the spatial monomer distribution in
polymers is contained in the structure function S(k),
which is defined as the Fourier transform of the density-
density autocorrelation function (p(0)p(r)) —(p) . Just
as in other areas of condensed matter physics, the struc-
ture function can be measured by light' or neutron
scattering. For a noninteracting Gaussian chain of N
monomers, the structure function is known as the Debye
function

S(Q)=2[exp( —Q ) —1+Q ]/Q

k R /2 ford=2,
2

k R /3 ford=3,

—,
' (r ) /(Rg ) for d =2,
—(r )/(R ) for d =3,

R2=(2N )
' y ((R —R ) )

m, n

N

(r )=(2N )
' g ((R —R„) ) .

m, n

(7)

where Q—:Nb k /(2d), with b the monomer length, d
the spatial dimension, and k the momentum transfer in a
scattering experiment. Expanding (1) one obtains

S(x)=1—x +gx +O(x ) (2)

N

S(k)=N g (exp[ik (R„—R )]),
m, n

(3)

where the average is taken over the configurations of the
polymer, and R„denotes the position of the nth mono-
mer. Averaging over the angle between k and (R„—R )

one obtains

S(k)=N g (Jo(k~R —R„~)) d=2,
m, n

N

S(k)=N g (sin(k)R —R„/)/[k/R —R„/])
m, n

(4a)

d =3, (4b)

where Jo is the zeroth-order Bessel function. Expanding
Jo and the sine functions one obtains exactly Eq. (2) with

with x = Q /3. The coefficient g of the x term in (2)
has the value g= —,

' in the case of a Gaussian chain in all

dimensions.
For an interacting chain, the structure function is

defined as

The expansion of S(x) in (2) was introduced by Witten
and Schafer who also calculated g using renormalization
group with E expansion. Their result for g depends on
two exponents v and y. Using the best available esti-
mates for v and ),' they obtained (=0.690+0.007 in
three dimensions. The resulting structure function calcu-
lated with this value of g differs very little both from the
calculated with the ideal Gaussian value (=0.75 and
from the Debye function (1). This was confimed by Ohta,
Oono, and Freed who directly calculated S(k) using the
renormalization group with e expansion, and by experi-
mental result. %he closeness of the ideal Debye function
to experimental data in three dimensions suggests that
the coefficient g is a more sensitive test of the polymer ex-
cluded volume effect than direct calculation of the struc-
ture functon itself. Since so far there has been no numeri-
cal calculation of the universal ratio, it is the purpose of
this paper to perform such a calculation, using a recently
developed Monto Carlo method ' that is an extension of
the exact enumeration method for linear and branched
polymers. ' Using this method one obtains simultaneous-
ly exact results for small monomer numbr N and Monte
Carlo data for large N.

Since fluctuation is stronger in lower dimensions, one
expects larger deviations from the Gaussian value for g in
two dimensions. Experiments have already been per-
formed on linear polymers in two dimensions, for quanti-
ties such as the exponent characterizing the radius of
gyration. "' One can imagine that similar experiments
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on the structure function of linear polymers can also be
carried out in two dimensions. Therfore a Monte Carlo
calculation of the coefficient g is also performed in two
dimensions, on the square and triangular lattices. Both
the data on the square and triangular lattices are extrapo-
lated to the same asymptotic value (=0.606~0.003.
This confirms the universal nature of the ratio g. In three
dimensions the calculation is performed on the simple cu-
bic lattice. The data can be extrapolated to the asymptot-
ic value (=0.690+0.007, in very good agreement with
that of Ref. 4.

II. MONTE CARLO METHOD
FOR SERIES EXPANSIONS

A new Monte Carlo method, called the incomplete
enumeration method, had been described before. ' It
can be used to enumerate the configurations of lattice an-
imals and self-avoiding walks (SAW s) on lattices. It is
essentially based on the exact series expansion method, '"
which is a very powerful technique for obtaining physical
quantities such as the critical exponents. However, the
computational efFort needed to calculate the Nth order
term by exact enumeration increases exponentia11y with
N. The exact enumeration method is based on a well-
known deterministic algorithm using backtracking. '

One starts with an ¹tepconfiguration I . Deleting the
last step from I one obtains an (N —1)-step SAW I"
called the parent of I . The SA% configurations are then
classified into a tree structure according to their lineage.
The unique one-step walk forms the root of the tree. The
N-step configuration of height (N —1) is connected to
their parents at height (N —2). The exhaustive enumera-
tion of all SA%'s having N steps proceeds by a systematic
exploration of the genealogical tree to height (N —1).

In the incomplete enumeration method, one arbitrarily
chooses a set of (N —1) real numbers p, with 0(p, ~ 1

and i =2, . . . , N. One deletes with probability (1—p„)
all r-step configurations and their descendants from the
genealogical tree. One then systematically enumerates
the remaining N-step configurations in the genealogical
tree. This can be done very efficiently using backtrack-
ing. When a particular r-step SAW is first generated, one
chooses to ignore it and all its descendants in the
enumeration with probability (1 —p„). The probability
that a particular r-step SAW will be enumerated in a
given trial is p2p3 p„:—P„, and is the same for all
configurations with the same r. The algorithm thus gen-
erates an unbiased sample of configurations. In the cal-
culation p, is chosen to be p, = 1, p, =p

' for i ~ 2, where

p =2.5, 4.0, and 4.5 for the square, triangular, and simple
cubic lattices, respectively. By setting p, =1 for all i one
obtains exact enumeration, which is possible only for
small N. The results for R, & r ), and the ratio
&r )/(R ), sobtained by exact enumeration, are shown
in Table I for the three lattices. The values of R have
been obtained before by Domb and Hioe' with N up to
15, 10, and 10 for the square, triangular, and simple cubic
lattices, respectively. The R values given here are ob-
tained using Eq. (7). This checks the values for &r ),
since these are obtained directly by squaring the individu-

al terms of (R —R„) before doing the summation over
m and n as indicated in Eq. (8).

The Monte Carlo result for the ratio &r4)/(R s) is
shown in Fig. 1 for the square and triangular lattices and
in Fig. 2 for the simple cubic lattice. In both figures this
ratio is plotted against 1/N. The exact values for small N
are denoted by crosses, and the dots represent Monte
Carlo data, up to N =50 for the three lattices. These
data are obtained using 6000, 12000, and 72000 trials for
the square, triangular, and simple cubic lattices, respec-
tively. The error bars are obtained by dividing the data
into ten samples and then calculating the standard devia-

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16

0.250000
0.518 518
0.805 556
1.155 199
1.520 735
1.936 996
2.364 180
2.839 589
3.323 222
3.850 145
4.385 065
4.959 219
5.541 065
6.159 132
6.784 321
7.443 557

Square
0.250000
1.111 111
2.805 555
5.871 999

10.353 285
16.946 518
25.502 289
36.979 095
50.973 663
68.659 668
89.454 590

114.703 842
143.656 784
177.831 955
216.296 722
260.763 428

4.000000
4.132 652
4.323 422
4.400 198
4.476 835
4.516 720
4.562 660
4.586 118
4.615 588
4.631 771
4.652 114
4.663 921
4.678 855
4.687 816
4.699 343
4.706 364

1

2

3
4
5

6
7
8
9

10
11

1

2

3
4
5

6

8

9
10
11

0.250000
0.488 889
0.766 304
1.078 835
1.422 771
1.795 774
2.196 823
2.623 858
3.075 659
3.551 116
4.049 143

0.250 000
0.488 889
0.730 000
0.989 752
1.255 093
1.537 535
1.824 327
2.124 458
2.428 013
2.742 711
3.060 200

Triangular

0.250000
1.022 222
2.592 391
5.231 067
9.208 116

14.798 120
22.289 520
31.958 969
44.091 721
58.973 557
76.889 252

Simple cubic

0.250000
0.933 333
2.129 999
3.990082
6.523 533
9.902 144

14.080 074
19.236 099
25.295 334
32.446 579
40.590 088

4.000000
4.276 857
4.414 666
4.494 491
4.548 837
4.588 840
4.618 601
4.642 072
4.661 016
4.676 569
4.689 637

4.000 000
3.904 959
3.996 995
4.073 139
4.142 248
4.188 701
4.230 578
4.262 069
4.290 801
4.313291
4.334 314

TABLE I. Exact values of Rg, & r ) and their ratio
& r )/(Rg ) as functions of N for the square, triangular, and sim-
ple cubic lattices.

Rg
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FIG. 1. The ratio (r') /(Rr')' vs 1/N for the square and triangular lattices. The crosses and dotes denote exact enumeration and
Monte Carlo data, respectively.

tions. The error bars for the triangular lattice are of the
same order of magnitude as those for the square lattice
and, for the sake of clarity, are not shown in the figure.
From both figures one sees that the Monte Carlo data
agree very well with exact enumeration data at small N
and that they approach a straight line for large N. From

Fig. 1 the extrapolated value for the ratio (r )/(R ) is
found to be 4.85+0.02 for both the square and triangular
lattices. This confirms universality for the ratio. From
(6) one obtains (=0.606+0.003 in two dimensions. Simi-
larly from Fig. 2 one obtains (r )/(R ) =4 61.
+0.04 and (=0.691+0.007 in three dimensions. This is

47
~

r r r r J r r r r ~ r r r r
y

r r r r
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FIG. 2. Same as Fig. 1, but for the simple cubic lattice.
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W T I I l 'I 1 T tion (1) is also shown in the same figure with a dashed
line. One sees that the deviation from the ideal Gaussian
chain result is significant in two dimensions. The same
plot for the three-dimensional case had already been
shown in Fig. 3 of Ref. 4.

III. CONCLUSION

1.00 I I I I i I l a I I I I I I

0.0 OA) 5 0.10 x 015

FIG. 3. The function S(x)+x' vs x' calculated using Eq. (2)
up to order x, with different values of g. The dashed line
represents results obtained using the exact Debye function, Eq.
(1).

In conclusion, the coefficient of the x term in the ex-
pansion of the scaled structure function S(x) of linear
polymers has been calculated using both exact enumera-
tion and the Monte Carlo method in two and three di-
mensions. Significant deviation from the ideal chain re-
sult is found in the two-dimensional case. This suggests
that experments should be done in this lower dimension
to study the excluded volume eft'ect on the structure func-
tion of linear polymers. From (2) and (4) one sees that
the (x ) term in (2) has a negative coefficient in both two
and three dimensions just like that of the x term. That
means that the exact result, obtained by including the
higher-order terms in (2) in two and three dimensions,
will with all likelihood, at least for small values of x, lie
below their respective curves in Fig. 3, which are calcu-
lated using only the x term. This will give even stronger
deviation from the ideal Gaussian value in two dimen-
sions.

The calculations done here for linear polymers are
based on Eqs. (3)—(8). Since these equations hold both
for linear and branched polymers, this suggests that simi-
lar calculations can also be carried out for the latter case.
Work on this problem has begun and will be reported
elsewhere.

in very good agreement with the result of Ref. 4.
The scaled structure function with the x term sub-

tracted, i.e., the function [S(x)+x ] calculated using (2)
with (=0.75, 0.690, and 0.606 are plotted versus x in
Fig. 3. The result obtained using the exact Debye func-
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