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Theoretical study of the elastic and thermodynamic properties of sodium chloride under pressure
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We have calculated the pressure-volume relationship at 293 K, the pressure dependence of the
elastic constants, and some other thermodynamic properties of sodium chloride, using two rigid-ion

models. Monte Carlo simulations, anharmonic perturbation theory, and quasiharmonic theory
were used as appropriate. Special care has been taken to make sure that the numerical results are of
benchmark quality —they accurately reflect the predictions of the models used. The results show

the necessity of including a second-neighbor interaction between like ions. Without this interaction
the B1-B2phase transition occurs at much too low a pressure. We find good agreement with experi-
ment at high pressures except for the deviation from the Cauchy relation. We use our results to ex-

tract quantitative predictions on the volume dependence of three-body forces in NaCl.

I. INTRODUCTION

We recently calculated the thermodynamic properties
of a very simple rigid-ion model of sodium chloride, us-

ing a combination of Monte Carlo and anharmonic
perturbation-theory techniques. Our principal aim in
that work was to present benchmark-quality results for a
simple model with long-range Coulomb forces. The re-
sults along the zero-pressure isotherm were in very good
agreement with experiment considering the simplicity of
the model. Since much experimental information is avail-
able for nonzero-pressure conditions, where sodium
chloride has for many years been used as a standard, it
seemed to us worthwhile to extend our calculations to the
moderate- and high-pressure regimes, again making sure
that the numerical reliability of our work was of bench-
mark quality.

We quickly recognized that this regime presented a
difficult challenge to the model, which incorporates a sin-
gle short-range potential, represented by a Born-Mayer
formula, acting between unlike ions only. A number of
calculations have been made in the past with similar
models, usually using a static energy formalism, and
they show that the model becomes unstable at a pressure
well inside the observed range of stability of the 81
phase, the instability being caused by C~ going to zero as
a function of pressure.

Our original model has many inadequacies that may be
responsible for this instability problem. The effects of
ionic polarizability are completely neglected in the rigid-
ion formalism. A shell model is often used to include
these effects, but the basic premise of this model has re-
cently been brought into question. ' In any case, in a
centrosymmetric crystal the elastic properties do not de-
pend on the polarizability, at least in the harmonic ap-
proximation. The Born-Mayer form of the short-range
potential may not be sufficiently accurate for small sepa-

rations. We cannot rule this out as a reason for the
difficulty, but a major change would be needed to stabi-
lize the model at high pressures. A third possibility is
that three-body forces become important at small in-
terionic distances. We know that three-body forces are
present because of the failure of the Cauchy relation,
C&z=C44, even at low temperatures. It seems plausible
that this contribution becomes more important as the
crystal is compressed. However, we do not believe there
is a well-justified formalism for completely including
these effects at the present time. Indeed, we shall use our
results to try to extract from the experimental results
some information about the volume dependence of the
three-body forces.

One remaining deficiency of the model that is relatively
easily corrected is the neglect of the second-neighbor
forces. A careful analysis of these has been given by
Catlow, Diller, and Norgett. They give, as their model
2, a form of the Cl-Cl potential that should be valid for
all the alkali chlorides. if we include this potential in our
model, with the parameter values given by Catlow et aI.,
it is necessary to make adjustments to the two parameters
of the Born-Mayer nearest-neighbor potential so that the
volume and bulk modules at 0 K and zero pressure are
once more correctly reproduced. We have carried out
the calculations described in this paper both for our origi-
nal nearest-neighbor model called model 1, and for the
model incorporating this Cl-Cl second-neighbor interac-
tion called model 2.

The experiments with which we wish to make contact
consist of (l) shock-wave data that can be converted to a
single isotherm up to a pressure of 320 kbar, (2) mea-
surements of the room-temperature elastic constants up
to a pressure of —80—90 kbar, ' and (3) measurements
of the elastic constants at pressures up to 10 kbar over a
wide range of temperatures. We find that the two-
parameter model accounts quite well for most of these
properties, and that the inclusion of the second-neighbor
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Cl-Cl interaction removes most of the discrepancies. The
only discrepancy remaining between theory and experi-
ment is the deviation from the Cauchy relation.

II. COMPARISON WITH SHOCK-WAVE DATA

From measurements of the propagation of a shock
wave through a material, the pressure-volume-tempera-
ture relationship along the Hugoniot can be determined,
and the pressure-volume relationship along an isotherm
can be calculated from this. Fritz, Marsh, Carter, and
Mcgueen have presented data for the 293 K isotherm in
sodium chloride for pressures up to 320 kbar. Represen-
tative data are shown as the solid line in Fig. 1. At the
highest pressure, the volume is reduced to 64% of its
zero-pressure volume, so that these data sample the in-
terionic potential over a wider range of nearest-neighbor
distances than any other measurement we are aware of.
Measurements of the pressure-volume relationships can
also be made by static methods, though generally the
pressures realized are lower. Results for sodium chloride
that are in good agreement with the shock-wave measure-
ments have been given by Vaidya and Kennedy. "

The free energy I' of the crystal can be written as the
sum of the energy of the static lattice plus a vibrational

contribution, and for the simple models we have used the
static energy that consists of short-range contributions
from nearest and second-nearest neighbors and the
Madelung electrostatic energy:

F=p„+F„,b
=N(6I Qe ~+6yc/ C/ &~e /&)+F„,b .

Here r is the nearest-neighbor distance, and the values of
Vo and p are 3.221 774 3 X 10 erg and 0.295 01 A, re-
spectively, for the model with only nearest-neighbor
forces, and 1.333 3276X10 erg and 0.33590 A when
second-neighbor forces are included. In that case Pc~ ci
was taken from Catlow et al. It consists of a van der
Waals potential at large distances, a rather smooth poly-
nomial just outside the minimum, a steeply rising polyno-
mial inside the minimum, and a Born-Mayer potential at
very small separations (which are not reached even in the
compressed solid). N is the number of unit cells and a~
is the Madelung constant. The simplest calculation we
can make is to ignore the vibrational contribution to the
free energy. This leads to the triangles in Fig. 1 when the
two-neighbor potential is used. The comparable result
for the nearest-neighbor model is identical at zero pres-
sure, and 1.6% smaller at the highest pressure. Clearly
this property is not sensitive to the potential model.

A number of authors have made similar calculations,
and have also included the vibrational contributions by
using the Mie-Gruneisen or Hildebrand equations of
state. It is not diScult to calculate the free energy exact-
ly in a quasiharmonic approximation as a sum of contri-
butions from the individual normal modes

F„;b= g I fico /2+ kT In[1 —exp( %co~ lkT—)]I . (2)
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FIG. 1. Volume-pressure relationship for NaCl at 293 K.
The triangles are the static energy calculation, model 2; lattice
dynamics, model 2, open circles; Monte Carlo, model 1, solid
squares; Monte Carlo, model 2, open squares. The solid line
represents experimental results from Ref. 8.

Once the form of the interatomic potential is chosen,
the quasiharmonic frequencies, and hence the vibrational
free energy, are completely determined. It is inconsistent
to treat, for example, the Debye temperature and
Gruneisen parameter as independent quantities. We have
calculated the sum over the Brillouin zone for a range of
volumes, at a temperature of 293 K, and found the
volume-pressure relationship by suitable interpolation.
The result is represented by the open circles in Fig. 1.
Again this curve is calculated for the model including
second-neighbor interactions. The model with only
nearest-neighbor short-range interactions gives an almost
identical result, except that it terminates at a pressure of
220 kbar (the volume being 1.8% smaller), because the
crystal becomes unstable (certain quasiharmonic frequen-
cies become imaginary). We have also made Monte Carlo
calculations at several compressed volumes. These are
shown as the closed and open squares in Fig. 1, and are in
excellent agreement with the quasiharmonic results for
both models studied. We would expect, in general, that a
solid becomes less anharmonic as it is compressed. To
verify this, we have also calculated the free energy using
anharmonic perturbation theory, and find that the re-
sults, which are not very different from the quasiharmon-
ic values at zero pressure, become indistinguishable at
high pressures. Our Monte Carlo calculations become
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progressively less reliable at high pressures. At a temper-
ature of 293 K, the quantum correction to our Monte
Carlo results, which we calculate as the first term in the
Wigner-Kirkwood expansion, is important, even at zero
pressure. As the pressure increases, the vibration fre-
quencies generally increase, and the quantum correction
gets larger. if we wished to use Monte Carlo techniques
in the high-pressure range we would need the quantum
Monte Carlo formalism. However, since the crystal is
becoming almost harmonic at these pressures this does
not seem necessary here. We regard the agreement with
experiment as generally excellent, but point out that this
shows the unsuitability of this property for testing the po-
tential. The equation of state results are listed in Table I.

A quantity that is required in the reduction of the
shock-wave data is the Gruneisen parameter, y. An
empirical formula is usually used to represent its volume
dependence. We have calculated the volume dependence
of y, where y =P~ V/yrC~, as predicted by our two po-
tentials, There are, unfortunately, no experimental data
available for comparison with our results. The results for
the two models are shown in Fig. 2. The closed circles
and squares are calculated for the model with only
nearest-neighbor short-range forces using lattice dynam
ics and Monte Carlo, respectively. As the model become.
unstable its Gruneisen parameter drops precipitously.
Since the real material does not become unstable near

U
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this point, we do not expect it to show this behavior. The
corresponding results for our model 2 incorporating the
Catlow potential for the Cl-Cl interaction are shown by
the open circles and squares, respectively. Our results re-
veal an unexpected defect in the Catlow potential. The

3 l 35 39 43 47
Volume (A /ion pair)

FIG. 2. Theoretical volume dependence of the Gruneisen y
at 293 K. Closed squares and circles are Monte Carlo and
lattice-dynamical results for the nearest-neighbor model. Open
squares and circles are for Monte Carlo and lattice-dynamical
results for the model including second-neighbor forces. The one
standard deviation random error in the Monte Carlo results is
+0. 1, except at the volume discontinuity, where it is +0.3. The
pairs of arrows correspond to the two potential discontinuities
discussed in the text.

TABLE I. Equation of state for NaC1, pressure in kbar,
volume in cm'/mole. The theory is based on the Catlow poten-
tial, Ref. 7, including second-neighbor Cl-Cl forces. The stan-
dard deviation random errors of the Monte Carlo results for the
pressures are less than l%%uo for p & 10 kbar.
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FIG. 3. c
& ~

in NaCl under pressure. Solid and dashed lines
are experimental results, from Refs. 9 and 10, respectively.
Solid symbols, squares for Monte Carlo and circles for lattice
dynamics, calculated for our model with only unlike neighbor
short-range forces. Open symbols, squares for Monte Carlo and
circles for lattice dynamics, calculated for our model including
second-neighbor forces. The one standard deviation random er-
ror of the Monte Carlo results is about the size of the symbols
used.
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We can reach this volume at room temperature by ex-
tending our calculations to negative external pressure. In
view of this defect in the Catlow potential, we cannot rely
on the detailed predictions of this mode1 for y, though it
may well show the correct values for y over a 1arge range
of volumes. It is interesting to note that the discontinui-
ties observed using lattice dynamics are suppressed by the
Monte Car1o method since the latter always samples the
crystal over a range of separations.
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III. ROOM-TEMPERATURE ELASTIC CONSTANTS
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FIG. 4. c» for NaCl under pressure. Symbols are as in Fig.
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FIG. 5. c44 for NaCl under pressure. Symbols are as in Fig. 3.

large discontinuity, which occurs at a second-neighbor
0

distance of 3.551 A, is a direct consequence of a discon-
tinuity in the third derivative of the potential at that sep-
aration. The potential, and its first and second deriva-

tives, are constrained to be continuous, but that is not
true of the higher derivatures. There is a similar, though
smaller discontinuity at a second-neighbor distance of
4.103 A, which is reached only at higher temperatures.

The elastic constants at room temperature have been
measured up to a pressure of 80 kbar by Kinoshita,
Hamaya, and Fujisawa, and up to 90 kbar by Voronov,
Chernysheva, and Goncharova. ' The two sets of results
are in good agreement, considering the difhculty of the
experiment. Smooth lines through the two sets of results
are shown as the solid and dashed lines, respectively, in
Figs. 3, 4, and 5. The closed and open circles show the
values calculated for the nearest-neighbor and two-
neighbor models, respectively, from the strain derivatives
of the quasiharmonic free energy. Our procedure was to
calculate the sum over the normal modes for slightly dis-
torted unit cells, and to find the derivatives by numerical
differentiations. We also made a number of Monte Carlo
runs, using both potential models, under various condi-
tions of temperature and pressure. Some room-
temperature results are shown as closed and open squares
in the figures.

The two experimental lines for c» are in good agree-
ment with each other. The two sets of calculated values
are also close together, and are less than 10% below the
experiments. The models were fitted to the bulk modulus
at 0 K, so that this 10% discrepancy at the highest pres-
sure indicates a shortcoming of the potential models
whose predictions are identical. However, the slopes of
the calculated lines are close at the experimental slope.

In the case of c» the experimental uncertainties are
much larger, and the differences between the two sets of
experimental data are not significant. It is interesting to
note that our two models also predict difFerent results at
the highest pressures. The difference is currently of the
same order as the experimental uncertainty.

The largest difference between the two model calcula-
tions occurs, as expected, in c44. The value calculated for
the model with only nearest-neighbor short-range forces
falls sharply as the pressure increases, and in fact it
reaches zero at a pressure of about 220 kbar. The value
of c44 for the model including the second-neighbor poten-
tial is almost constant over the pressure range shown in
Fig. 4, and it actually increases at higher pressures. It
does not go to zero for pressures up to 320 kbar. We
again note that our Monte Carlo results are less reliable
than the lattice-dynamical results at the highest pressures
because of the increasing quantum corrections. The pres-
sure dependence of the elastic constants are presented in
Table II.
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IU. PRESSURE DEPENDENCES
AT HIGH TEMPERATURES

Spetzler, Sammis, and O' Connell have measured the
elastic constants of sodium chloride at pressures up to 10
kbar and over a temperature range of 300—800 K. They
have combined their results with the zero-pressure values
for the heat capacity and thermal expansion to integrate
the thermodynamic relationships for the various pressure
derivatives. Unfortunately, the values they used for the
heat capacity are old, and not in agreement with more re-
cent values.

In view of the high temperatures involved, we have
used the Monte Carlo technique to find the values of the
thermodynamic properties of our models. Runs of about
4X 10 configurations were performed at temperatures of
300, 550, and 800 K, and at pressures up to 10 kbar. In
view of the statistical uncertainty in each quantity, it was
not possible over this pressure range to distinguish any
nonlinearity in the pressure dependence. We have there-
fore calculated average pressure derivatives over the
range 0—10 kbar, and have processed the experimental
values in the same way.

The results are shown in Table III. The uncertainties
both for the calculated and experimental values are quite
large. The values for the pressure derivative of C at 300
K are essentially zero, and for most values the uncertain-
ties are probably about 20%. Bearing this in mind, we
regard the agreement between the two sets of calculated
values and the experimental values to be generally very
satisfactory. The one major difference between the two
model calculations is once again in the pressure depen-
dence of c44, which has, as expected, the wrong sign for
the nearest-neighbor model.

V. THE ROLE OF SECOND-NEIGHBOR FORCES

In our earlier zero-pressure calculations a simple two-
parameter rigid-ion model was shown to give excellent
agreement with a wide range of thermodynamic proper-
ties of sodium chloride. In this work we have seen that
the same model performs reasonably well in describing
the properties of sodium chloride under pressure, except
with regard to two related properties: c«decreases
strongly as the pressure increases, and the crystal be-
comes unstable at pressure well below the observed
B1-B2 phase transition. Similar results to these have
been noted previously by Voronov et al. ' and by Spetzler
et al. who showed that the inclusion of a second-
neighbor force could extend the range of stability of the
B1 phase to above the observed transition, although c44
still decreased somewhat with pressure.

Two questions needed to be answered with regard to
these results. First, could a suitable choice of second-
neighbor potential more closely reproduce the experi-
mentally observed pressure dependence of c44? Second,
why was our nearest-neighbor model so successful in the
zero-pressure calculations? We have shown that the
answers to both questions are indicated by the work of
Catlow et al. on the potentials acting between halogen
ions in the alkali halides. As their model 2, they identify
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four expressions for the potential, depending on the ionic
separation. Outside a characteristic distance r„ the po-
tential is of the C/r, the van der %'aals form. Between
r, and the distance r corresponding to the minimum of
the potential, the potential is represented by a rather flat
third-order polynomial. The values of r and r, are
3.551 and 4.103 A, respectively, for the Cl ion. At zero
pressure the second-neighbor distance in sodium chloride
varies from 3.956 A at 0 K to 4.150 A at 1050 K. Over
most of this range the second-neighbor force constants
are small. However, the room-temperature second-

0
neighbor distance varies from 3.988 A at zero pressure to
3.454 A at 300 kbar. Over this range, the second-
neighbor bond stretching force constant, calculated from
the expressions given by Catlow et al. , increases substan-
tially. Thus we could successfully ignore the second-
neighbor potential in the zero-pressure calculations, but
it must be included at the small ionic separations that
occur at high pressure. We have shown that the small in-
crease of c44 with pressure is correctly reproduced by this
potential.

We find additional support for the quenching of the
van der Waals interaction in calculations we have recent-
ly performed on potassium chloride. ' There, the
second-neighbor distance is always greater than r„and so
it is necessary to include the C/r interaction to get good
agreement with experiment even at zero pressure.

The use of four separate expressions for the potential
does lead to diSculties. Catlow et al. required that the
potential and its first and second derivatives should be
continuous, but not surprisingly the third and higher
derivatives show large discontinuities at r and r„. Prop-
erties that depend rather directly on the third derivatives
are the thermal expansivity and the Gruneisen parame-
ter, y, and the values calculated for these quantities, in-
cluding the Catlow et al. second-neighbor interaction,
clearly show large and abrupt changes as the second-
neighbor distance crosses the values r, and r,„.

tions, only the vibrational term is present, and the calcu-
lated AC is positive. At very low temperatures the vibra-
tional contribution is negligible, and hC, which must
arise entirely from three-body forces, is negative in sodi-
um chloride. Experimentally, AC changes sign somewhat
below room temperature, and we suppose that this arises
from a cancellation between the two contributions.

We will assume that the two-body force models give a
useful estimate of the vibrational contribution to hC and
so we can estimate the three-body contribution as

three bodv ~Cexpt ~ theor (6)

24— 1
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and we would expect this to be basically a function of
volume, or of nearest-neighbor distance.

In Fig. 6(a) we plot experimental values of b C, taken
from three sources, ' ' plotted versus the nearest-
neighbor distance. The large scatter of the points shows
clearly that AC is not a function simply of r, the nearest-
neighbor distance.

In Fig. 6(b) we have subtracted the theoretical values
of AC, to give an estimate of ACth„„b,d . On the scale of
this graph both models for the two-body forces give the
same results. The scatter of the points is reduced enor-
mously and is within the experimental uncertainty. The
positive values at large ro are probably not significantly
different from zero. While the experimental uncertain-

VI. THE CAUCHY RELATION DEVIATION

One discrepancy in our model that the inclusion of a
second-neighbor interaction does nothing to correct is
the experimentally observed deviation from the Cauchy
relation

Cat Cst
12 44 (3)

where the C," are second derivatives of the static energy
with respect to finite strain parameters. The C,- are relat-
ed to the c, found from speed of sound experiments by

c12 =C12+P,

c44=C44 —P .

—24
O
(D

8

=o 0c 0
E—-8
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-16
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2.79

+X
+X

~ +x

2.83 2.87 2.91

A thorough discussion of these relations has been given
by Wallace. ' The deviation

r C=C12 C44 (5)

can arise from three-body forces or from vibrational con-
tributions to the elastic constants. In our model calcula-

Nearest-Neighbor Distance (A)

FIG. 6. {a) Cauchy deviation AC=C, 2
—C« for NaCl. Ex-

perimental values from Refs. 14 (filled circles}, 15 (multiplica-
tion symbols), and 3 (plus signs). (b) Difference between the ex-
perimental and calculated AC. Symbols as in (a).
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TABLE III. Pressure derivatives of thermodynamic and elastic properties. Model 1 includes short-

range forces only between unlike ions and model 2 includes the second-neighbor Cl-Cl forces. Experi-
mental results are from Ref. 3.

Property

ac, /M
(J/mole K kbar)

Temperature
(K)

300
550
800

Model 1

—0.08
—0.19
—0.32

Model 2

—0.05
—0.04
—0.17

Experiment

—0.07
—0.15
—0.25

aP, raP
(10 /K kbar }

300
550
800

—2.6
—3.1
—5.1

—2.0
—2.8
—4.0

—2.2
—3.1

—4.5

Bc„/BP 300
550
800

11.1
11.2
11.5

11.0
11.4
11.7

10.8
10.9
11.0

Bc„/BP 300
550
800

1.8
2.2
3.1

2.5
2.7
3.1

1.8
2.2
2.6

Bc /BP 300
550
800

—0.39
—0.17
—0.05

0.55
0.46
0.56

0.33
0.44
0.58

ties, which are about 10 kbar in absolute uncertainty, do
not permit us to extract a unique analytic form, the resid-
ual three-body contribution to AC is falling very rapidly
to zero as the nearest-neighbor distance increases. We
hope that these results will encourage a new examination
of this very old problem.

VII. CONCLUSIONS

The two-parameter rigid-ion model that very success-
fully accounted' for the zero-pressure thermodynamic
properties of sodium chloride is almost as successful in
describing the corresponding properties under pressure.
However, it cannot be regarded as giving reliable predic-
tions of all properties because of the incorrect pressure
dependence it gives for e~. This particular discrepancy
is remedied by the inclusion of a second-neighbor interac-
tion. The form of Cl-Cl potential suggested by Catlow et
al. is fairly successful, but the discontinuities in the third

derivative of that potential lead to unphysical discon-
tinuities at high pressures in some properties that depend
on that derivative, such as the Griineisen constant, y.

We have ignored three-body forces in our calculations.
While several formalisms' ' have been proposed for
these, none at the moment is capable of accurately pre-
dicting the deviation from the Cauchy relation. We have
used our results to estimate for the first time what part of
this deviation is caused by the three-body forces.
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