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A systematic way to construct replica symmetry-breaking solutions of the spin glass on random

lattices with Anite (Axed or average) connectivity is presented. The method generalizes Parisi's

scheme to the case of infinitely many-order parameters q &, q &~z, . . . . A systematic expansion in

inverse powers of the connectivity (=M + 1) is performed. At finite temperatures the expansion is

in powers of 1/M, and at zero temperature in powers of 1/&M. The q's with larger number of in-

dices contribute at higher orders in the expansion parameter. At zero temperature the results apply
to the graph bipartitioning problem and are compared with numerical simulation. The agreement is

of the order of —1%, for the range 9 ~ M ~ 20, much closer than the replica symmetric solution.

I. INTRODUCTION

The theory of spin glasses on lattices with finite con-
nectivity attracts much current interest. Since Parisi'
proposed his solution to the Sherrington-Kirkpatrick
(SK) infinite-ranged model there have been many at-
tempts to extend the theory to short-ranged systems. In
the SK model each site is connected to any other site
whereas Bravais lattices of real systems have finite con-
nectivity. An important question which is still not entire-
ly settled is whether real spin glasses have many coexist-
ing thermodynamic states as is the case for the infinite-
ranged model.

Besides, spin glasses on random lattices with finite con-
nectivity are related to some well known optimization
problems like graph partitioning and coloring. Such
random lattices are characterized by many of the simpli-
fying features of mean field theory because small loops
are rare. ' If two points A and B are both directly con-
nected to a point C by bonds, then the probability that A
and 8 are directly connected to each other is O(1/N),
where N is the number of lattice sites.

Previous treatments of such models, ' except in the vi-
cinity of T, (Refs. 9 and 10) and for special limiting
cases, "' have used the assumption of a single thermo-
dynamic state, or in a more technical language assumed
replica symmetry (RS) of the order parameters. But evi-
dence has been accumulating ' ' that in many of the
systems under consideration RS has to be broken, and the
problem we want to address is how to construct a broken
replica scheme at any temperature, including T=0,
where the connection between the ground-state energy of
the frustrated system on the random lattices and the cost
function of the optimization problems have been estab-
lished.

The physical meaning of replica symmetry breaking in
these systems is the coexistence of many thermodynamics
(Gibbs) states in the spin-glass phase at any temperature
T, which are organized in a tree-like (ultrametric) struc-
ture. Let us remind the reader that the Ising spin-glass
Hamiltonian is given by

&= —g Jio, cr, —h, „,go, ,

where o.;=+1, J, are random interactions between a
pair of spins (ij ) on the lattice, and h,„, is the constant
external field which will be put to zero in most of the dis-
cussion. The replica trick amounts to replicating the
spin variables a„a=1, . . . , n and using the identity

Z"—1 ~ 1
lnZ = lim = lim —lnZ"

n~0 n n~o n
(1.2)

to carry out the quenched average over the disorder.
Here Z is the partition function, Z" is the partition func-
tion involving the replicated spins, and the bar stands for
average over the disorder.

The order parameter of the Ising spin glass (SG) in the
infinite-range case is denoted by q and Parisi has

1 2

shown how to construct an RS-breaking scheme by ap-
propriately parametrizing the n Xn matrix q as n ~0.

1 2

In the finite connectivity case the system is charac-
terized by infinitely many-order parametersq,q,q, . . . , and the problem is how

to construct an RS-breaking scheme including all of
them. These order parameters constitute a measure for
the averaged joint overlap of several thermodynamic
states labeled by a, , az, a3, . . . , etc, similar to the inter-
pretation of q &

in the infinite-ranged model. In order
to construct a systematic scheme of RS breaking involv-
ing all these order parameters we developed the method
of 1/M expansion where M+1 is the connectivity of the
lattice (number of nearest neighbors). Thus we expand
about the infinite-ranged model, and q's with higher num-
ber of indices enter at higher and higher order in the 1/M
expansion. In fact at T=O the expansion parameter
turns out to be 1/&M, at least for finite-stage RS break-
ing. ' Thus the 1/M expansion at finite temperature
diverges as T~0. Thus we have two separate
expansions —one at finite and one at zero temperature.
Nevertheless the expansion at finite temperature is rather
well behaved up to a temperature of order 0.1—0.2 of T,
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where a is the average finite connectivity at each site and
p( J) is a normalized distribution not containing a 5 func-
tion at J=o, and (ii) random lattices with fixed finite con-
nectivity a=M+1, for which the bonds' strength is
given by a probability distribution p(J). Such lattices
can be constructed by building the connectivity matrix
a;, in which the matrix elements a; =a,; are chosen at
random to be 0 or 1 with the sole constraint

gaJ=M+1 .
J

(1.4)

Such random lattices are locally similar to a Bethe lattice,
since small loops are rare, but the difference is that the

I

and the free energy can be extrapolated to T=O to agree
well with the results obtained directly at T=O. A short
version of this work has been already submitted for publi-
cation. ' Here we give a more detailed and complete ex-
position of the results.

Our results at zero temperature for the graph biparti-
tioning problem on a lattice with fixed connectivity ap-
proach the results of numerical simulations to within
—

l%%uo which is much closer than previous estimates
which assumed RS. ' This is for the range 9 ~ M 20
where higher order corrections in the 1/M expansion are
expected to be small. The remaining error may be due to
three sources: higher order 1jM corrections, corrections
from the fact that we considered first stage RS breaking
versus infinite RS breaking, and errors in the simulations
themselves that tend to overestimate the cost.

Two kinds of lattices can be treated by our method:
(i) lattices with an average finite connectivity, in

which the bond distribution is given by
r

P(J)= 1 ——5(J)+—p(J),a a
N N

random lattice has no boundary whereas the Bethe lattice
does. In the Bethe lattice boundary conditions serve at
the same time to introduce frustration and possibly to
select one or more thermodynamic states. For a discus-
sion of the role of boundary conditions on the Bethe lat-
tice (BL) see Refs. 16—18. Numerical evidence suggests
that the BL with "closed" boundary conditions behaves
similarly to the random lattice' ' but, since we are
mainly interested in the latter, this issue will not concern
us further here.

The method of the 1/M expansion works equally we11

in both lattices (i) and (ii) discussed above. Our discus-
sion will concentrate more on case (ii) of fixed connectivi-
ty since (a} there are numerical simulation results of
graph bipartitioning with which we can compare and (b)
this case is more closely related to hypercubic lattices
which have finite fixed value and the equations involved
are identical to the Bethe approximation to such a lat-
tice. '

The paper is organized as follows. In Sec. II we discuss
the large connectivity expansion at finite temperature. In
Sec. III we discuss the expansion at zero temperature.
Section IV contains concluding remarks. A number of
Appendices discuss some technical details.

II. THE LARGE CONNECTIVITY EXPANSION
AT FINITE TEMPERATURE

Our starting point will be the equation for the global
order parameter g„( I o j ) first derived by Mottishaw'
for the Bethe lattice. Since he does not give details of the
derivation we give a concise summary in Appendix A.
Our normalization of g„ for finite n differs from his for
convenience of the calculation. The equation reads (in
the absence of an external field)

n

g„(Icr j)=fdJp(J)Tr(, }exp PJ g o r g„(jr j) Tr(, }g„ I~ j;
a=1

(2.1)

here cr, a=1, . . . , n are the replicated spin variables and M+1 is the number of neighbors. At finite temperature,
g„ I cr j can be parametrized in the form

g„Io j= gb„g q cr
r =0 {al, . . . , a, )

where

b„={cosh"pJ tanh"pJ ),
the average being with respect to p( J). For the case of the even distribution

p( J)=
—,
' [5(J +Jo ) +5(J —Jo )],

(2.2)

(2.3)

(2.4)

only b„with even r survive. Our method works for any distribution p( J) but (2.4} will be used because of its simplicity
and because of its relevance for the graph partitioning problem. In the averaged quantities the index 0 in J0 will be om-
itted. Using the identity

exp pJ g o. ~ =cosh"pJ g tanh"pJ
a n

+a +a +a +a
l l r

{al, . . . , a )

(2.5)

in (2.1) it becomes clear that q satisfy
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q =Tr o ' o' g (Icr j)/Tr g (Io' j) . (2.6)

Together with Eq. (2.2) this constitutes an equation for q

Before we proceed to evaluate g in the large-M limit we present an expression for the free energy of the system.
This is derived in Appendix B. The result is

nPf =MlnTr g„+'([cr j)— ln JdJp(J)Tr Tr, g„(o )g„(r )exp PJgo r (2.7)

If we make a variation

stationarity of the free energy gives

M(I j)~ ([ j) Jd Jp(J)Tr Tr, exp PJ ger r g„(I~ j) g„'([o,j)5g(I o, j)
o gn a gn a a

Tr g„+'([cr j ) fd Jp(J)Tr Tr, g„([o j )g„( [w j )exp PJ g v o

(2.8)

(2.9)

Since this equation holds for any variation 5g„one must have

g„(Io j)=JVf d Jp(J)Tr, exp PJ go r g„([r j) (2.10)

with

JV=Tr g„+'(Io j) f5Jp(J)Tr Tr, g„(Icr j)g„(Ir j)exp PJ gr o' (2.11)

Suppose g„( to j ) is a particular solution of this equation. Then for any constant c, cg„( [o. j ) also satisfies the same
equation. But notice that in this case JV, which is the value of JV for g„, changes also JV~c JV. Thus it is possible to
choose c such that JV=[Trc g „(Io j)] '. Thus Eq. (2.10) always has a solution which satisfies Eq. (2.1). Also any
solution of (2.1) is also a solution of (2.10). Since the free energy is independent of the normalization of g„we are free to
use Eq. (2.1) instead of (2.10) and (2.11). To implement the 1/M expansion we scale the coupling

(2.12)

and build g either by using Eq. (2.1) or from the parametrized form (2.2). Using the shorthand k:—PJ we obtain
M

g„=[cosh"(A,/ M )] 1+ 1 —— g q &o o&+ g q &rscr o~ros+M n M ~ 2 X A,I 3 M
( p) M

( p

and hence

(2.13)

(0) . 2 4 (0)
gn ~exp ~ X qapoaop 1 ~ g qapoaofi+ ~ X qacioaop+ g qupr50aoporos

(ap) (ap) (ap) (apy5)

1 ~4 (0)2 1 4 (0) (0) (0) (0) (0) (0)g q p
— I, g (q pqp cr o +q pq (riser +q qp p)

(ap) (apy )

where we denoted

(apy6)
(2.14)

(0) 1 (1)
Cap 9 ap + 'Yap +

M
(2.15)

and similarly for q &rs. In order to calculate the free energy we first use Eq. (2.1) to express (2.7) in a more convenient
form:

nPf =
—,'M ln(Trg„+'/Trg„) —

—,'(ln Trg„+'+ln Trg„) . (2.16)

This free energy is no longer stationary with respect to g„and is valid only for g„normalized according to (2.1). Substi-
tuting (2.14) in this expression and simplifying further using Eq. (2.6) we obtain Pf =fjfo+Pf, /M +0 (1/M ) with
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Pfo = —(A, /4)+ (71,/2n) g q'& —(1/n)ln Tr exp g A, q'&o cr&
(ap) ap

Pf, = —(A, /4)+(A, /24) —(A. /2n)(1 —5k /3) g q'& —(A/2n) g q'&1

(ap) (apy5)

+(3A, In) g q &q&'q' '+A. /n g (q'&q'ys'+2perm)q'&ys .
(apy) ( apy6)

(2.17)

The leading term pfo is just the expression for the free
energy density in the infinite-ranged SK model. The
term pf, introduces the correction due to finite connec-
tivity. Notice that to this order f depends only on q' '

and not on q"'. First we evaluated f in the replica sym-
metric case. In that case

Pfo=—

—J In[2 cosh(A, +q2z)]e
&Zm

A,
2

(2.18)

and qz, q4 are given by

dz
q 2

= —exp( —z /2 )tanh A,Q q 2z,—- &2~
(2.19)

dzq4= —exp( —z /2)tanh A, +q2z . (2.20)

q 2=1——&2/m — —+O(1/P ),1 1 1 3

p2 n
(2.21)

Equation (2.19) has been solved numerically for q2 at
different temperatures and the solution has been used to
compute q4 from (2.20). We then evaluated the free ener-

gy from Eq. (2.18). The result for M = oo and M=10 is
displayed in Fig. 1. We see that at very low temperature
f, tends to diverge. This has been verified analytically by
calculating the correction for q2 and q4 away from T=O.
We have found

q4
= 1 — &—2—/n. — +0 (1/P ) .

1 4 1 4 3

p 3 p'3~ (2.22)

It is then found that f, diverges linearly with p as p —+ oo.

But for a wide range of temperature the 1/M expansion is
well behaved, and the extrapolation of the results ob-
tained prior to the runaway divergence to T=O tends to
agree with the result of the calculation performed exactly
at T=O in Sec. III. We will see that the reason for the
divergence is that the large M expansion at T=O is
powers of 1/&M instead of 1/M. This phenomenon
occurs also at first stage of RS breaking that we will con-
sider next. It is interesting to find out whether it will per-
sist at infinite order of RS breaking.

Since it has been shown' that the RS solution is unsta-
ble we have to break the symmetry. Near T, one can in-

troduce continuous order parameter functions q2(x),
q4(x, y, z), etc. , and evaluate those in powers of r—T, .
In the entire temperature range we can obtain a solution
up to a given stage of RS breaking. In the infinite-range
case Parisi' has shown that the one stage replica symme-
try breaking already improves significantly the value of
the ground-state energy as compared to numerical simu-
lations, and also renders the value of the entropy to be
very close to zero (still on the negative side).

We have thus considered first stage RS breaking for the
finite connectivity lattice. In that case one parametrizes
the replica index a as a= (K, y ), where K is the box label,
K =1, . . . , n/m, and y= 1, . . . , m is a label within the
box. One classifies the values of q, according to

the number of spin indices in the same box K. » For ex-
ample, for q there are two values q2 and q» referring

1 2

to one box with two spins or two boxes with one spin in
each. For q there are five values q4 q22 q3i qz»

1 2 3 4

q, », , etc.
It is then easy to prove the following identities in the

limit n ~0:

(ap)
(2.23)

1 (m —1)(m —2) 3 m (m —1) 2 m—„2 q-~qPyqy 6 q2 2 q2qll
(apy)

1 2 (m —1)(m —2)(m —3) 2 m (m —1) 2 m (m —1)(m —2) 2 m (m —1) 2 m 2

24 6 q»+, q»~
—

4 q»»
ap6y

(2.24)
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1
q & &(q &q &+q q13s+q &q& )= ,'(—m —1)(m —2)(m —3)q4q2

(aPyb)

m (m —1) 2 2 m (m —1)(m —2)
8

q22(q2+2q' ) — q31q2q»
2

m (m —1) 2 —3 3 2+
2 q2„(q2q„+2q„)——,'m q„„q„.

When these relations are substituted into the free energy we finally obtain:

(2.25)

Pf0
= — [1+mq» + (1—m)q 2

—
2q2] —ln2

4

dz e ' ln f —exp( —y /2)cosh (A+q??z+k+q2 —q??y)
—z'/2 dP'

v'2?r m 3/2?r

Pf? ———(A, /4)+(A. /24) —(A, l4)(1 —5A, l3)[(m —1)q2 mq—?? ]
—(A, /48)[(m —l)(m —2)(m —3)q„—3m(m —1) q22

—4m (m —1)(m —2)q»

+12m (m —1)q2» —6m q?», ]+(1, /2)[(m —1)(m —2)q2 —3m (m —1)q2q?? +2m q»]
+(A, /8)[(m —1)(m —2)(m —3)q4q2 —m (m —1) q22(q2+2q?? ) —4m (m —1)(m —2)q3? q2q??

+4m (m —1)q2??(q2q?? +2q?? )
—6m q????q?? ] .

(2.26)

(2.27)

Since we have used the equations of "motion, " (2.27) is no longer stationary with respect to the q's but gives the correct
value of the free energy. The total energy is still stationary with respect to the parameter m. Equation (2.26) coincides
with the result obtained by Parisi for the infinite-ranged model.

In the case of first-stage RS breaking the function g„depends only on the variables

OSCy .
y=l

It is convenient to introduce the effective field distribution defined by

(2.28)

P„' '([h}»)= f g exp +i gs»h» g„
g„ ([0]) 2?r

(2.29)

The trace in Eq. (2.6) is easily evaluated and one obtains [the index (0) on the q s has been dropped for simplicity]

q2=
H2

exp
+2?rq»

, f dh exp

f dh exp

(h H)—
cosh Ph tanh Ph

(h H) hmp—h
2(q2 —q„)

(2.30)

dH
exp

+2?rq „ f dh exp cosh Ph
2(q2 —

q?? )

oo —(h H)—f dh exp cosh ph tanhph
H2 —~ 2(q2 q?? )

2
2q11

(2.31)

The q s with four indices are given to leading order by similar equations in terms of q s with two indices. For example,

q4= dH
exp

+2?rq „ cosh Phdh exp

(h H)—f dh exp — cosh phtanh ph
H

2q 11
(2.32)
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-0 70—

-0 80—

-0 90—

of the free energy in the one-step RS breaking at finite
temperature will be presented elsewhere. ' Note the
similarity of Eqs. (2.30) and (2.31) to the results of
Mezard et al. for the infinite-ranged model, derived
from a different approach.

In the case of a random lattice with an average finite
connectivity the factors g„ in Eqs. (2.1) and (2.6) are re-
placed by

-0 97 ( I I I I I I I I

02 03 Oi 05 06 07 08 09 10

exp[(M + 1)(g„I o I
—1)] . (2.33)

T/J ((t M

FIG. 1. Plot of the rescaled free energy vs rescaled tempera-
ture for M = ~ (SK model) and M=10 with no RS breaking.
The dashed line is the extrapolation to zero temperature. The
value we obtain directly at T=O is encircled.

The parametrization (2.2) still holds, and Eqs. (2.13) and
(2.14) are replaced by the corresponding equations using
(2.33). The expression for the free energy is given by
Mottishaw and De Dominicis.

III. THE j./v'M EXPANSION
AT ZERO TEMPERATURE

and similarly for q22', q3, ', q2, ', , and q', , '„. Thus after
solving (2.30) and (2.31) for q 2

' and q It' and obtaining m

by extremizing (2.26) one calculates q4(
' from (2.32) and

similarly the other q's with four indices. Then one can
evaluate the 1/M correction for the free energy from Eq.
(2.27). Again when p~~ the 1/M correction diverges
as we will see in the next section. Numerical evaluation

A. Replica symmetric case

We have seen that the generalized order parameter
g„( Io. ] ) satisfies Eq. (2.1). We first show how to solve
this equation in the RS case. In that case g„depends
only on the variable &= ger and in the limit n~0 can
be shown similarly to Ref. 20 (see also Appendix C) to
satisfy the equation

goI&/pI = fdJ p(J)f (ds/2m. )go tis/pj f du exp(isu)exp —o —tanh '(tanhpJWM tanhpu) (3.1)

Defining

yo(x) =go(&/p)

and using the identity

lim —tanh ( tanhp J tanhpu ) = sgn J sgn u min(
~
u ~, ~

J
~ ),1

P oo

we obtain for p( J) being a +J distribution with J =J /v M,

(3.2)

(3.3)

1 o(x) 1 0 (is) 2rr5(s)cosh
ds xJ
277 M

2sinh(J/&M )is xJ sinh(J/&M )(is+x)+ sinh(J/&M )(is —x)cosh +
ls lS +X lS X

(3.4)

We now expand the various terms inside the large parentheses in powers of 1/&M and use the fact that yo(0) = 1 to ob-
tain

2 2 4 4 3 2

( ) 1+Jx Jx 2 Jx ds ~. 1

24M' 3 M&M
(3.5)

Taking the Mth power of both sides and solving for y self-consistently we obtain

M( )
(1/2(J x

1 J 2 2+1 2 — 1

v'~ 3v'p~ I 1 — 2J4 4 J2 2

12 9n
(3.6)

up to O(1/M).
The effective field distribution Po '(h ) is given by
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Po '(h)= f exp(ihx)y (ix)= exp
dX . I. 1

2~ (2~J 2)l/2 2J 2

1 2 A 11+ 1 — +
&M 3&2~ J' (3—6h /J +h /J ) + (1—h /J ) (3 7)

9m 12 9m.

In terms of Po '(h) the free energy density is given by (for P~ ~ )

F=M f dh Po "(h)lhl — fdh, dh, PO '(h, )PO '(h, )

After some algebra we finally obtain

X —max lh, +h,I+,lh, —h, I

— +(J1 J J
2 &M &M

(3.8)

T

f/J &M = &2/n—1 — — +1 1 1 7

&M &18~
1

9m
+ 0 ~ ~ (3.9)

B. One-step RS breaking

In the first stage of RS breaking g„depends only on the variables crz defined in Eq. (2.28). We have shown (see Ap-

pendix C) that it satisfies the equation

g„I& /PI=~ 'f dJp(J) f g(ds, /2')g„(is /P) f +du exp i gs„u

X exp —g o z —tanh (tanhPJ tanhPuz )
1

K

X exp —g ln(cosh PJ cosh Puz —sinh PJ sinh~Puz)

$K~= f rI, 'g. I'. /nI f Pd..- y. ..., -.h-13.,
77 K

If we now define

y. Ixz I
=g. I ~K/~I

we find, in the limit /3~ ao,

(3.10)

(3.11)

(3.12)

where

—1
dSK M

y„(IxxI )=A fdJ p(J) f ff y„(tisK I )f gduxexp i gsrruir exp
' —gxxsgnJ sgnuirmin(lull IJI)

27T K K

Xexp ')Li g max(lux I, IJI)
K

and

p= lim mP
P~ oo

dSK
JV= f Q y„(list I)f Q du exp i gszuz exp iLig lull

2 7T K K

(3.13)

(3.14)

Equation (3.13) is based on the assumption that, like in the infinite-ranged model, m ~ 1/P for large P. We now scale
J =J/v'M and expand in 1/&M . We defined

bz= f

du+exp(iszuz)exp(plural),

1
az = — du+exp(is& uz +p I uz I )sgn( uz ),

(3.15)

(3.16)
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and in terms of those quantities y„becomes

p„( x)=exp J g (Qx.ax )x~x~ + —J Qxx+J pQ (b~ )
(KK') K K

2 J 2 J

J6y (b —1)21 2—
M 9 K

K 8J ( Qx Qx' ) (xx' xx +xx xx. )
1 2 1 2 1 2

1 2
T

+-,'J' y 4J 2 I 2
] 2

4
& Q~ Q~ )'(x~ x~ x', +xx. x,' xx +x~ x, x~ )

1 2 1 2 1 2 3 1 2
1 2 3

—3J
(Kl K2K3K4)

3~ ( Qtc, Q~, ave, aa, ) )xx xa, xyc xx,

4

(KlK2K3)

4
+—', J g (ax bz 'isx )xx xz —

12 g ((szbz ') —3P (brc ') )

+J ' ' X ( bee 'brc ' ) +
(K

1 K2 )

(3.17)

where we defined

dSK
lSK bK SK 3 SK

27T K

dSK
LSK bK SK

K 2K K

(3.18)

The different averages can also be expanded in powers of 1/v'M:

&~)=(a),+ (a),+ (3.19)

We have used Eq. (2.16) to calculate the free energy (see Appendix D for details).
We have made used the identities (see Appendix D)

—( ') =p'+2p(b '),

) —
4(( +2i2 &bic ) 2P(ba sa')

(sx sx ) =p (alcaic. ) +2p (az bic 'is& )

&sx sk & =V'+4i '(b~ ') +4i '& b~ 'b~ '
&

(sic sz sz ) =P (az aic )+2' (az alc bic
' ),

(sx sic sx. sx ) =P (Qx. QIc Qx QIc )

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

(3.20f)

(3.20g)

The final answer is
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fl&MJ=+(1 —(a» a» )p) ——f exp( —z /2)ln f —exp( —y /2)4'2p i2n v'2n.

Xexp[ply(1 —(a» a» )p)'~ +z((a» a» )o)

«, & i&b» '&o&» b» ' » &p p&—b» 'b« ' )p(a»» )',

—
—,'p(a» a» )p(a» b» 'is» )o— (a» a» ), +@&a» g» ) )(b» 'b» ' )

+3i '&», », &i&b» '&o&gK, a«, b«,
'

&o
—

—,', p'&b» '&o —p'&b» ')p(a» a» &,
'

+p (a» a», )~(b» ')p —2p (a» a» ), (a» a» b« ' )o+2p, (a» a» )p(g» g b ' )
3

,'p (a—»—»a» a» )o(a» a« )o+ „+p, (a» a» )o—
—,', p (a» g )

3

8i K) K~ »3 K~)0 &a» a» ) ]+gp (a» a» )i(a» a» a» a» )p

K, gK &l(a», a« &0) . (3.21)

The parameter p should also be expanded:

C =i o+i i/i M+ (3.22)

The fact that )MApp introduces a correction when f is
evaluated with pp.

We evaluated pp and (a» a» )o by extremizing the
1 2

leading-order term in (3.21) and obtained

1 1 [f'i Vo )'
M 2 fp'(pp)

(3.25)

po=1 35

qI, ' = (a» a« )p=0. 476

(3.23)

(3.24)

where fo and f i are leading term and first order correc-
tion on the right-hand side of (3.21). We have evaluated
the different averages in Eq. (3.21). For example,

& b» ' &p= —f —exp( —w /2) f —exp( —y /2)exp[go(1 —q'it')'"ly +w(q'ii' )'"I]
&z~ &z~

(3.26)

Only for (a» a» )
~

one has to solve an equation to ex-
1 2

press it in terms of other leading-order averages.
The numerical values of the different averages are

So/aM J = —0.765+ —0.010

1 0.390+0
M

(3.28)

(a« a«a«g«)p —0.342, (b« 'b» ' )p=0.0189,

(b» ')p=0. 121, (b« 's«)p=0. 154,
The leading term coincides with the result for the
infinite-ranged model with one-step RS breaking. '

(a» b« 'is«)o= —0.0507, (3.27)

(a« a«b» ' )p=0.0350, (a«a« ),=0.0741,
IU. CONCLUDING REMARKS

f t (p )=p—0.0214, fp'(p, p) = —0.0328 .

In terms of these quantities the final result for the
ground-state energy density is

Banavar et al. obtained numerical results for the
graph bipartitioning problem on random graphs with
finite fixed connectivity. Mezard et al. argued that in
that case the cost function is related to the ground-state
energy of the Ising spin glass on such a lattice on the
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TABLE I. Values of F0/'J&M for different values of M as

discussed in the text.
8709704. C. De Dominicis wishes to thank Mare Mezard
for early discussions on the RS breaking aspects of the
problem.

9
10
11
19
20

—0.792
—0.789
—0.786
—0.777
—0.776
—0.763

—0.810
—0.809
—0.806

—0.798

—0.811
—0.808
—0.805
—0.797
—0.796
—0.798

—0.805
—0.801
—0.797
—0.783
—0.782
—0.765

APPENDIX A

Consider an Ising spin glass on a Cayley tree. The re-
plicated partition function is given by

(A1)
basis of the expectation that the effective field distribu-
tion is even under h ~ —h when I+1)2 1n2. The rela-
tion between the two problems is where

a a

c M+1 ~o
N 4 2J

(4.1)

where c is the cost function, N is the number of sites on
the lattice, and Eo is ground-state energy density of the
SG on such a lattice. In Table I we displayed different re-
sults for Fo/J&M. In Column 1 we display the numeri-
cal results of Ref. 8. These results were shown in Ref. 8
to fit the empirical formula

E /J&M = — 1 M+1 c

(M —1+c')'"
1=0.763 — 0.256+

M
(4.2)
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In Column 2 we show results obtained by Mezard and

Parisi using RS and not including a continuous part in
the effective field distribution. In Column 3 we display
our result in the RS case as given by Eq. (3.9) and in
Column 4 the result with one-step RS breaking as ob-
tained from Eq. (3.28). The result with one-step RS
breaking approaches closer the numerical result of Ref. 8

than the RS results. The coefficient of the I/&M term is
much smaller in the one-step RS breaking (3.24) as com-
pared to RS case Eq. (3.9). It will be interesting to find

out if this trend continues when more steps of RS break-
ing are introduced.

Of course the theory which we considered still differs
from a regular cubic lattice which contains many small
loops, and one cannot infer from our results that in that
case too (say for d=5 which corresponds to M=9), the
solution with RS breaking comes closer to the exact value
of the ground-state energy of the spin glass. %e should
also mention that a calculation for a one-step RS break-
ing for the case of M=2 and 3 has been done by Wong
and Sherrington. However, they assumed zero overlap
between different replicas that in our language corre-
sPonds to g)c(Iox } )= rex f (ox-) which is not the case
in our calculation. Lastly, the method of 1/M expansion
presented in this paper can be extended to the case of the
Potts spin glass which is related to the problem of graph
q partitioning where q is the number of Potts states. ' '

a 1=1 a

(A3)

with

Q(, (o.o~s )=exp(PJ(ocros, +Phs, )

M
X g Q(, )(s, ~I""),

1=1
(A4)

m being the number of shells in the tree. s, is the spin

adjacent to o o. t'" are the spins, other than s, on the Ith

subtree.
Denoting by

g( )( I &o } ) g P Q( )(&o ls

, (I)a
{A5)

where ( ) denotes average over the disorder, it follows
that

(Z") =Tr exp Ph g oo g( ) ((Icro}),
0 a

and that g satisfies

{A6)

g(, (Ioo})=fdJ p(J)Tr,

xexp ph ps(+f3J g eros)

xg(, )(Is, }) . (A7)

Cn the Bethe lattice in the thermodynamic limit, one is
interested in a shell independent solution of (A7) which
for the case h =0 yields Eqs. (2.1). Since the random lat-
tice with fixed connectivity behaves locally like a tree, the
same equation holds there (see, e.g. , Ref. 5 and 8).

In Appendix B and in Eqs. (2.8)—(2.10) another deriva-
tion of this equation is obtained using the Bethe approxi-
mation. This approximation becomes exact for a Bethe
lattice or a random lattice with fixed connectivity.

ff &(cr )=exp Pg g J, o, o +Ph +ger; . (A2)
a a &ij& A I

Denoting by oo the spin at the center, and by s'" the
spins (other than o.o) on the 1th subtree, we have

M+1
p '&I3h o II HQ
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APPENDIX B

In this Appendix we derive the expression for the free
energy density in terms of the global order parameter

g ( f o j ). Since the random lattice with fixed connectivi-

ty looks locally like a tree, the expression for the free en-

ergy is the same as for the Bethe lattice. For such a lat-
tice the pair (Bethe) approximation becomes exact, in the
absence of loops. We generalize the approach of
Katsura' to the case of many coexisting thermodynamic
states. The introduction of several replicas of effective
fields is similar in spirit to the treatment of the infinite-
ranged model in Ref. 22, although we use replicas explic-
itly. Katsura expressed the free energy density in the
form

In (A4) and (A5), g;~ is the effective field at site i due to
its neighbor at site j. Denoting by P' '(h) the distribu-
tion of the effective fields h where (P' ' is assumed to be
independent of the site)

M

h, = grl, ,
j

(B7)

Pf =M f dh P™1)(h)ln(coshPh)—

X fdJ p(J)dh&dh2P™(h, )P' '(h2)ln

X [2 cosh(Ph, +P2)e~J

one obtains, after averaging over the bond distribution
p(J),

F = g F;"'+ g (F' ' F,"' F—'")—,
i (ij)

(Bl) +2 cosh(13h, —Ph z )e ~J]; (B8)

where

F,.' "=——ln Trp';",

F' '= ——ln Trp' ',

(B2)

(B3)

compare also with Bownman and Levin. Now consider
a replicated spin system with spins f cr; j, a = 1, . . . , n.
One can define analogously the effective fields g; and the
averages become

with

M+1
p', "=exp P y rl, „o.,

k=1

M M

p'; '=exp Pg'rl;ko;+Pg'rl~o +PJ; 0;o
kXj l&i

(B5)

ln Trp', "~lim —ln Tr[ )exp Pg g rl;ke;n~o Pl I k a

and similarly for p', '.
Denoting by

M

h

J

(B9)

(B10)

from which one readily obtains

Pf =Min Trp';" — ln Trp'; ' .
M+1

(B6)
and by P„' '(h ', . . . , h"), the corresponding effective field
distributions, we obtain

n

nPf =M ln f ff dh P„' +"(fh j)2" g coshPh
a=1

M+1
ln fdJ p(J)f g dh, dh2P„' 'fh, jP„' 'fh2 j2"g [exp(PJ)cosh(Ph, +13hz )

a a

+exp( —PJ)cosh(Ph; —Ph 2 )] . (B1 1)

If we now define

g„(f&cr j)=f gdh epx
'

iP+h —o P„' '(fh j),

(B12)

then in terms of g„ the free energy density becomes

n13f =Min Tr g„+'( fo j)
M+1

ln fdJ p(J)Tr Tr, exp PJ g cr r
a

Xg~(fo j)g (fr j), (B13)

which is the desired result. Notice that equation (B12) is
consistent with the relation

M M
P'"'(fh j)=f rI rId~;IIP'"(f~;j)

i=1 a

xph h —gq,

(B14)
which is required of the field distribution. Wong and
Sherrington also derive an expression for the free ener-

gy in the fixed connectivity case. Their expression can be
shown to yield the same value of the free energy as ours
when use of the equations of motion (stationarily condi-
tions) is made. Our expression has the advantage to be
simpler and expressed directly in terms of g„( f o j ).

APPENDIX C

Let us prove the following identity (o =+1):
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X . . . .X 0' a =exp g o tanh 'X + —,
' gin(1 —X )

r =0 {a1,. . . , a„) a a

consider first the formula

(C 1)

n

exp gy cr = g (coshy ) g
a a=1 r (a1, . . . , ar)

This is obtained by writing

tanhy . tanhy o. . - cr
1 r 1 r

(C2)

exp gy 0 =g g b a Oa '''Oa
r 1 r

multiplying both sides by o&, . . .o& and taking the trace. Now define y =tanh X . Equation (Cl) follows immedi-
1 s

ately.
Consider now the case of one-step RS breaking. g„depends on the variables

rrrc= X 0'x, ,
y=&

which can be considered to be continuous variables. %e can then de6ne the Fourier transform

(C3)

(C4)

Equation (2.1) then becomes

g. ( I ~x I ) =~ ' J dJp(J) f g dux J'™(
I u& I )Tr, exp p g r& u& exp pJ g T 0'.

K K a

Using (C2) we have

(C5)

but

exp pJ g 0 T =(coshpJ)" g tanh"pJ Oa Oa ~a ~a
1 r 1

(a1, . . . , a„)
(C6)

exp pg rzuz =exp pg r u
K a

with u =uz for a=(Ky). Hence using (C2) again

Tr, T ' T exp Pgrxuz = g (2coshPu )

a=1 (a1, . . . , a„)
tanhPu (C&)

Therefore

Tr, exp pg rzuz exp pJ g T u =(coshpJ)" g (2coshu ) g tanh"pJ
(a1, . . . , a, )

tanhPu tanhPu ~ e . cr
1 r 1

=(coshp J)"g (2 coshpu )exp g o tanh '(tanhpJ tanhpu )

a

+ —,
' gin(1 —tanh pJ tanh pu )

=exP g crztanh '(tanhPJ tanhPux )exP —g ln(cosh PJ cosh Puz
K K

—sinh PJ sinh Puz )

(C9)

where we have used Eq. (Cl). From (C5) and (C9) we finally obtain Eq. (3.10). Equation (3.1) follows as a special case
by choosing m =n and I( = 1 and taking the limit n ~0.
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APPENDIX D

In this appendix we explain some of the details leading to (3.20) and to the formula (3.21) which represent the

ground-state energy density. The identities (3.20) are derived with the aid of the formula

d dSK dSK((is )'&= f gdh exp(plh l), f g exp i gh s y ({is )) f g gb (s )y ({is I)
K dhK K 2m K K0

I
=( —I)' f gdh. , exp(plh. , l) g exp(plhxl)f g exp igh s y ({is I)

dhK KWK0 2 IU

dSK
X bK SK y ASK

K K

The various derivatives of exp(p lb ) can be easily calculated, e.g. ,

exp(plhl)=psgnh exp(plhl),
d

d2

dA
exp(plhl)=[2@5(h)+p sgn h]exp(plhl) .

To derive Eq. (3.21) we parametrize y in the following way:

1 1 1

M&M M
=1+ + — + +

1 1

(D 1)

(D2)

(D3)

(D4)

(D5)

1 1 1
(D6)

To calculate the free energy we have used Eq. (2.16)

dSK
ln Trg =ln f p g b~yo '+ —(y, )0+ (y, )0—— (y))0+ (D7)

the last term being of order n and can be dropped. Thus

(ln Trg +ln Trg +')= —ln f g g bxyo '+ — —(g~)0+ (+2)0+— (ri2)0
271

(DS)

Also

ln g = ln 1+ (ri, &+ (ri, &+, (ri, &+ ' ' '
2n Trg M 2n M M M M

2n 2n v'M 2n M
1( )

1 1
( )

1 1( )+ (D9)

combining these relations and using the identities (3.20) leads to Eq. (3.21).
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