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Heisenberg model for the square-planar lattice and fragments
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Finite-fragment computations for the ground state of the isotropic spin- —,
' Heisenberg model for

the square-planar lattice are made. Both the exact ground-state and the (severe form of the)
resonating-valence-bond ansatz are considered and compared. Energy extrapolations to infinite

strips and then the infinite lattice are attempted. A novel real-space renormalization for the ground
state is also carried out, and finally the possibility of single-soliton excitations is considered. The
short-range ansatz is found to give only a modest improvement beyond a simple Neel state and to be
unstable to disproportionation into well-separated single spins.

I. INTRODUCTION

The antiferromagnetic ally signed Heisenberg spin
Hamiltonian is an explicitly correlated many-body model
of use in describing magnetic phenomena. Though of
general interest, the nature of the ground-state and low-

lying excitations is not fully known for arbitrary arrange-
ments of spin-carrying sites. Anderson' has suggested
that this model may be of relevance for understanding
the high-temperature superconductivity of the ceramic
perovskites, which apparently consist of infinite two-
dimensional square-planar arrays of active copper atoms,
each with a single active orbital. Anderson has pro-
posed that the ground state of such a square-planar layer
might be accurately described by a "resonating-valence-
bond" (RVB) wave function, i.e., by a superposition of
wave functions in which each site is singlet spin paired to
one other site.

In this paper we investigate the ground state of the
Heisenberg model for fragments cut from the square-
planar lattice, for infinite-length strips, and finally for the
lattice itself. We compare the exact energy estimates to
energies evaluated from a rather severe RVB-type ap-
proximate wave function, the so-called "short-range"
RVB wave function in which spin pairings are restricted
to nearest-neighbor pairs of sites only. These nearest-
neighbor spin-paired configurations are termed "Kekule
structures" in chemistry. For reasonably small finite
fragments, numerically exact ground-state energies can
be obtained via full configuration interaction (CI) over
the space of homopolar singlet states. One efticient
scheme for performing such calculations, used here, is a
graphical unitary-group approach, which permits calcu-
lations on fragments of up to about 20 sites on ordinary
computers, with 24 or 26 sites the limit on supercomput-
ers. %'e restrict our attention to fragments which are bi-
partitionable into two equicardinal sets such that sites in
one set are bonded only to sites in the other. In this case
the ground state is known to be a singlet. In this case
also, the energy for the simplest nearest-neighbor RVB
ansatz of Pauling and Wheland can be calculated via ma-
trix element formulas developed some time ago by Paul-
ing, though for polymeric (long strip) species this ap-

proach can be profitably refined.
The computational results on finite fragments may be

utilized to make estimates for extended systems. One ap-
proach taken in Secs. III and IV is first to make ground-
state energy extrapolations as a function of strip length to
yield estimates for infinite strips of fixed width, and
second to extrapolate as a function of strip width to yield
an estimate for the two-dimensional lattice. This ap-
proach helps to disentangle the effects of a novel long-
range order, which may be of physical relevance. The ap-
proach of Sec. V utilizes the results of finite-fragment
computations to effect a real-space renormalization trans-
formation modified from earlier ones ' which then also
leads to a good ground-state energy estimate for the
infinite lattice. Finally, Sec. VI uses finite-fragment re-
sults to make some estimates of solitonic excitations
within the VB picture.

H=J$2s, s, ,
I )

(2.1)

where J is the (positive) exchange parameter, s; and s, are
site spin operators, and the sum goes over nearest neigh-
bors. With the above Hamiltonian the energy of a single
nearest-neighbor spin pairing (i.e., Kekule structure) is
—3'/4 where N =wL is the number of sites. If this
value is subtracted from the computed energy of a sys-
tern, the difference represents the extra stabilization due
to interactions among the spin pairings. Such energy
differences are often termed resonance energies in the
chemical literature.

The exact ground-state energy of each fragment is ob-
tained by full CI using the whole singlet-space matrix
representation on the Gelfand-Zetlin basis, along with a
modified Davidson algorithim' to extract the lowest ei-
genvalue. The RVB ansatz is taken as

~+@vs& = X~& & (2.2)

II. COMPUTATIONS ON LATTICE FRAGMENTS

We consider rectangular fragments of width w and
length L cut from the square-planar lattice. We take the
Hamiltonian as
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TABLE I. Energy per site for fragments of the square-planar lattice (units of P.
K(m XL) x(ta XL ) —0.75 ERvB Eexact

2
3
4
5

6

8

9
10
11
4
6
8

10
12
4
5

6
7
8

9
6
6

2

3

8

13
21
34
55
89

144
11
41

153
571

2131
36
95

281
781

2245
6336
1183
6728

—1.010
—1.025
—1.052
—1.062
—1.071
—1.076
—1.081
—1.084
—1.087
—1.089
—1.050
—1.059
—1.064
—1.067
—1.069
—1.086
—1.092
—1.102
—1.107
—1.112
—1.115
—1.104
—1.117

—1.000 000
—1.022 727
—1.048 469
—1.060448
—1.069 168
—1.075 301
—1.079 876
—1.083465
—1.086 317
—1.088 661
—1.051 948
—1.062 361
—1.067 526
—1.070 617
—1.072 675
—1.087 456
—1.094 385
—1.105 128
—1.110034
—1.114965
—1.118224
—1.107 154
—1.120 581

—1.000000
—1.043 128
—1.073 267
—1.089 342
—1.100 579
—1.108 475
—1.114434
—1.119059
—1.122 762

—1.115280
—1.142 613

—1.148 651
—1.165 157

lnK(tu XL )

wL
(2.3)

where K( w XL ) is the total number of Kekule structures
for the w XL fragment and the constant 1.5 has been in-
cluded to provide a rough scaling to approximate per-site
resonance energies (in units of J). Then ~( w XL ) plus the
energy ( —0.75) per site of a single Kekule structure
should give an estimate of the energy per site for the
short-range RVB ansatz.

Inspection of the data in Table I produces several ob-
servations. First, the per-site energies in general increase
with increasing fragment size, although the shape of the
fragment can have a significant effect. Second, both the
RVB energies and Kekule counts qualitatively show the
same trends as the exact energies, though the RVB re-
sults become poorer as the fragments become larger.
This is consistent with earlier work' indicating that the
Kekule structures form a good basis at low average coor-
dination number, but become less good as the average
coordination number increases above 3. Finally, along

with ~K ) a nearest-neighbor spin-pairing structure
(Kekule structure) with phases chosen in the natural con-
ventional manner. Of course, we are restricted to frag-
ments with w or L or both even, in order to admit a di-
mer covering. The matrix elements of H in the basis of
configurations ~K ), as well as the overlaps (K ~K'), are
evaluated by graphical techniques using a slightly
modified version of a BoRT (Ref. 11) program.

The exact and RVB per-site resonance energies for the
fragments which we have treated are reported in Table I.
Also shown is a per-site measure of the number of Kekule
structures

sequences of fixed (even) width m, there is a pronounced
even-odd fluctuation with length. We will examine this
point in more detail in the next section as we consider the
approach to the infinite lattice.

III. EXTRAPOLATION TO LONG STRIPS

A. RVB wave function

We consider first the extrapolation of fragment data
for fragments of fixed width but increasing length. For-
tunately, for the RVB calculations we can obtain consid-
erable insight into the approach to this limit by examin-
ing the transfer matrix formulation of the problem. ' For
w =2, the transfer matrix turns out to be only 3 X 3, and
the energy of a fragment of any length can be expressed
completely in terms of the three eigenvalues and associat-
ed eigenvectors of the transfer matrix. ' This analysis
shows that the overlap of the RVB wave function with it-
self can be written as

(3.1)

(q'RvBlHlq'RVB) =J A L+B~

(C~~~L +D ~ ~)p (3.2)

where the 3's and B's are constants determined by the
eigenvectors (depending only on w), and the A, are the ei-
genvalues of the transfer matrix. Similarly, the matrix
element of the Hamiltonian can be written as
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where 3„, B and the C's and D's are constants and

p, = A, , /A. t with A, , being the maximum-magnitude eigen-
value of the transfer matrix. The RVB estimate of the
ground-state energy is given simply by the ratio of (3.2) to
(3.1). Clearly, as L increases only the contribution from
the largest eigenvalue survives, and the energy per site in
units of J is given by E = A /w A ' "= —1.112058 to
computer accuracy.

Equation (3.2} rationalizes the even-odd fluctuation in
the approach to the limit. As discussed below, for odd-
width strips all eigenvalues of the transfer matrix come in
+ pairs. For even-width strips the two maximum
modulus eigenvalues do not have to be equal, but in all
cases which we have examined the second largest eigen-
value in magnitude is opposite in sign to the first, so that
the largest term in the sum in (3.2) changes sign as L is
even or odd.

The term 8 in (3.2) accounts for the contributions of
the strip ends. It could be eliminated by imposing cyclic
boundary conditions, but this increases the dimension of
the transfer matrix and increases the importance of the
exponential terms in the sum in (3.2), so that we find that
we can extrapolate more accurately from data for frag-
ments without cyclic boundary conditions. When cyclic
boundary conditions are not used, the magnitude of the
sum of all the exponential terms in the expression for the
energy for width w =2 has dropped to 0.0068 at L =4
and is less than 1 X 10 for L ~ 6. By contrast, for strips
with cyclic boundary conditions in the length direction
(which requires L even unless the strips are allowed to
"twist"), the exponential corrections are much larger:
0.532, 0.190, 0.057, and 0.016 for L =4, 6, 8, and 10.

For width 3 strips the transfer matrix is formally
14X 14, but as indicated above, all eigenvalues come in +
pairs, so that in fact a 7 X 7 matrix suffices to determine
the magnitudes. Thus, for odd-length strips, all + contri-
butions cancel exactly leading to zero resonance energy
as must happen since there are no Kekule structures pos-
sible. For even-length strips the contributions of each
positive eigenvalue are just doubled, and since the first
term in the sum in (3.2) is really the third largest eigen-
value, the convergence to the limit is faster. For w =3
we obtain E = 3 /wA "'=—1.082 968.

For w =4 the transfer matrix is 22 X 22 and thereafter
their sizes continue to rapidly increase, roughly -3, so
that their construction becomes difficult. We have there-
fore estimated the per site energy of the infinite strips by
extrapolation, using the forms of (3.2} and (3.1) as guides.
For odd widths we have simply plotted per-site energies
versus 1/L, ignoring all exponential terms, and taken E„,
from the 1/L =0 intercept. For even w, the data have
been fit to the equation

TABLE II. Energy per site for infinite-length strips of the
square-planar lattice (units of P.

ERVB Eexact

—0.750000
—1.112058
—1.082 968
—1.146
—1.133
—1.161

—0.886 294
—1.156
—1.188
—1.236

8. Exact wave function

C. Eft'ects of long-range order

It is clear that even for infinite strips there is a fluctua-
tion in the per site energy depending on whether the
width is even or odd. The difference between the CI and
RVB results also depends on strip width. To a certain ex-
tent the fluctuations correlate with the fluctuations in the
per-site Kekule-structure counts lr(w X ~ ), and these in
turn correlate with the long-range spin-pairing order de-
scribed in the accompanying paper. For instance, for a

/

/
/

/

For the exact results we have fewer data points to work
with and we do not have a transfer matrix available to
guide our extrapolation. However, if the RVB approxi-
mation is a tolerable approximation to the exact wave
function, it seems reasonable to assume that the function-
al dependence of the energy is not too different from that
discussed above. We have therefore adopted the same
procedure for extrapolating the exact energies as was
used for the RVB energies. For w =3 the fragment ener-
gies were just plotted against 1/L, while for w =2 and
w =4 Eq. (3.3) was used. To get the five data points need-
ed at w =4 we have added the value for a 4X1 chain
(E=—0.982051). These extrapolated results are also
presented in Table II. The value for the 1X ~ chain is
exactly known from Hulthen. '

E(w XL)/J=E L+P +(y L+5 )p (3.3)

where the term proportional to p with p (0 accounts
for the leading, even-odd dependent, term in the sum in
(3.2). These extrapolated estimates are collected in Table
II.

FIG. 1. Example dimer coverings (or Kekule structures) on
portions of two very long width-3 strips, with dashed lines indi-

cating divisions between unit cells. In the first and second cases
here there are, respectively, one and two dimers (or spin pair-
ings) crossing each unit-cell boundary.
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very long w =3 strip we display two Kekule structures in
Fig. 1. In the first and second of these structures one
sees, respectively, Q =1 and Q =2 spin pairings across
each of the dashed lines indicating a position along the
strip. Indeed, this number Q of spin pairings remains
fixed no matter how either Kekule structure is extended
and so these two counts identify two different long-
range-order classes. Generally if one restricts counts
E&(w X ~ ) to Kekule structures with a fixed Q, then
K&(w X ao ) should vary as an even function of
(Q/w —1/2) with a maximum at Q/w =1/2. This is ex-
plicitly illustrated for K&(w X co ) in an accompanying
paper for the w~ ~ limit. Now it may be seen that our
even-width strips deal with Q/ted= 1/2 while the odd-
width ones have Q/m= 1/2 —I/2w. Thus odd-width
strips have fewer Kekule structures per site (especially for
smaller w) so that less configuration mixing among these
Kekule structures occurs and so that there is a lesser
lowering of the ground-state energy. Of the even-width
strips the smallest might be anticipated to be best de-
scribed by the RVB ansatz since there the associated
lower coordination numbers imply the alternative Neel-
state picture is less accurate. These expectations are seen
to be in conformity with the results of Table II, and other
results have been' similarly interpreted.

As long as cyclic boundary conditions are not used,
only the Q values consistent with the strip ends occur,
and here we have chosen these ends to be consistent with
Q/w as near to the maximum at 1/2 as possible. Howev-
er, if cyclic boundary conditions are employed, then all Q
values occur (for finite lengths), and as indicated previ-
ously, the convergence to the infinite (uncoupled) limit is
less rapid.

IV. EXTRAPOLATION TO THE
SQUARK-PLANAR LATTICE

A. RVB wave function

Next, extrapolation of the E of the preceding section
to the (infinite-width) square-planar lattice may be made.
Unlike the length extrapolation where the corrections
other than for the ends are expected to damp exponen-
tially, we expect the width corrections to decay as re-
ciprocal powers. We therefore presume an asymptotic
form

F. -=stU+a+b/w, w~ ~ (4.1)

with c the bulk per site energy, and a, the edge term, the
same for all strips, but with b different for odd- and
even-width strips (as indicated by the long-range-order
considerations of the preceding section). This form of
(4.1) is found in analytic transfer-matrix enumerations for
Kekule structures on finite-width strips, as described in
the accompanying paper. Since this enumeration itself
can be viewed as arising from an orthogonalized version
of the short-range RVB description, (4.1) is suggested for
the present RVB energies. When we fit the RVB data for
w =1,3, 5 and then that for w =2,4, 6 to (4.1) we obtain,
respectively, c= —1.1977 and c.= —1.1965. The agree-
ment is gratifying, and we take the mean, c.= —1.197, as
our best estimate of the short-range RVB energy of the
square-planar lattice, but the small number of data points
used in both the width and some of the length extrapola-
tions suggests an error bar of about +0.010. We have
collected our own and various other estimates of the
square-planar lattice energy in Table III.

TABLE III. Per-site ground-state energy estimates for the square-planar lattice.

Method Reference

Single Kekule state
Neel state
Fragment extrapolation —short-range RVB
Fragment extrapolation —diagonalization in Kekule basis
Monte Carlo short-range RVB
Variational spin-wave-like
Antiferromagnetic spin wave
Fragment extrapolation —exact diagonalization
Fragment extrapolation —exact diagonalization
Approximate variational
Approximate variational
Monte Carlo variational
Renormalization
Second-order Neel state
Sixth-order Neel state
Extrapolated infinite-order Neel state
Monte Carlo —long-range RVB
Fragment extrapolation —exact diagonalization
Monte Carlo —Neel type
Monte Carlo —extrapolation
Monte Carlo —extrapolation

This work
15
16
23
25
15
20
22
24
17

This work

26
21
16

This work
16
18
19

—0.7500
—1.0000
—1.197+0.01
—1.200+0.01
—1.208+0.0008
—1.286
—1.290
—1.302+0.01
—1.31+0.01
—1.312
—1.316
—1.3276
—1.332
—1.3333
—1.3345
—1.336+0.004
—1.3364+0.0008
—1.337+0.015
—1.3376+0.0008
—1.340+0.004
—1.3448+0.001
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Our RVB result should be an upper bound to the exact
energy —evidently not too close a one. It apparently,
however, is a very close upper bound to the energy deter-
mined by diagonalization in the space of Kekule struc-
tures, which has been estimated by extrapolation. ' The
value of Liang et al. ' indicates that the error entailed in
equally weighting all Kekule. structures is even smaller,
since their Monte Carlo calculation gives a presumably
more accurate slightly lower estimate of what the extra-
polated limit should be.

B. Exact wave function

Since for the exact energy estimates we have only four
data points, we have used (4. 1) along with the assumption
that F and a are the same for odd and even width to
determine the four parameters c, a, b', b'"'". This gives
c.= —1.337 for the exact per-site energy of the lattice, but
here even larger error bars of about +0.015 seem pru-
dent. This value is also included in Table III.

This estimate seems to be in reasonable agreement with
most other entries in Table III. In particular it is slightly
lower than the variational approach of Huse and Elser'
and the best RVB-type wave function of Liang et al. ' It
is slightly higher than the best Neel state-based wave
function of Liang et al. ' and the Monte Carlo extrapola-
tion of Reger and Young. ' Our estimate is significantly
above the estimate of Barnes and Swanson' obtained by
extrapolation of Monte Carlo results for various frag-
ments (up to 40 by 40). Indeed we are about seven of
their standard deviations above their estimate, but it may
be noted that for the 4 by 4 fragment (with cyclic bound-
ary conditions) they are about three standard deviations
below the (accurately numerically determined) exact en-

ergy. On the other hand, our estimate is notably lower
than two' ' earlier extrapolations of finite-fragment re-
sults, but Huse ' has argued that these earlier results are
faulty in making an incorrect assumption as to the N
dependence of the finite-fragment correction. Several
other variationally based estimates give values some-
what higher, as presumably they should. Also included is
the antiferromagnetic spin-wave result. Neel-state per-
turbation expansion ' seems to converge quite rapidly
to a reasonably accurate result, close to the long-range
RVB result. It is still not clear whether the exact wave
function should fall into the universality class of the Neel
state or of the RVB wave function, associated to different
types of long-range order.

where sk is the spin operator for block k', the first sum is
over blocks, and the second sum is over adjoining blocks.

Iteration of the transformation yields a sequence H" ',
H' ', . of renormalized Hamiltonians. The associated
3 '"', 8'"', and J'"' simply effect shifts and rescalings, so
that there are three n-independent parameters a, P, and
y, such that

g(n) —9+(n —1)+128(n —1 +aJ(n 1),
8(n) 38(n —1)+pJ(n —1)

J(n) J(n —1)

(5.2)

8(n) 3n 8(0)+ P J(0)
3 —y

(5.3)

A'"' 9" A' +28' '+ J' '

so that (with A ( '=8' '=0, J' '= J, which is appropri-

ate for the spin Hamiltonian of Eq. (2. 1)) the large-limit

per-site ground-state energy is

a+2P
9-y ' (5.4)

One method now used several times to determine the
renormalization transformations is via a first-order de-
generate perturbation-theoretic development. ' Here we
obtain the renormalization parameters a, P, y in an alter-
native way via a cluster-expansion technique which uses
finite-fragment results. That is, numerically exact CI
computations are carried out for the 3 X 3 and 3 X 6 frag-
ments (consisting of one and two blocks), and the exact
renormalization parameters are determined to transform
these to 1- and 2-site renormalized models, K& and H&z.
Thence H, for block 1 (and H2 for a second single block
2) is simply a scalar giving the doublet ground-state ener-

gy ED(3 X 3) for the 3 X 3 block,

Here the factors 9 and 12 for A '" " and 8'" " in the
first equation arise in counting the number of sites and
bonds internal to a block, while in the second equation
the factor of 3 for 8'" " arises in counting the number
of bonds between two adjoining blocks. Then

J(n) nJ(0)

V. RENORMALIZATION ESTIMATE
ED(3X3)=A") . (5.5)

Before considering the results of Sec. IV in more detail,
we make an alternative estimate of the lattice energy.
Finite-fragment data may be renormalized to estimate the
lattice energy via an approximate real-space renorrnaliza-
tion transformation. For the present square-planar prob-
lem 3X3 blocks are renormalized to single sites in the
new transformed Harniltonian

E~(3 X 6) =23 "'+8"' 3/2J" ', —

ET(3 X 6)=2 A "'+8" '+ 1/2J" ' .
(5.6)

Next the renorrnalized two-block Harniltonian H&z is to
give the lowest singlet and triplet energies for the 3X6
fragment

H(1) —g P (1)+ y (8(1)+J(i)2 . )i j (5.1)

Thence (5.5) and (5.6) may be inverted to obtain A'",
8"', J"', following which (5.2) with n =1 may be invert-
ed to obtain a,P, y, and finally with (5.4) one obtains
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Es(3 X6)+3ET(3X6)—6ED(3 X 3)

18 E—T(3 X6)+E,(3 X6)
(5.7)

Using the calculated fragment energies ED(3X3)
—= —9.498 655, Es(3 X 6) =- —20. 567036, ET(3 X 6)
= —19.790718, gives c. -= —1.332, in quite reasonable
agreement with the extrapolated result of —1 ~ 337 from
the last section. The result is notably better than that
of c =——1.1184 from the first-order degenerate perturba-
tion treatment (which also gives a rigorous upper bound).
The superiority of the cluster-expansion technique we be-
lieve is not fortuitious, but, e.g. , is also found for the
linear chain where the first-order perturbation and our
three-to-one cluster-expansion methods give c.—= —0.7826
and c-=—0.8969 as compared to the exact result,
c —= —0.886 294, of Hulthen. '

VI. SOLITONIC EXCITED STATES

(6.1)

Finite-fragment computations may also be organized to
test for the possibility of solitonic excited states. This is
most simply approached within the RVB framework,
where the excited-state configurations are to have all sites
(singlet) spin paired to nearest neighbors except for a sin-

gle pair of sites which are well separated from one anoth-
er. This criterion of well-separatedness may be imposed
simply by considering strips with an odd number of sites.
Thence a typical RVB configuration ~iC) has site i un-

paired, with a nearest-neighbor pairing pattern for all
remaining sites. The short-range RVB ansatz then is

+RVB& X & lie)
I C

FIG. 2. A depiction of a typical structure ~iC) with a single

unpaired site on a width-3 strip. There are, respectively, one or
two dimers crossing unit-cell boundaries to the left or right of
the unpaired site.

where the i sum is over the sublattice with an excess of
one site. The relevant matrix elements were again
developed by Pauling.

An important constraint arises if +avn of (6.1) is to be

a reasonable ansatz. Note that for a configuration ~iC),
as in Fig. 2, the long-range-order paratneter Q changes by
1 in crossing past the site i of the unpaired spin. So if the

Q and Q61 phases are of different energies (i.e., are non-

degenerate), then the amount of higher-energy phase

should be minimized, with the unpaired site i becoming
localized near one end of the strip. Such nondegeneracy
arises with the even-width w strips, so that a solitonic
description as in (6.1) would not be reasonable (except
perhaps if w were very large). But for odd-width strips
the two phases are degenerate with Q = ( w+ I ) /2, so that

4avn of (6.1) is a reasonable candidate wave function.
With note of the ideas in the preceding paragraphs we

focus on the 3XL strips. An excitation energy estimate

can be obtained as

—,'[ED(3XL+1)+ED(3XL—I)] E&(3XL), —L even

ED(3XL)——2[Es(3XL+1)+Es(3XL—1)j, L odd . (6.2)

TABLE IV. Excitation energy estimates.

6(3XL }

2
3
4
5

6
7
8
9

10
11

Exact
+0.5094
+0.3224
+0.2464
+0.1999

RVB
+0.5000
+0.1071
—0.1131
—0.3272
—0.4757
—0.6247
—0.7344
—0.8442
—0.9269
—1.0097

The doublet energies of both RVB and exact wave func-
tions for the various 3 XL, L =odd, fragments were com-
puted, and the excitation energy estimates obtained
therefrom are reported in Table IV. These results for the
exact and short-range RVB wave functions differ marked-

ly. For the exact wave function the b, (3 XL ) are positive
and when plotted versus 1/L reasonably extrapolate in a
linear fashion to near 0 as L ~~. In fact, this is what is
expected theorematically.

The computed excitation energies for the short-range
RVB ansatz deserve special note. First, they are negative,
indicating that this RVB ansatz is unstable to dispropor-
tionation into spins that are not locally paired. That is, a
more favorable candidate would have a nonzero concen-
tration of such spins not locally paired. Extrapolation of
the RVB finite-fragment results of Table IV turns out to
be a more delicate matter: The linear region in a plot of
b,Rva(3XL ) versus 1/L evidently is not reached until L
exceeds the values of Table IV. (A similar behavior is ob-
served for w =1, where the RVB results are readily ob-
tained for arbitrary length L.) Nevertheless the
ARv~(3 XL ) seem clearly to decrease monotonically as L
increases; they seem to approach a value of about —2.

Of course the width w =3 strip is not the full square-
planar lattice. Moreover the w =3 ground-state against
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which the excitations are gauged have q/w =1/3, rather
than the presumably more energetically preferred
q/w =1/2, such as would occur for the full lattice. Thus
the excitations should be more costly for the full lattice,
but as we estimate it, not enough to prevent dispropor-
tionation. That is, from Table II of Sec. III the ground-
state energy per site for the full lattice is estimated to be
about 0.25 lower than for the m =3 strip, so that the
full-lattice excitation energy is still estimated to be
strongly negative. We conclude that the actual ground-
state wave function for the square-planar nearest-
neighbor s =1/2 Heisenberg model is not well described
by the short-range RVB ansatz, Perhaps a Neel-state
description may be better —surely so far as the associated
energy estimate is concerned.

VII. CONCLUSION

We have investigated both the short-range RVB ansatz
and the exact ground state for strips cut from the
square-planar lattice and attempted extrapolations to the
full lattice. Accurate numerical estimates have been
given for both types of energies for various strip widths
and for the full lattice. This work finds the short-range
RVB energy for the width w =2 strip to be quite reason-
able, but especially for wider strips and the full-lattice
Neel-state-based energies appear to be much superior.
Further evidence in support of this is found in our study
of excitations in sec. VI, where we find the short-range
RVB wave function unstable to disproportionation into
well-separated spins not locally paired. This can destroy
the type of long-range spin-pairing order we have noted
to be associated to short-range RVB descriptions and
thence allows the possibility of the (otherwise incon-
sistent) usual Neel-state ordering. That the exact wave
function should fall into the universality class of the
Neel-state is not at all clear though, because of the evi-
dent high accuracy of the long-range RVB energy. '

The possibility that the short-range RVB model pro-
vides a reasonable description under other circumstances
remains. First if on the square-planar lattice
antiferromagnetically-signed exchange interactions 2s, s,

between diagonally situated next-nearest neighbors are al-
lowed, then Neel-state ordering is "frustrated" while the
energy for single Kekule structures remains unchanged.
Anderson' has mentioned such interactions as a possible
stabilizing inhuence for the RVB description. However,
in deriving effective spin Hamiltonians from the Hubbard
model one may note that there arise (in the same order)
quartic spin interactions around size-4 rings which desta-
bilize the RVB description —indeed, in chemistry, this
destabilization is associated to Hiickel s 4n-rule. Correc-
tions to the simple Heisenberg model then come into
question. A further crucial modification concerns the in-
clusion of an additional concentration of electrons (or
holes). In this case the RVB ansatz modifies to appear
much like that of the excitations of Sec. VI but where
now the singular sites have double (or empty) electron oc-
cupancy. The relevant matrix elements are somewhat
like those of Sec. VI, so that the negative excitation ener-
gies found there indicate that the inclusion of such
charge-carrying single sites should enhance the stability
of the short-range RVB description. At the same time
this would destabilize Neel-state descriptions. Overall
this is possibly very pertinent since experimentally there
is antiferromagnetic Neel-state ordering for the
stoichiometric case, while superconduction occurs for
nonstoichiometric species for which one could include a
nonzero concentration of double (or empty) electron oc-
cupancies on the sites. Finally if the coordination num-
ber is lowered (while still allowing many Kekule struc-
tures), the short-range RVB ansatz is enhanced as we
have argued before. ' Indeed the present conclusions are
quite consistent with this earlier stated view.

Note added in proof. What seems to us the best
ground-state energy estimate (see Table III) so far is
—1.33836+0.0002 obtained by J. Carlson, Phys. Rev. B
40, 846 (1989) via a Monte Carlo extrapolation.
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