
PHYSICAL REVIEW B VOLUME 41, NUMBER 4 1 FEBRUARY 1990
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The two-state, one-dimensional, spinless Fermi gas {Falicov-Kimball model) is studied exactly by
numerical calculation and perturbation theory. Rigorous results are presented for small interaction
strength and {restricted) coherent and incoherent phase diagrams are calculated for two specific ex-

amples. The numerical calculations are extrapolated to provide a qualitative picture of the corn-

plete solution. The result includes a fractal structure in which the ground-state changes discontinu-

ously as a function of the parameters.

I. INTRODUCTION

It is generally accepted that many properties of heavy-
fermion systems and intermediate-valence compounds as
well as the phenomena of metal-insulator transitions,
itinerant magnetism, metallic crystallization, alloy forma-
tion, etc., result from the properties of strongly correlat-
ed electrons. There are, however, very few exact results
available for correlated electronic systems, and approxi-
mate methods are sometimes contradictory. In 1969, the
Falicov-Kimball model' was introduced as a model for
metal-insulator transitions. It remains one of the sim-

plest interacting fermion systems in which electron corre-
lation effects may be studied exactly. Several rigorous re-
sults have already been obtained for the one-band spin-
less version of the Falicov-Kimball model: Brandt and
Schmidt calculated upper and lower bounds for the
ground-state energy in two dimensions; Kennedy and
Lieb proved theorems on long-range order for arbitrary
dimensions; Brandt and Mielsch obtained an exact solu-
tion in infinite dimensions; and Jydrzejewski et al. per-
formed numerical studies in two dimensions. In this con-
tribution we present additional rigorous results and re-
stricted phase diagrams for the one-dimensional Falicov-
Kimball model at T =0.

The Hamiltonian for the one-dimensional Falicov-
Kimball model defined on a lattice of N sites with period-
ic boundary conditions (PBC) is

8= tg(cjc +—, +c +,c, )+Ugc c W, , (1)
j=1 j=1

where ci (c ) are fermionic creation (annihilation) opera-
tors for a spinless electron at site j, 8'j is a classical vari-
able that is 1 (0) if an ion occupies (does not occupy} the
jth site of the lattice, t is the hopping integral between
nearest neighbors, and U is the ion-electron on-site in-
teraction. The first term in (1) is the kinetic energy of the
itinerant electrons and the second term is the interaction
between electrons and ions. The total electron number
N, =g+,c, c. and the total ion number N, =g~, W,
are both conserved quantities.

The Hamiltonian (1) for the Falicov-Kimball model

has various physical interpretations. It was originally in-
troduced to examine the mutual interaction of mobile d
electrons (our electrons) with localized f electrons (our
ions) in transition-metal oxides. It has recently been
proposed as a model for crystalline formation —if the
ion configuration I W. I of the ground state is periodic,
then this model provides a mechanism for electron-
induced crystalline order. It also describes a one-
dimensional binary-alloy problem with the following
map: occupied site yields ion of type A, empty site yields
ion of type B, and U ~U„—Uz the difference in
electron-ion site energy between ions of type A and type
B. We finally note that the Hamiltonian (1}is identical to
the one-dimensional tight-binding Schrodinger equation
with an on-site potential that can assume two different
values (0 and U). The tight-binding Schrodinger equation
has been studied for random t W I by mathematicians
and physicists and has been investigated recently for
aperiodic deterministic sequences.

Since the electrons do not interact among themselves,
the energy levels of (1) are determined by the eigenvalues
of 0 and the ground-state energy of a particular ion
configuration I —= I W& ) is found by filling in the lowest

N, one-electron levels. We let E"(X,N, ) denote the
ground-state energy for N, electrons in the ion
configuration I with X—= U jt (the hopping integral t
determines the energy scale; all energies are measured in
units of t) Many-body . effects enter into the problem by
considering the ground state for N; ions

N

E(X,N„N;)—:min E (X,N, ) N, = g W&
j=l

determined by comparing the [N!/N;!(N —N; )!] ion
configurations with fixed ion number. The minimization
procedure in (2) determines the equivalence class of the
ground-state ion configuration as a function of the in-
teraction strength, the number of electrons, and the nurn-
ber of ions.

The Hamiltonian exhibits two kinds of particle-hole
symmetries —an ion-occupied —empty-site symmetry
and an electron-hole symmetry. In the first case, we con-
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E (X,N, ) =E (
—X,N N, )—+XN; . (4)

These two symmetries are used to reduce the necessary
parameter space in the calculation of the T=0 phase dia-
grams.

In the thermodynamic limit the number of lattice sites
becomes infinite (N ~ oo) but the electron p, —:N, /N and
the ion p; =N, /N —concentrations remain finite. The
ground-state energy per lattice site is determined from
n "(E) the density of states (DOS)

EF
E (X,p, )=I n (E)EdE, (5)

where EF is the Fermi level and
E

p, = J n (E)dE

sider the conjugate ion configuration I ' defined by inter-
changing occupied and unoccupied sites in the
configuration I (this corresponds to Wj*= 1 —W.). The
ground states for these two configurations are related:

E" (X,N, ) =E ( X,—N, )+XN, ,

for all X and N, . In the second case, we use the unitary
transformation c,.~( —1)~c, and c, ~( —1)jc, to relate
electron eigenvalues with interaction X to corresponding
hole eigenvalues with interaction ( —X) yielding the result

N

G(E)—=—g G/(E),
j=l

(7b)

where the local Green's function is defined by the matrix
element

&J*(E)=
E —XW+-j+]

1E —XWj+~-
j+3

(9)

where the local self-energy is b (E)=h~+(E)+ 6 (E).
The continued fractions in (9) are evaluated straight-

forwardly for any periodic configuration I, since the
variables W are then periodic and the fraction may be
made finite. For example, the period-two case is analyzed
by

G&(E)= &j—ll/(E H—)jl& .

A renormalized perturbation expansion is used to deter-
mine the local Green's function exactly. The result,

G, (E)= 1

E —XW, bj+(E—) b, (E—)

is expressed in terms of continued fractions

n (E)= ——Im lim6 (E +i e),1

7T a~0
(7a)

for each ion configuration I. The DOS is calculated
from the Green's function by

b0(E)=

which yields

1E —XW)—
E —XWD —b0 (E)

b0 (E)= —,
'

I E XWD+[(E —XW0) (E ——XW) ) 4(E —XWD)(E ——XW, )]' /(E —XW) ) I )

and, for the DOS

1 I
E XW, I+ IE —XW,I-n(E)= Re

[ (E—XWD)(E——XW) )[E —X( WQ+ W( )E +X Wo W( —4] I
' (12)

In addition to the one-phase periodic configurations,
we consider one physically relevant two-phase
configuration called the segregated phase. The segregat-
ed phase is an incoherent mixture of the empty and full
lattices with weights (1—p;) and p;, respectively. The
segregated phase has the physical interpretation of the
case where the ions clump together and do not form a
periodic arrangement (crystallization model) or of the
case where the ions of type A and the ions of type B are
immiscible and separate (alloy model). The DOS is trivial
for the segregated phase, since it is a weighted linear
combination,

n "~(E)=(1—
p, )n' ~'"(E)+p, n ""(E),

of the DOS for the empty and full lattices.
The segregated phase is also important, since it is ex-

pected to be the ground state in the limit IXI~00. In
this limit the potential barrier is so large that the elec-

trons are trapped between ion-occupied-empty-site
boundaries. The dominant contribution to the ground-
state energy is the kinetic energy of the electrons, which
is minimized by making the box as large as possible. This
favors the segregated phase to be the ground state. How-
ever, at the point where the electrons completely fill the
box (p, =1—

p; for X~+~ and p, =p; for X~—co)
the Pauli exclusion principle requires the additional elec-
trons to be placed above a large potential barrier. At this
point a periodic arrangement of the ions may actually
lower the ground-state energy. These physical ideas are
summarized in what we may call the segregation princi-
p/e: In the limit IXI~~ the segregated phase is the
ground state for all values of the electron concentration
except the specific values p, =l —

p, for X~+ ao, and

p, =p,- for X~—ao. We have found that principle to be
true in all calculated cases, and we expect it to hold for
all values of p, and p, .
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In the following section we use perturbation theory to
analyze the structure of the ground-state phase diagram
near X =0. In Secs. III and IV we examine in detail the
cases with ionic densities of p; =

—,
' and p, =

—,', respective-

ly, and give complete phase diagrams for the segregated
phase and all ionic configurations with periods less than
10 compatible with those p, . We present our conclusions
in the final section.

We only consider periodic structures to avoid the techni-
cal difficulties associated with aperiodic configurations.
Suppose the configuration 1(r) has period r; that is,
W +„=W for all j. The Fourier coefficient W(2n. n /r) is
defined

N

W(2irn /r) y e
—i(2+nj lr)

II. PERTURBATIVE ANALYSIS

—i (2~nj lr) ~1

Jj=l
(14)

In the limit X&&1 we can perform a perturbative
analysis of the Hamiltonian (1) and determine the struc-
ture of the phase diagrams for small interaction strength.

I

for n =0, 1, . . . , r —1. Straightforward Rayleigh-
Schrodinger perturbation theory through second order,
with the second term in (1) as the perturbation, yields the
expression

sin(n n /r) —sin( mp, )

8m „, sin(7m /r) sin(urn /r)+ sin(irp, )
(15)

pe pi
Pe ~ Pi=

q,
' '

q;
(16)

with p, relatively prime to q, and p, relatively prime to
q;, then the periodic configuration with the lowest energy
has period Q=lcm(q„q, ), where Icm stands for least
common multiple. The proof is given in the Appendix
and includes an expression for the ion configuration I (Q)
corresponding to the lowest-energy state.

These lowest-energy configurations satisfy certain
structural properties. Let l denote the length of the
largest connected island of occupied sites in the
configuration I ( Q) [e.g. , the configuration
XXXOXOXXOO, where X represents an ion and 0
represents an empty site, corresponds to a given I (10)
and has l =3], then a configuration in which only islands
of length I and (I —1) appear is defined to have the uni-

for the ground-state energy of configuration I (r). The
minimization procedure (2) already outlined considers
configurations with the same ion concentration at fixed
electron concentration and interaction strength, so that
the ground-state energy is degenerate up to first order.
The second-order term has a logarithmic singularity at
p, =n/r with relative strength W(2mn/r)~ . The singu-
larity indicates that perturbation theory fails at these
critical electron concentrations; by comparing the
strength of the singularity for different configurations, the
ground state can be determined in the region near

p, =n /r (and by continuity at p, =n /r).
In fact, if we restrict the minimization in (2) to be only

over periodic configurations, then for rational concentra-
tions the ground-state configuration has the lowest al-
lowed periodicity (this is expected from a Fermi-surface
nesting argument: The state with the largest gap at the
Fermi level is the ground state). More rigorously we
prove the following theorem.

Theorem (1). Given rational electron and ion concen-
trations

X Pr Pi(1—
)

4a sin(n.p, )

for the ground-state energy of the segregated phase that
is valid in the two-phase, band-overlap region

5(X) &p, &1—5(X),

where

5(X)= [8(—X)p;+8(X)(1—
p; )], (18)

and 8(X) is the unit step function. This expansion has a
singularity in the limit X~O and p, ~0, which indicates
that the segregated phase should be the ground state for
low electron concentrations.

The solution for the ground-state configuration of the
one-dimensional Falicov-Kimball model is conveniently
summarized in a coherent phase diagram. The ion con-
centration is fixed at p;=p;/q; and the ground-state
configuration is plotted as a function of the electron con-
centration and the interaction strength. We choose the

form ion distribution property. For example,
XXOXXOOO has the uniform ion distribution property
but XXXOOXOO does not. The uniform empty-site dis-
tribution property is analogously defined. This charac-
terization of the ground-state configuration in the limit
X~O is summarized in the following theorem.

Theorem {'2). In the limit X~O any periodic lowest-

energy configuration with p; ~
—,
' has the uniform ion dis-

tribution property and any periodic lowest-energy
configuration with p,. ~

—, has the uniform empty-site dis-

tribution property. The proof is given in the Appendix.
The ground-state energy of the segregated phase also

has a perturbative expansion about X =0. A straightfor-
ward analysis using the DOS in Eq. (13) yields

E"s(X,p, ) = ——
sin(harp, ) +Xp,p,

2



2166 J. K. FREERICKS AND L. M. FALICOV

segregated phase as the zero of the energy scale because
of its physical relevance. We limit ourselves to the case
p, —,

' and p, ~
—,', since the other cases can be obtained by

application of the symmetries (3) and (4). The two
preceding theorems indicate that in the limit X~O the
coherent phase diagram has a discontinuous, fractal
structure, with a different periodic ground-state
configuration at each rational p, . These configurations
all satisfy the relevant uniform-distribution property and
appear to be a regular transition from the segregated
phase at p, ~o to a period q, (2q;) state at p, =

—,
' if q, is

even (odd). The inclusion of aperiodic configurations is
not expected to change this general picture. Recent
analysis indicates that some aperiodic configurations
have gaps at rational numbers (where we expect the
periodic configurations to be lower in energy) and at irra-
tional numbers (where the aperiodic configurations may
be lower in energy). Therefore, we conjecture that in the
limit X~O the ground-state configuration changes, point
by point, at every value of p, and the coherent phase dia-
gram has a regular (discontinuous) transition pattern
from the segregated phase at p, ~0 to a periodic phase at

p, =
—,
'

~ We also conjecture that the relevant uniform-
distribution property holds for each of the ground-state
configurations.

III. THE CASE p; =
2

In this section we examine in detail the half-full ion
case and present our results in the form of phase dia-
grams. We restrict ourselves to the case p, —,

' by using
the electron-hole symmetry (4); the phase diagram for the
region p, —,

' is determined by rotating the region p,
by 180' about the point X=O, p, =

—,'. We further restrict
ourselves to the case X ~ 0 by using the ion-
occupied —empty-site symmetry (3); the phase diagram
for the region X 0 is determined by refiecting the region
X ~0 in a mirror plane along the X =0 axis and applying
the conjugation operation to the ion configurations (each
configuration I with p; =

—,
' is either self-conjugate I *= I

or forms a conjugation pair with another p, =
—,
'

configuration). We finally restrict ourselves to consider
only the segregated phase, all periodic phases with p; =

—,
'

and periods less than 9, and any incoherent mixture of
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FIG. 1. Calculated coherent phase diagram for the segregat-
ed and period-two phases with p, =

—,
'. See Table I for the key to

the legend.
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these phases. These periodic phases are summarized in
Table I. The ground-state energies are calculated exactly
using the Green s-function technique outlined in Sec. I.

The coherent phase diagrams are determined by com-
paring the energy of each periodic phase with energy of
the segregated phase and plotting the lowest-energy state
as a function of the electron concentration p, and the in-
teraction strength X. The results are presented in Figs.
1 —4 and exhibit the extremely rich structure of the solu-
tions of the mode. We summarize these results with
some observations: (a) The periodic ground-state

Configuration Conjugate

TABLE I. Periodic configurations for the p, = —' case. 0
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f~ seg.
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FIG. 2. Calculated coherent phase diagram for the segregat-
ed, period-two and period-four phases with p, =

—,'. See Table I
for the key to the legend.
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FIG. 3. Calculated coherent phase diagram for the segregat-
ed, period-two, period-four, and period-six phases with p, =

—,'.
See Table I for the key to the legend.

theorem and both uniform-distribution properties hold in
the region ~X~ && l. (b) The alternating phase XO is the
ground state at p, =

—,
' for all values of X as stated by pre-

vious investigations. (c) The phase diagrams tend to
simplify as the interaction strength increases indicating
that many-body effects stabilize the system (this is a
consequence of the segregation principle). (d) There is a
trend for phases that disappear from the phase diagram
as X increases to reappear as phase islands at even larger
values of X (e.g. , the XXXOOO phase in Figs. 3 and 4
and the XXXXOOOO phase in Fig. 4). (e) Phase islands

of configurations not present at X =0 may form at larger
values of I (e.g. , the XXOXXOOO phase in Fig. 4). (f)
The uniform-distribution properties may not hold at
finite values of X. (The XXOXXOOO phase in Fig. 4
does not satisfy the uniform empty-site distribution prop-
erty and its conjugate does not satisfy the uniform ion
distribution property. ) (g) Some configurations are not
the ground state for any value of X or p, (e.g. , the
configurations XXXOXOOO and XXOXOXOO do not
appear in Fig. 4).

The incoherent phase diagrams are determined by
choosing the minimal energy state, allowing for in-
coherent mixing' of the p;= —,

' periodic phases with

themselves and with the segregated phase (which is al-
ready an incoherent mixture of the p, =0 and p;=1
phases). This is accomplished by constructing the con-
vex hull of the ground-state energy curves for fixed X and
assigning an incoherent phase mixture to each region
where the convex hull is lower than the energy curves.
The results are presented in Figs. 5 —8 where solid lines
and shaded regions correspond to single phases, dashed
lines correspond to two-phase mixtures and dotted lines
correspond to more than two-phase mixtures (the points
where vertical dotted lines pass through horizontal solid
lines are the points of phase transitions. ) The numbers
above the single-phase lines identify the ground state ac-
cording to the numbers in Table I. The unshaded region
below the dashed line is the region where the segregated
phase is the ground state. The unshaded regions between
a solid (or dashed) line and a solid line are the regions
where an incoherent mixture of the two (or three) phases
is the ground state. We make the following observations:
(h) The incoherent phase diagrams are simpler than their
single-phase counterparts. The regions enclosing finite
areas of single phases are drastically reduced. (i) The be-
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FIG. 4. Calculated coherent phase diagram for the segregat-
ed, period-two, period-four, period-six, and period-eight phases
with p, = 2. See Table I for the key to the legend.

FIG. 5. Calculated incoherent phase diagram for the segre-
gated and period-two phases with p, = —'. See Table I for the

key to the legend.
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FIG. 6. Calculated incoherent phase diagram for the segre-
gated, period-two and period-four phases with p, =
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'. See Table

I for the key to the legend.

FIG. 8. Calculated incoherent phase diagram for the segre-
gated, period-two, period-four, period-six, and period-eight
phases with p, =

—,
'. See Table I for the key to the legend.

havior in the limit ~X ~0 appears to be the same as that
predicted by perturbation theory for the coherent dia-
grams. (j) The secondary phase islands that sometimes
form at ~X~ )0 either become single phase lines
(XXXOOO in Figs. 7 and 8) or vanish altogether
(XXXXOOOO in Fig. 8).

These incoherent phase diagrams are important to
study for two reasons: First, they determine the ground
state of a real system, since any physical system organizes
itself in an incoherent mixture of phases to minimize en-

0.5

ergy (if possible); second, they produce a better approxi-
mation to the complete phase diagram of the Falicov-
Kimball model. This is because any incoherent mixture
of phases can be reinterpreted as an aperiodic
configuration in a coherent phase diagram. By using this
reinterpretation we strengthen the perturbation theory
results of Sec. II to conjecture that the ground-state
configuration is the segregated phase for a finite region
[0 p, &p, '"(X)]; above this region the ground-state
configuration changes point by point with p„and has a
regular (discontinuous) transition from the segregated
phase to a periodic phase at p, =

—,'. Furthermore, for the
case p, =

—,
' we must have p, '"(X) & —,', since the alternat-

ing state XO is the ground state ' at p, =
—,
' for all X.
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FIG. 7. Calculated incoherent phase diagram for the segre-
gated, period-two, period-four, and period-six phases with

p; =
—,'. See Table I for the key to the legend.

IV. THE CASK p;= —'

We examine the one-third-full ion case as a representa-
tive of the general case because it does not have any extra
symmetries. The electron-hole symmetry (4) allows us to
consider only the case p, —,', but we must consider all
values of X, since the ion-occupied —empty-site symmetry
(3) produces the phase diagrams for the p, =—,'case. We
consider only the segregated phase, the period-three,
period-six, and period-nine phases with p, =

—,', and any
incoherent mixture of these phases. ' The precise ion
configurations considered are summarized in Table II.

The results for the coherent phase diagrams are
presented in Figs. 9—11 and they exhibit a marked asym-
rnetry with respect to the X =0 plane. We make the fol-
lowing observations: (k) There is no evidence in support
of or against the uniform ion distribution property, since
this property can only be observed for period-12 phases
and larger, which are not studied here. (l) The periodic
ground-state theorem holds for ~X~ && 1, but the many-
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TABLE II. Periodic configurations for the p; =
3 case.

Configuration

XOO
XXOOOO
XOXOOO
XXX000000
XXOX00000
XXOOXOOOO
XXOOOXOOO
XOXOXOOOO
XOXOOXOOO

0.5—

0

0.3—
CD
O

0
O

0 0.2—

O
CD

seg.

0.1

body effects rapidly become more important and change
the structure of the phase diagrams. (m} It appears that
the period-three phase XOO is the ground state at p, =

3

for all values of X less than zero. (n} The segregation
principle holds; in the limit ~X~~ —~ the segregated
phase is the ground state for all values of p, except for a
region about p, =

—,
' and X~—ao. (o) There is still a

trend for phases present at X =0 to appear as phase is-
lands at larger values of ~X~ (e.g., the XXOOOO phase in
Figs. 10 and 11, the XOXOOO phase in Fig. 10, the
XXXOOOOOO phase in Fig. 11, and the
XXOOOXOOO phase in Fig. 11). (p) All studied
configurations are the ground state for some value of the
parameters p, and X.

The results for the incoherent phase diagrams are sum-
marized in Figs. 12-14. We present the following obser-
vations: (q) Observations (h), (i), and (j) of Sec. III still
hold. (r) Two phases (XXOOXOOOO and
XOXOOXOOO) do not appear in the incoherent phase
diagram although they were present in the coherent
phase diagram.
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I I I I
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Coulomb interaction X = U/t

FIG. 10. Calculated coherent phase diagram for the segregat-
ed, period-three, and period-six phases with p; =

—,
'. See Table II

for the key to the legend.

The structure for the full Falicov-Kimball model in the
general case emerges from these incoherent phase dia-
grams. If we reinterpret an incoherent mixture of phases
as an aperiodic phase in the coherent phase diagram,
then it appears that at each value of X there is a finite re-
gion where the segregated phase is the ground state. In
the rest of the region the ground state changes from point
to point with p, and has a regular (discontinuous) transi-
tion from the segregated phase to a periodic phase and
(possibly) back to the segregated phase.
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FIG. 9. Calculated coherent phase diagram for the segregat-
ed and period-three phases with p; = 3. See Table II for the key
to the legend.

FIG. 11. Calculated coherent phase diagram for the segregat-
ed, period-three, period-six, and period-nine phases with p, = 3.
See Table II for the key to the legend.
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FIG. 12. Calculated incoherent phase diagram for the segre-
gated and period-three phases with p; = 3. See Table II for the

key to the legend.

FIG. 14. Calculated incoherent phase diagram for the segre-
gated, period-three, period-six, and period-nine phases with

p, =
—,'. See Table II for the key to the legend.

V. CONCLUSION
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II for the key to the legend.

Since its introduction 20 years ago, the Falicov-
Kimball model' is one of the simplest models of interact-
ing electron systems. We have studied the one-
dimensional version of this model by exact numerical cal-
culation for a restricted number of phases and by pertur-
bation theory for small interaction strength. Our
rigorous results include a periodic ground-state theorem
and uniform ion and empty-site distribution properties

for rational electron and ion concentrations and small in-
teraction strength. Our numerical calculations indicate
that the phase diagram of the complete model is separat-
ed into two distinct regions: In the first region the segre-
gated phase is the ground state, and in the second region
the phase diagram has a complex structure with the
ground state apparently changing point by point at every
value of the electron concentration for fixed interaction
strength. In this second region the ground state has a
regular (discontinuous) transition pattern from the segre-
gated phase to a periodic phase and back to the segregat-
ed phase.

We also present two unproven conjectures that charac-
terize further the structure of the phase diagram as illus-
trated by our numerical work. The first is called the
segregation principle, which states at large interaction
strength that the segregated phase is the ground state for
almost all electron concentrations. The only exceptions
are when the electron concentration matches the ion or
the empty-site concentration, where a periodic phase is
the ground state. The second is the uniform ion or
empty-site distribution property, which states that the
ground-state configurations satisfy certain structural
characteristics. The properties are true for small interac-
tion strength but appear to be violated for moderate in-
teractions.

We mention one final open question. The proper in-
coherent phase diagram is plotted as a function of the
electron and ion concentrations. We have evaluated the
restricted phase diagrams for only five ion concentrations
(p; =0, —,', —,', —,', 1) and have no concrete conjecture for the
structure of the incoherent phase diagram. However, we
expect this phase diagram to separate into two regions
with simple behavior in one region and complex behavior
in the other.
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APPENDIX: PROOF OF THE
PERIODIC GROUND-STATE THEOREMS

In this appendix we prove the two theorems stated in
Sec. II. We begin with the periodic ground-state
theorem.

Theorem (1). Given rational electron and ion concen-
trations

pe
pe

q,

pi
pi

q;
(Al)

with p, relatively prime to q, and p,. relatively prime to

q, , then the periodic configuration with the lowest energy
has period Q =lcm(q„q;).

Proof. The periodic configuration with the lowest ener-

gy is the configuration with the largest square Fourier
coeIIlcient

~
W(2n p, ) ~ . The trial configurations that

have nonzero Fourier coefficient and proper ion concen-
tration must have a periodicity that is a multiple of Q.
Consider all periodic configurations with ion concentra-
tion p; and with period less than or equal to r =mQ.
These configurations all lie on a lattice with PBC and size
N =MQ, where M =lcm(1, 2, . . . , m). We show the
configuration with the lowest energy in this restricted set
has period Q which (since m is arbitrary) proves the
theorem.

The proof proceeds by construction of the largest
~ W(2mp, ) ~

. Assume, for simplicity, that q, =Q. Define
integers k; by the relation

Qs, /'v; —
&

Qp;+2 g (Qp; /q, j)—
Q'

X cos(2trj /Q), (A5b)

and

(A6)

since the summation in (ASa) has the maximal allowed
number of (j —k)modQ=0, (j —k)modQ=1, . . . , and
(j —k)modQ =Qp; /q; —1. The preceding minimal
configuration 1(Q) constructed has period Q, which
completes the proof. The proof for the case q, AQ is
similar and is omitted here. The only complication of
this case is that the second-order perturbation theory
may not fully lift the degeneracy of the lowest-energy
state. These degenerate states all have period Q, howev-
er, which is sufficient to prove the theorem. "

As an example, we consider the case p, =—', and p, =
—,'.

This gives Q =8 with k0=0, k, =3, k2=6, and k3 =1, so
that the configuration XXOXOOXO is the lowest-energy
periodic state in the limit X~O.

We continue with the proof of the uniform-distribution
properties.

Theorem (2). In the limit X~O any periodic lowest-
energy configuration with p, ~

—,
' has the uniform ion dis-

tribution property and any periodic lowest-energy
configuration with p; ~

—, has the uniform empty-site dis-
tribution property.

Proof. We restrict ourselves to the case p, &
—,
' and

p, —,', since the other cases immediately follow upon ap-
plication of the symmetries (3) and (4). Assume that
q, =Q (the proof of the more general case is similar and is
omitted). The Q integers I k; I can be represented in
terms of the first p, integers by

k
p +j kj+s, j =0, 1, . . . ,p, —1, s =0, 1, . . . , r —1

(p, k;)modQ =i, i =0, 1, . . . , Q —1 . (A2) k„+ =k +r, j =0, 1, . . . , t —1, (A7)

Then the choice of 8', = 1 for

j =k;+IQ, i =0, 1, . . . , Qp;/q; —1,
I =0, 1, . . . , m —1

gives an ion concentration

N —1 p.
p;= —g W, =—

N o
j

q,

and maximizes the square Fourier coefficient

(A3)

(A4)

where Q =rp, + t and t (p, . Since each integer from 0 to
Q —1 appears in Ik, I once and only once, the nearest
neighbors in the first p, integers ko, k&, . . . , k, are

~e

separated by gaps of length r or r —1 (there are t neigh-
bors with separation r and p, —t neighbors with separa-
tion r —1). As the ions are filled in according to the
prescription (A3) of theorem (1), each configuration will
satisfy the uniform ion distribution property until the gap
between any two nearest neighbors in the original p, ions
is filled in. This occurs when p, ) 1 —p„which is not
possible by the hypothesis and proves the theorem.
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