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Pairing anisotropy and macroscopic anisotropy of superconductors
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Macroscopic properties of the superconductivity are investigated in the tight-binding picture tak-

ing account of the intersite pairing as well as the on-site pairing. We discuss the case of a layered
material, a cubic material, and a quasi-one-dimensional material. A multicomponent Ginzburg-
Landau equation, which takes the intersite-pairing effect into account as the different components of
the order parameter, is derived from a microscopic theory. The angle dependence of the upper-
critical field H, 2 is analyzed based on that equation and how the intersite interactions affect the an-

isotropy of H, 2 is clarified. The Fermi-energy dependence of the transition temperature T„which
does not simply reflect the density of states, is also discussed.

I. INTRODUCTION

Recently discovered high-T, oxide superconductors
have attracted much attention. A number of theoretical
models have been proposed and many kinds of nonpho-
non mechanisms have been suggested to explain the
high-temperature superconductivity. They agree on the
point that their electronic systems are strongly correlat-
ed. This means that two electrons feel a strong Coulomb
repulsion when they approach each other. However,
there must be an attractive interaction between the elec-
trons in a superconductor. When one describes the elec-
tronic system in the tight-binding picture, this situation
can be expressed by the attractive intersite interaction,
which acts between the two electrons at different sites,
and repulsive or weakly attractive on-site interaction,
which acts between the two at the same site.

The tight-binding model would be more suitable to de-
scribe the electronic structure of the high-T, materials
than the free-electron model, since their band widths are
considered to be narrow. A distinctive feature of the
high-T, materials is that the interelectron interaction is
of short range, and thus the discreteness of the lattice
would crucially reflect on the superconducting properties.
A similar situation holds for the heavy-fermion supercon-
ductors that have very narrow band widths. To fully un-
derstand the properties of these superconductors, it is im-

portant to clarify the effect of the discreteness of the lat-
tice on the properties of the superconductivity. For that
purpose, the tight-binding picture (lattice model) is the
most appropriate one and the usual free-electron picture
(continuum model) cannot be used.

For the discussion of the spatial variation of the order
parameter, the real-space representation has often been
employed. In those theories formulated in the continuum
model, the attractive interaction is supposed to act only
between the two electrons on the same point (we call it
continuum point interaction model). When one transfers
this point-interaction model to the lattice model, it is
necessary to determine the size of the interacting point.
The easiest way is to take account only of the on-site in-

teraction, neglecting the intersite interactions. However,
there might be cases where the intersite interaction brings
about a qualitatively different feature compared to the
system with the on-site interaction alone. One purpose of
this paper is to clarify this problem by treating the inter-
site interaction on equal footing with the on-site interac-
tion.

Our approach to this problem is to investigate the an-

isotropy of the superconductor. The word "anisotropy"
is used in two different ways in general. One is the pair-
ing anisotropy and the other is the macroscopic anisotro-

py, i.e., the anisotropy of macroscopic properties such as

H, 2. The general form of the order parameter for super-
conductivity can be written as

( ft(r)Pt(r') ) =b, '(r, r') =b, '[r —r', —,
' (r+ r') ],

where f (r) is the creation operator of the electron on the
point r. Pairing anisotropy can be discussed using the
relative coordinate dependence of the order parameter
neglecting the center-of-mass coordinate. On the other
hand, macroscopic anisotropy is related to the center-of-
mass coordinate. So, existing theories of the point-
interaction model treat the macroscopic properties,
neglecting the relative coordinate. However, the relative
coordinate dependence on the order parameter may affect
the macroscopic property.

When one describes the macroscopic properties of a su-

perconductor near the transition temperature, the
Ginzburg-Landau (GL) equation affords an effective
method. However, the derivation of the GL equation is
based on the point-interaction continuum model. There-
fore, the usual GL equation treats only the center-of-
mass coordinate dependence of the order parameter. To
describe the effect of the anisotropy pertinent to the
internal structure of the electron pair, it is necessary to
include the freedom of the relative coordinate in the GL
equation. We are developing a multicornponent GL
equation in the lattice model that includes the essential
parts of the relative coordinate as well as the center-of-
mass coordinate. Using that equation, we discuss how
the on-site and intersite interaction play their roles in su-
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perconductivity and give a qualitative picture of the
dependence of the macroscopic properties on the aniso-
tropic pairing.

In our previous paper' we have investigated the inter-
layer pairing, which is the simplest example of the inter-
site pairing. There a two-component GL equation, which
takes account of the intralayer and interlayer pairings,
was derived, and the macroscopic anisotropy induced by
the interlayer pairing was discussed. A part of the results
will be seen again later.

Our purpose here is to investigate more general types
of intersite pairings for the various types of materials.
We also aim to include the possibility of spin triplet pair-
ing, which was not included in the previous paper. There
are various internal structures of the pairing state corre-
sponding to s-, p-, d-, . . . symmetry states; states other
than the s-wave symmetry state are usually called aniso-
tropic pairing states. The internal structure of the pair is
determined by the following factors: (1) the relative mag-
nitude of the on-site and various intersite-pairing interac-
tions, (2) the energy band and the Fermi surface of the
single-electron state, and (3) the external field. It is very
iinportant to have a perspective view about how the
internal structure of the pair is determined by the com-
petition among the above-mentioned factors. To investi-
gate this problem using a unified viewpoint, we choose
the simple tight-binding system and discuss the three
types of materials listed in the following: (1) layered sys-
tems with tetragonal symmetry, (2) cubic system, and (3)
quasi-one-dimensional systems with tetragonal symmetry.

For the layered system, one possibility for intersite
pairing is the interlayer coupling, which corresponds to
the intersite interaction in the direction perpendicular to
the layer. Several authors ' have discussed the relative
stability of the phase with the interlayer pairing and that
with the intralayer pairing. Gulacsi et al. concluded
that the mixing effect of the interlayer and intralayer
pairing raises the transition temperature. In our previous
paper, we pointed out that the mixing effect is very weak
for the free-electron band. One can expect, however, an
appreciable mixing for the energy bands with sharp struc-
tures at the density of states (DOS).

The other type of the intersite interaction in the lay-
ered system is the intralayer intersite interaction that acts
between the two electrons at different sites in the same
layer. Recently, several authors have suggested this type
of pairing interaction as the origin of high-T, supercon-
ductivity. For example, Kamirnura et al. proposed a
spin-polaron model where attractive interaction acts be-
tween two electrons at the nearest-neighbor sites. Our
model systems treated here mimic such a layered super-
conductor and should reveal some important characteris-
tics.

For the heavy-fermion superconductors, the possibility
of the anisotropic (non-s-wave) pairing is studied by many
authors. Miyake et al. proposed a cubic lattice mod-
el with on-site and intersite interaction. They estimated
the intersite coupling constant and obtained the result
that d pairing is favorable in a certain parameter region.
However, they investigated systematically neither how
the appearance of the d-pairing state is determined by the
band filling, nor how H, 2 is influenced by the anisotropic
pairing. In this paper we will study how the anisotropy
of H, 2 reflects the internal structure of the pair in such a
system. Besides the discussion of H, 2, we will also dis-
cuss T, from the view of the electron number dependence
in which the character of the intersite pairing is reflected.
We will show that the s pairing is preferable when the
band filling by the carrier is little, while d pairing is
preferable when the band is nearly half filled as in the
case of the singlet pairing.

Quasi-one-dimensional superconductors, ' such as
(SN)„or organic superconductors, show very anisotropic
properties. Our model, by choosing appropriate values
for parameters, can describe such quasi-one-dimensional
superconductors. We pay special attention to the two
kinds of intersite interactions, the interchain interac-
tion, ' and the intrachain intersite interaction.

The plan of this paper is as follows. In Sec. II, the
tight-binding model is introduced and the types of possi-
ble pairing states are classified. In Sec. III, the linearized
equation for the order parameter is derived for the uni-
form system. Transition temperature is discussed based
on this linearized equation. The multicomponent GL
equation is obtained from the microscopic model in Sec.
IV. In Sec. V, the upper-critical field H, 2 is obtained
from the GL equation and the influence of the pair inter-
nal structure on the anisotropy of H, z is clarified. In this
paper we use c =A=k~ =1.

II. MODEL AND CLASSIFICATION
OF THE PAIRING STATES

In the model treated in this paper, sites are arranged
on the orthorhombic lattice with the lattice constants, S„
S~, and S,. We assume that there are transfer integrals
only between the nearest neighbors in each direction;
they are denoted as t„, t, and t, . To simplify the model
we include only the nearest-neighbor intersite interac-
tions, V, V, and V„as well as the on-site interaction,
V0. Though we do not discuss the origin of the pairing
interaction, it would not be unreasonable to assume quite
localized interactions as in this model.

The Hamiltonian is thus written as

VO

2
g" (j)g (j+I)it (j+1)g (j)

V1
+ gt(j)g (j+l)g (j)p (j+I)

2
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where the summation QI is taken over the center site and

all its nearest neighbors: 1=0,+S„e„,+S e, +S,e,
(e„,e,e, are the unit vectors directed to each axis). j
represents the position of a site and cr represents the spin
of the electron. VI and VI' represent the direct and ex-

change type inter-electron potential, respectively.
Without losing the generality, we can assume VI'= V' I.
We introduced the notations of tI as t+z, =t, t+z,
=t, t+&, =t, and to=0.

This Hamiltonian can be used as the layered materials,
cubic materials, and quasi-one-dimensional materials ac-
cording to the ratio of the transfer integral. By setting
various combination of the pairing interactions, different

types of the ordered states are realized. The types of the
ordered states we investigated are listed in Table I, II,
and III.

The dependence of the order parameters on the relative
coordinates of the electron pair is represented by the
presence of the four components of the order parameter:
LRLIQ let leaky 6, which are defined by

~ I
r+r

2
(2)

with /'=O, x,y, z corresponding to 1 =0,S„e„,S~e~,S,e, .
Rigorously speaking, we should distinguish the spin sing-

let pairing and the spin triplet pairing components as will

be discussed later [see Eqs. (15) and (16)]. Other com-
I

ponents of Az corresponding to more distant sites vanish,
because the pairing interaction in our model does not ex-
tend beyond the nearest neighbors.

III. TRANSITION TEMPERATURE
FOR THE UNIFORM SYSTEM

Before the discussion of the macroscopic anisotropy in-

duced by the anisotropic pairing, we discuss the stability
of the ordered states by studying the transition tempera-
ture. For that purpose, we derive a linearized equation
for the uniform system.

The Green's functions, 6 and F, are introduced by the
standard definition as in our previous paper

The self-energies and the order parameters are defined as

Z' (j,j+I ) = V&G (j,j+I,r=0),
(j,j+I )

—= V,'F (j,j +1,~=0),

(j,j+ I )
—= V,'F .(j +l,j,r=O) .

(6)

Using these order parameters, self-energies, and the
Fourier transforms of the Green's functions with respect
to ~, we get two equations by the standard procedure of
the mean-field theory,

ice„+p+g QZ .(j+l,j+I)—Z'(j+l, j+I) G (j,j', co„)

+g ——Z (j,j+I)+gZ' (j,j+I) G (j+l,j', cu„) —gggb, ' (j,j+l)F (j+l, j', „)=5",
I 0' I cr' i

ice„—p —g g Z (j+I, j+ I )
—Z' (j+I,j+I ) F ( j,j', co„)

——Z (j+I,j)+g Z ~ (j+I,j) F (j+l,j',co„) g g b*' (j,j+1)G (j+l,j',~„)=0,
I CJ I i

where co„ is a Matsubara frequency. Using the normal-state Green's functions G and neglecting the self-energies Z',
we obtain

G (j,j',co„)=G (j,j',co„)+gg g g G (j,j„co„)b,' -(j,, j&+l, )F - (j,+I, , j', co„),
J1 I1 0 1

F ~ (j,j',co„)=gg g G (j„j,—co„)b,*' (j,, j,+l, )G .(j,+I, , j', co„) .

j1 I1 i

(10)

Under the condition that the order parameters are small enough, we can approximate G ~ in the right-hand side of
Eq. (11) by the normal-state Green's function G, . Then we obtain

(j,j+I)/V& = —b,"(j,j+I)/V~'

n ~l 1 1

(12)
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It is convenient to use the new parameters defined as

V~:—V/'+ V/'

Vp
—= V/

—V/',

(13)

(14)

As 0 gs

0 1. 13cog
ln

I4 0

0 I g' ' (23)
3

b, ~= Vz
—g [F (j,j+l,co„) F— (j,j+l,co„)], (15)

b~ .= V~ g [F (j,j +l,co„)+F ~ (j,j+l,~„)] . (16)

p t +1 —1 (17)

5&'s and hz's are the quantities corresponding to those
defined by Eq. (2). When the dependence of these quanti-
ties on the center-of-mass coordinate j is evident, we om-
itted writing it explicitly. Later, we will express the spin
triplet order parameters as

where A' and A' are 4 X4 and 3 X 3 matrices, respectively,
whose FE' elements are

(24)

The row and column corresponding to 8=0 or 8' =0 are
absent for A'. I4 and I3 are 4X4 and 3 X 3 unit matrices,
respectively. %e should diagonalize only A', since A' has
no off-diagonal elements.

In terms of the maximum eigenvalue, A, ,„, of the ma-
trix in the left-hand side of Eq. (23), the transition tem-
perature is expressed as

but here we simply denote 6& as any one of them.
After some straightforward calculations, the self-

consistent equation of 6 is obtained as follows:
T, = 1.13~Dexp

~max

b P /VP = g "KI P b,~', (18) The eigenvector that corresponds to k,„represents the
internal structure of the pair wave function.

where, v=s, t and the summation g& is taken over
8'=O, x,y, z. The coe%cient, 'Ezz, is defined as A. Layered material with intralayer

and interlayer pairing
ik /y —ik /

&
—ik /'+ ik /'

2(2~)'
~n

where + is for v=s, —is for v= t, and

ek = g rxcos( kxSx )

X

(19)

(20)

First we analyze the system with interlayer coupling
V,

" (v=s, t) and intralayer coupling Vo. When we set
V„"=V~"=0, Eq. (18) can be reduced to 2 X 2 secular equa-
tion for 6', and Ap for the singlet case, and a scalar equa-
tion for 5,' for the triplet case. k,„, which determines
T, by Eq. (25), is the larger of

In the preceding equations, ck is a three-dimensional en-

ergy dispersion and T is the temperature. The summa-
tion gx is taken over X =x,y, z.

To see the effects of the form factor

g'= —,
'

I V,'N,', + VONOO

+[(V'N' —VP" )2+4VOV,'No, ]' I, (26)

(
ik I+ —ik I)( ik I +—ik I )'' X'= V'N'

z zz (27)

of the pair on the transition temperature, we approximate
"Kzz 's of Eq. (19) as

e, , =N„.ln 1.13coD

T
(21)

where

Nv i y fi(e )(eik I+e —ik l)(e —t'k. l'+eik I') (22)
k

This approximation is justified by the fact that the contri-
bution to the k integral in Eq. (19) is dominantly from the
region of ck-0. The quantity Nz&. includes all the infor-
mation of the pair structure and the single-electron ener-
gy bands. In particular, the diagonal element represents
the DOS of the band weighted by the form factor. From
Eqs. (18) and (21), the eigenvalue equation can be derived

where Np =N p.
In the following, we investigate the behavior of T, as

the function of the chemical potential numerically. The
origin of the chemical potential is chosen as the band
center. %e choose the case of t Ey 10t as a typical
example of the layered system. Figure 1 shows the p
dependence of T, for various cases. The case of singlet
pairing in the presence of the intralayer and interlayer
couplings is shown in Fig. 1(a). Though this is the same
case as in our previous paper, ' we again discuss this case
briefly. V,'= V is assumed in all lines. The p dependence
of the dashed line ( Vo = V) more or less reflects the DOS
of the single-electron state. However, with the decrease
of the on-site interaction Vp, the dip of T, at the band
center (II, -0) is enhanced. Thus the IIL dependence of the
solid line ( Vo =0) corresponding to the case of the inter-
layer coupling alone is considerably different from the
dashed line. The enhancement of the dip at p-0 origi-
nates from the characteristic p dependence of N,', and
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Noo as discussed in the previous paper. It is remarkable
that the dotted line ( Vo = —

—,
' V) is nearly the same as the

solid line ( Vo =0). This suggests that when the interlayer
pairing dominates, T, is not so suppressed by the repul-
sive on-site interaction.

The critical temperature T, for the triplet interlayer
state is determined by Eq. (25) with A, ,„=A.'. Figure 1(b)
shows the p dependence of T, for the triplet state for the
case of Vz V Vx Vy 0. For the triplet case, the cusp
points seen in the case of the singlet pairing [Fig. 1(a)] are
rounded off. A rounded shape of the T, versus p curve is
common to the various cases of the triplet pairing, as will
be seen later.

B. Layered material with onsite
and intralayer intersite pairing

Next we discuss the effect of the intralayer intersite in-
teraction V„'= V neglecting the interlayer coupling,

A, d
= (N,'„—¹y) V,',

X'=X' V'.
XX X

(29)

(30)

A,,'corresponds to the s-wave state, while A.d corresponds
to the d-wave state [see Table I].

Figure 1(c) shows the p dependence of T, for the case
of the singlet pairing in the presence of the intralayer in-

V, =0. The onsite interaction Vo coexists for the case of
the singlet pairing, but does not exist for the case of the
triplet pairing. Then, Eq. (18) can be reduced to 3X3
secular equation for 6', 5', and b z for the singlet pair-
ing, and 2 X 2 secular equation for 5' and 6' for the trip-
let pairing. k „is the largest one of

A,
', =

—,'( (N„' +N„'„)V,'+N(~V()

+ [ [(N„' +N„'„)V„' . No—o V() ] + 8N()„V()V„' I
' ),

(28)
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V;=2V
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0.2

0.0—2.0 —1.0

p/t*
0.0

0.0—2.0 —1.0

p/t, ,

FIG. 1. T, vs p for the layered system (10t, =t„=t~). The origin of p is chosen at the band center. (a) The case of singlet pairing
in the presence of the intralayer and interlayer coupling, V, = V, V„' = V~ =0. (b) The case of triplet pairing in the presence of the in-
terlayer coupling, V,'= V, V'= V~=0. (c) The case of singlet pairing in the presence of the intralayer intersite interaction,
V'= V~

= V, V,'=0. The bold line represents the region of the d-symmetry state. Others correspond to the s-symmetry states. (d)
The case of triplet pairing in the presence of the intralayer intersite interaction, V,' =0, V,' = V~

= V.
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tersite interaction. V„'= V'= V, V,'=0 is assumed for all
lines. In the dashed line ( Vo =2V), the order parameter
has s-wave symmetry. When the on-site interaction is re-
duced, the order parameter has d-wave symmetry in the
region near p=O. The d-symmetry region is represented
by the thick line. The position marked by arrow in each
line ( Vo = V, O, —V) represents the boundary between the
s-wave and d-wave symmetry region. In the region of the
d-wave symmetry, T, does not depend on the value of V0,
because it is determined by Eq. (25) and (29) which does
not include V0. On the other hand, repulsive V0 dimin-
ishes T, for the s-wave state.

Figure l(d) shows the p dependence of T, for the trip-
let pairing in the presence of the intralayer intersite in-
teraction i.e., V,'=0, V„'= V'= V. The curve of T, versus

p is of smooth bell type and does not reAect the structure
of DOS. This feature is quite different from other cases
[Figs. 1(a)—1(c)].

Even for general cases of the triplet pairing, V,'WO,
V„'= V'%0, the two types of pairing b, „' and b,,' never
coexist, i.e., either 6„' or 6,' should vanish. This is be-
cause the matrix A' has no off-diagonal elements as seen

a 0.4-
3

0.2-

0.0

0.6-

(b)

o.s- (a)

—1.0 0.0

V' —2V/ 0—
/

~r
v, vy 0

I
I

/
/

/'
/ i V=V

/ / N X 0
/

/ /
/ /

1 V
2

o.4- (a)

3
+ 0.2-

0.0 —1.0 0.0

0.0 —2.0 0.0 0.3-
(c

(b)
0.2-

0.1-
a
3

0.1-

0.05-
0.0 —1.0 0.0

0.0 —2.0 —1.0 0.0

FIG 2 T vs p for the cubic system ( t ty t ) (a) The
case of singlet pairing in the presence of the on-site and intersite
interactions, V„' = Vy

= V, = V. The bold line represents the d-
symmetry region. (b) The case of triplet pairing in the cubic
system, V' =

Vy
= V,'= V.

FIG. 3. T, vs p for the quasi-one-dimensional material
( —,

' t, = t„=ty ). (a) The case of singlet pairing in the presence of
the on-site and intrachain intersite interaction, V, = V,
V„'= Vy =0. (b) The case of singlet pairing in the presence of
the intrachain (on site) and interchain interaction, V„'= Vy

= V,

V, =0. The bold line represents the d-symmetry region. (c) The
case of triplet pairing in the quasi-one-dimensional system. The
curve marked 5,' represents the case V,'= V, V„' = Vy =0, and 6„'

represents the case V,'=0, V„' = V„' = V.



41 PAIRING ANISOTROPY AND MACROSCOPIC ANISOTROPY OF. . . 2119

Next, we discuss the transition temperature of the cu-
bic system (t„=t~= t„V„'=V"= V,"). A, ,„ is the largest
one of

A, ', = —,'((2N„' +N,'„)V„'+¹ooVo

+[[(2N y+N )V N oVoo] +12No VoV )
~

)

(31)

A,d=(N„'„—¹ ) V',
gl Nt Vt

XX X

(32)

(33)

Figure 2(a) shows the p, dependence of T, for the sing-
let pairing in the presence of the on-site and intersite in-
teractions. We set V,

' = V'= V,'= V in all lines. As in the
case of Fig. 1(c), the s-symmetry state is realized to the
left of the arrow, while the d-symmetry state appears to
the right of the arrow (thick line). Again it can be seen
that the repulsive on-site interaction suppresses the s-
wave pairing, while the d-wave pairing is not affected.

Figure 2(b) shows p dependence of T, for the triplet
pairing in the cubic system. The curve is smooth and
there is no sharp structure reAecting the DOS.

D. Quasi-one-dimensional material

For the quasi-one-dimensional materials, the formal-
isrns are the same as those of the layered materials. The
ratio of the transfer integrals is only different, i.e.,
t, &t =t . However, the p dependence of T, is quite
different from the layered material as will be seen later.
This is understood by the fact that the Fermi surface of
the quasi-one-dimensional system has a planar shape,
while that of the layered system has a cylindrical shape.
In the following calculations, we set t ty

Figure 3(a) shows the p dependence of T, for the sing-
let pairing for the case of the finite on-site interaction and
intrachain intersite interaction in the absence of the inter-
chain interactions. V,'= V, V,'= V'=0 is assumed in all
curves. A, ,„ is determined by Eq. (26) for this case.
When the on-site interaction is reduced and becomes
repulsive, T, is diminished in the whole region of IM. This
is a different feature from the case of the interlayer pair-
ing [Fig. 1(a)] in which repulsive Vo does not reduce T, .
This is caused by the large mixing between the on-site

!

6* .(j,j+I)/VI = —6*.' (j,j+I)/VI'

from Eqs. (22) and (24). The off-diagonal elements vanish
because of the symmetry; the negative sign should be
chosen in the parentheses of Eq. (22) for the triplet state,
but the switching between the state of 6„'WO and that of
6,'%0 may occur by changing p.

C. Cubic material

pairing (ho) and the intrachain intersite pairing (b, ', ).
The quantity No, for the quasi-one-dimensional material
is much larger than the corresponding quantity for the
layered material.

Figure 3(b) shows the case of the intrachain on-site and
interchain interactions for the singlet pairing.
Vx Vy V Vz 0 is assumed in al l curves. If the on-site
attractive interaction Vo is strong, only the s-symmetry
state is realized for all the p region ( Vo = 2 V, V). With
the decrease of the onsite interaction, the switching of the
symmetry between the s and d states occurs twice. For
example, for the case of the solid line ( Vo=0), the
switching occurs at the point 3 and B. The d-symmetry
state appears between A and B (thick line), and the s-

symmetry states occurs in the outer sides of A and B. An
interesting point is that not only for the d-wave pairing,
but also for the s-wave pairing on the right-hand side of
the point B, T, is hardly affected by the repulsive Vo. On
the other hand, the s-wave pairing on the left-hand side
of the point 3 is reduced by the repulsive Vo. This prop-
erty can be explained by the smallness of the ratio of Ao

on the right-hand side of B.
Figure 3(c) shows the dependence of T, on p for the

case of the triplet pairing. The curve marked
represents T, for the case of V,'= V, V„'= V,'=0, while

shows T, for the case of V,'=0, V'= V'= V. The
curve of T, versus p marked 6,' shows only a broad peak
at the band center, while the peak of the curve marked
b„' is shifted to the region of the higher DOS. [The DOS
is not shown here, but it looks qualitatively like the
dashed line (Vo= V) in Fig. 3(a).] This difference is

caused by the characteristics of N,', or N,'„ i.e., DOS
weighted by the form factor of the pair. Namely, for the
case of N,'„ the form factor is sin (k,S, ), while that for
N„'„ is sin (k„S„)[see Eq. (22)]. In the former case, the p
dependence of the DOS is much changed by the form fac-
tor. This is why the curve of T, versus p marked 5,'
shows a quite different shape as compared to the DOS of
the energy band, while the curve marked by 5,' reflects
DOS.

IV. MULTICOMPONENT GL EQUATION

To discuss the macroscopic properties of the supercon-
ductor in the presence of the magnetic field, we derive a
multicomponent GL equation. It takes account not only
of the center-of-mass coordinate, but also of the relative
coordinate dependence of the order parameter by means
of the multicomponents of the order parameter.

From Eqs. (10) and (11), we can derive a gap equation
in terms of the normal-state Green's functions in the
presence of the magnetic field, G, as

= g g g g G (j,, j, —co„)b, '(j, , j,+1, )G (j,+I, ,j+l, co„)
~n ~l I,

+g g g g g G (j,, j, —co„)h '(j, ,j,+1, )G'. (j,+I, ,j,, ~„)b, ', (j,, j,+I, )

&i&24 l Z 3 'l' '3

X G (j3,j2+12, —co„)b, ' (j3,j3+13)G (j3+13,j+l, co„) . (34)
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After some straightforward calculations, we obtain the first-order terms of Eq. (34) in the notation of 6( defined in

Eqs. (13}—(16) as

yves( l ) ( yv
8' X, Y=x,y, z

v X B XY B xYKzz. + Pzz. + Pzz. +"Ezz. 2ieAx+
BX BXBY BX

2ieA Y+
BY

(35)

where, v=s, t and the coeScients, K's and P's, are defined as

* + —ik I —i k-I'+ i k I'

2(2n. } n+~V

SSS,T (5(x —5(x }
vpX — ~ 7 ~ y f dk( ik I+ —ik I}(

—ik I .+'ik I'}
4(2ir ) co'„+e2k

(19)

(36)

SSST , (5 —5 )(5 —5( )
vpXY — & ~ m f dk( &k I+ . —lk I)(

—ik I'+ ik I') ('X (X ( Y (Y
e e e e

2 28(2ir) co„+E,kn

S„SS,TvKXY ~ & ~ ~ dk(eik. l+e —ik I}(
—ik!'+ ik I')

8(2ir )

(37)

2Sxtx»n(kxS» )SYtYsin( k YS„) 1—
(~2 + e2 )2

4' n

co~ +Cg
2 2

2ekSxtxcos(kxSx )

( 2+ 2)2
5 (38)

where + is for v=s and —is for v=t. At first glance, the second and the third terms in the large square brackets of
the right-hand side of Eq. (35) seem to break the gauge invariance, but actually this is not so. This is easily verified by
taking account of the phase relation between the order parameters with different l.

After some straightforward calculations, we obtain the third-order terms of Eq. (34) in the notation of 6(, b,(, and
5(' defined by Eqs. (13)—(17) as

~'(""= 2E(.(,.(;(,~—'(—",~'(,~'(*,+E(,(, (,i(,~'(', (2~(,~(', +~(,'~(,"+~(,'~(,'*»
~('"—= 2E(r(,.(;(,~—("~'( ~('+E(i( i( i( ~('(2~( ~('+ ~(,'~(,"+~(,'~(,'"»
~('""=——2&(i(,.(,.(,~(,"~(,~'(', +2&( (,i(,«,~(,"(~(,~(', +~(,'~(,'*»

where

(39)

(40)

(41)

Ev)f I v2f~v313

SSST cos(k I I }
x y z ~ d~ e

(~2+e2}2 i sin(k I—
i )

~n

cos(k 12) cos(k l3)

i sin(k —12) i sin(k —l3) (42)

In the preceding curly braces, cos(k I„)should be chosen for v„=s, and i sin(k —I„)should be chosen for v„=t.
An interesting point about the third-order terms is the existence of the mixing terms between the different symmetry

states. Even for the mixing between the spin singlet and triplet states, the coefficient E is not zero. This fact indicates
the possibility of the coexistence of the two types of the pairing states below the transition temperature. "'

V. UPPER-CRITICAL FIELD 0,2

One can obtain the upper-critical field H, 2 near T, from Eq. (35). We choose the vector potential as
A=(O, xH sin0, —xH cos0) so that the magnetic field becomes H=(O, H c s9o, H sin0). For the spin singlet pair, we
obtain

'K — +'P" +'K" 4e H x ('K/z sin—8+'K" cos 8) b,*(*=0, (43)

where 'K&& ='E&& +'P&& . For the spin triplet pair, the equation for H, 2 is written as

K(( —,+ K(&. 4e H x ('K/(. sin 8—+'K('( cos 8)+2ieH('KP~sin8 —'K„";cosO) 2x +1 b(*=0 . (44)
d
X
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'P&&. 's are zero for the spin triplet pair, while 'K&&'s

(XW 7) are zero for the spin singlet pair.
To solve b, / from the Eqs. (43) or (44), we have per-

formed a variational calculation by taking the trial func-
tions of b, /(x) as

1.5-

&o

6/(x) =exp
ypeH

x Q C/„H„(x),
n

(45}

0.5-

where H„(x}is the Hermite polynomial. We have taken
account of n =0-4, but we found that the obtained result
is not so much changed with the number of the included
terms of Eq. (45}, and the result was also unchanged by
taking different values of y/ for different P. Therefore,
in the following we discuss H, 2, assuming the form of
6/(x) as

t5/(x) = b, /exp — xyeH 2

2
(46)

=—g ['Kp"/ y+4( "Ky/y/. sin 8H
2 ps

+'K/'/. cos 8)/y ]5/. . (47)

For a rigorous quantitative discussion, the expansion
coefficients CI„should be determined carefully particular-
ly in the case of the p-wave pairing. This can be worked
out, for example, by finding a recursion relation for the
coefficients as performed by Scharnberg and Klemm. ' '
We expect, however, the preceding approximation is val-
id for our qualitative discussions. Then, Eqs. (43) and
(44) are reduced to

5

Vv

0.0
0

H, 2(0)

H, 2(m /2)

vKyg
i /2

Vg ZZ

The effect of the intersite pairing on the anisotropy of H, 2

can be seen by the ratio

H, 2(0)

intersite

H, 2(n /2)

H,2(0),„Qt,

00 FF 00
—(sKzz vKyy /sKyy vKzz )1/2 (50)

For the case of the cylindrical Fermi surface, one can
confirm that

FIG. 4. H„vs 6I for 5'„singlet interlayer pairing (V,'WO,

Vo = V„' = V~ =0); 5,', triplet interlayer pairing ( V,'WO,
V' = V'=0); and 60, singlet intralayer (on site) pairing ( VOTO,
V„=Vy

= V~ =0). Here t» =ty = 10tz and S» =Sy =Sz. 8
represents the angle between the applied field and the xy plane.

The upper-critical field H, 2 is obtained by the maximum
of the largest eigenvalue of the preceding secular equa-
tion as the function of y.

'K" 'E"
00 zz

'z» vc"00 zz

(51)

A. Nondegenerate system

Figure 4 shows the angle dependence of H, 2 for the
case of the interlayer pairing for the layered system cor-
responding to Figs. 1(a) and 1(b). The solid line marked

corresponds to the singlet pairing ( V,'%0,
Vo = V„'= V'=0), and the dashed line marked b,,' corre-
sponds to the triplet pairing (V,'%0, V,'=V'=0). The
case of the on-site pairing ( Vo&0, V„'= V'= V,'=0) is
also shown as the dotted line (Ao). This is the clearest
case to demonstrate how the existence of the anisotropic
pairing (intersite pairing) affects the macroscopic anisot-
ropy The aniso. tropy H, 2(0)/H, z(n. /2) is determined by
the ratio "Ky/y/, /"K/'/ as follows. For the case with sin-

gle nonzero component 6& of the pair potential, H, 2(0) is
given by

"Ep~ —1/Vp
H„(8)~ (48)

["K""( Ky/}' stn 8+ K cos 8)]'

Therefore it holds

sg zz tg yy
00 zz 2

s~yy frizz00 zz

(52)

Using the preceding ratios for Eq. (50), we can explain
the relative values of H, 2(0) of the three cases in Fig. 4.

When I, ,„,which determines T, is not degenerate, the
angle dependence of H, 2 is given by Eq. (48), which is the
same as the one given by the effective mass approxima-
tion

H, 2(8}=
H0

(a cos 0+6 sin 0)' (53)

Thus, in this paper, we obtain the microscopic expres-
sions of the parameters a and b by the multicomponent
GL equation:

a et "K//, b tz "Ky/y/ (54)

In Fig. 5, we show the V,'/V0 or V„'/V0 dependence of
the anisotropy ratio, Hz(0) H/, (v2r 2/)=& b/ain the
layered system. We varied the parameter as
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15- H, 2(0)

H, 2(n /2)
H, 2(0)

H, 2(rr/2 )

10-

CO

0'
(re])

7ri2

FIG. 5. H, 2(0)/H, z(n /2) vs P in the layered system. The rel-
ative magnitudes of the interactions are changed with P as

[ Vo = V cosP, V,
' = V sing, V„' = V,

' =0] for the solid line, and

[ Vo = V cosp, V„' = V»
= V sing, V,*=0] for the dashed line.

Vo = Vcos P„V,'= V sin P, for the solid line

Vo = V cos P, V„' = V sin P, for the dashed line .
(55)

The solid line (on-site and interlayer pairing) shows that
the anisotropy ratio switches at certain values of V,'/Vo
rather smoothly. This rounding effect, which comes from
the mixing of 60 and b,', was analyzed in our previous
paper. On the other hand, the dashed line (on-site and in-

tralayer intersite pairing) shows that the anisotropy ratio
changes its value sharply. This behavior is consistent
with the sharp switching of the order parameter from the
s pairing to the d pairing in Fig. 1(c).

Figure 6 shows the p dependence of

1.5itc n
QS

z

1 0~0

(QS $8 )

0.5-

0.0
—2.0 —1.0

y/t, ,

0.0

FIG. 6. p dependence of

[H„(0)/H„(n./2)];„„„,(,/[H„(0)/H„lm /2)),„„„.
The solid line marked 6' shows the case of the interlayer pair-
ing (V,'WO, Vo= V„'= V~=0), and the dashed line marked
(6', h~) shows the case of the intralayer intersite pairing
( V' = V'WO V' = V' 0)

for the layered system. The solid line marked b', corre-
sponds to the case of V,'WO, V,' =

V»
= Vo =0. It is found

that the singlet interlayer pairing always enhances the an-
isotropy by the factor of 1.4 compared to that of the on-
site pairing as far as the system has a cylindrical Fermi
surface. On the other hand, the dashed line marked
(b„',b,„') corresponding to the case V„'= V'%0,
Vz= V,'=0 shows that the d-wave pairing by the in-

tralayer intersite interaction reduces its anisotropy. The
value of the reduction ratio (dashed line) depends on )M,

while the enhanced ratio of the interlayer pairing case
(solid line) is hardly dependent on )tt. The dashed line
takes the value of 1 at the left side of the point
p= —0.85t„where the d-wave state changes to the s-

wave state. It is an interesting point that though the
dashed line assumes the intersite interaction alone
( Vo=0), the anisotropy ratio in the s-wave region is

equal to 1. This suggests an answer to the question raised
in Sec. I. Namely, it is clarified here that if the order pa-
rameter has s symmetry, the presence of the intersite in-

teraction does not affect the anisotropy of the macroscop-
ic property such as H, 2, while d- or p-symmetry states
affect its macroscopic anisotropy.

8. Degenerate system

For the system where A, ,„ is degenerate, we obtained
the result that the angle dependence of H, z can show an
anomalous behavior that cannot be fitted by the effective
mass model [Eq. (53)]. Some examples of the degenerate
system are described in the following.

Figure 7(a) shows the angle dependence of H, 2 for the
case of the degenerate state of the interlayer pairing and
the intralayer intersite d pairing. The solid line shows
the angle dependence of H, 2 calculated by Eq. (47) and
the dashed curve is the line fitted by Eq. (53). The three
lines plotted at the bottom represent the three com-
ponents 6', 6', and 6', of the eigenvector. It can be seen
from this plot that the interlayer pairing (b,, ) dominates
in the smaller 8 region and the intralayer intersite pairing
(b,'„,b,~) dominates in the larger 8 region. This change
occurs because two states are equally possible to realize
(i.e., the system is degenerate) and the applied field favors
either type of the pairing according to its direction. This
means that a phase transition is induced by the rotation
of the magnetic field.

Figure 7(b) shows the case of the triplet pairing. Here
5„', 6', and 6,' are all degenerate. However, only the
state with nonzero b, ' (smaller 8 region) and the state
with nonzero 5,' (larger 8 region) are realized. The pre-
ferred axis of the triplet pair is parallel to the magnetic
field, e.g. , when H=e„ the state with 5,' is the most
stable. On the other hand, the preferred axis of the sing-
let pair is perpendicular to H. This originates from the
fact that the singlet intersite pair perpendicular to H
enhances H, z, while the triplet pair perpendicular to H
reduces H, 2 (Fig. 4). The switching of the symmetry in
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Fig. 7(b) is sharp as compared with the Fig. 7(a). This is
again due to the diagonal form of the 'I(

&& matrices for
the triplet pairing case.

The preceding two examples, Figs. 7(a) and 7(b), are
the cases of rather accidental degeneracy, since the allow-
able region of the parameter (the ratio, V„/V, ) is very
narrow. These types of accidental degeneracy are possi-

ble in many ways, for example, the p-wave state and the
d-wave state, the d-wave state and the s-wave state, etc.
Though the parameter region is narrow, if there is a ma-
terial that changes the symmetry of its order parameter
by controlling other parameters (such as chemical poten-
tial), it is possible to set the material to degenerate.

On the other hand, some materials can be degenerate

1.0 1.0 (b)-

0.5 0.5

0.0

0

0.0
1 gt

—1-
0

0 (rad)
n. /2

—1-
0

g (rad)
7r/2

1.0 1.0

0.5- 0 5

0.0 0.0
(d)

0

—1-
0

0 (rad) g (rad)

FIG. 7. The angle dependence of H, z. 8 represents the direction of the applied field in the yz plane. When the field is parallel to
the y axis, 8=0. The relative phase of the order parameter is shown together. (a) The case of accidental degeneracy of the singlet in-
terlayer and intralayer intersite d pairing. The switching of the relative phase of the order parameter can be seen. (b) The case of ac-
cidental degeneracy of the triplet interlayer and intralayer intersite pairing, i.e., 5', b„', and 6,' are all degenerate. (c) The case of
singlet intersite (d-wave) pairing in the cubic system. A gradual change of the relative phase can be seen. (d) The case of triplet in-
tersite pairing in the cubic system. There is a cusp point at the center of the figure reflecting the sharpness of the phase switching.
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naturally. The natural degeneracies available in our
model are singlet: (b,'„,b, ~, b, ', )=(I,—1,0) and (O, l, —1)
in the cubic system, triplet: (b„', b, ', b,')=(1,0,0) and
(0,1,0) in the tetragonal system, and triplet:
(b,„',6', b,')=(1,0,0), (0,1,0) and (0,0, 1) in the cubic sys-
tem.

Figure 7(c) shows the angle dependence of H, 2 for the
case of the singlet pairing in the cubic material. It can be
seen that when H=(O, H, O), then b, =(1,0, —1) and when
H=(O, O, H), then b, =(1,—1,0). The point of the
switching cannot be defined in this case since the eigen-
vector changes gradually when the magnetic field is rotat-
ed.

Figure 7(d) shows H, 2 for the case of the triplet pairing
in the cubic system. It is possible to think of this figure
as the angle dependence of H, 2 in the basal plane of the
tetragonal system for the triplet pairing. When
H=(O, H, O), then 6=(0, 1,0) and when H=(O, O, H),
then b, =(0,0, 1). There is a cusp at the center of the
figure reflecting the sharpness of the switching of the or-
der parameter.

These types of H, 2 anisotropy, due to degeneracy, are
studied theoretically by several authors. ' ' However,
in their analysis, they did not appropriately estimate the
off-diagonal coefficients in the GL equation, which is

essential in this H, 2 anisotropy, and therefore their analy-
ses are rather phenomenological. We estimated the
coefficients from microscopic theory so that our estima-
tion of the ratio, H, z(0)/H, z(m/4), is more realistic.
Furthermore, our result shows that, in the case of the
triplet pairing, there is a sharp cusp point at L9=m/4,
which was not predicted previously.

VI. CONCLUSION AND DISCUSSION

We investigated the superconductivity in the tight-
binding picture taking account of the intersite pairing as
well as the on-site pairing. First, for the uniform system,
we derived a linearized equation of the order parameters,
each component of which represents the different inter-
site pairing. Based on that equation, the transition tem-
perature and the symmetry of the pair wave function
(Tables I—III) were discussed. For the layered material,
the transition temperature T, for the p- and d-symmetry
state decreases sharply when the chemical potential is
moved from the band center, while T, for the s-symmetry
state decreases only gradually. This is the effect of the
form factor, cos(k~S~) or sin(k&S, ) representing the inter-
site pair. This feature cannot be described by the contin-
uum model. It should be remarked that the p- or d-

TABLE I. Classification for the singlet pairing in the layered material and the quasi-one-dimensional
material investigated in this paper. The values of a and b depend on the energy dispersion (t, ty, t, ) and
the coupling constants ( Vo, V„y Vy& Vz ).

tz & tz ty

layered

material

V'%0 V' %0, V' = V' =0

Pairing:

Ao (intralayer)

6', (interlayer)

State:

~o a

b

V,'=0, V'%0 V'= V'%0

Pairing:

Ao (on site)

b, '„,Ay (intralayer intersite)

State:

~o 'a

b s wave

gs
y

~o 0
d wave

tz ) tz ty

quasi-one-

dimensional

material

Pairing:

Ao (on site)

6,' (intrachain intersite)

State:

Pairing:

Ao (intrachain)

(interchain)

State:

~o a
gs b b -. s wave

~o 0
1

gs
y

. d wave
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tz Ex ty

cubic

material

Pairing:

b o (on site)

b, '„,5', 6', (intersite)

State:

s wave

QS

b

'0 ' '0
1 0

—1
'

1

0

d wave

symmetry state at the band center in the layered system
are favored compared to the s-symmetry state in the case
of the repulsive on-site interaction. This fact would yield
some suggestions to consider the mechanism of the high-

T, superconductivity.
In the latter half of this paper, we have derived a mul-

ticomponent GL equation that reAects the relative coor-

TABLE II. Classification for the singlet pairing in the cubic
material. There are two degenerate states for d symmetry, while

there is only one state for s symmetry.

V' WO V' = V' = V'WO

dinate of the pair. The angle dependence of H, 2 is dis-
cussed based on that equation. We obtained the result
that, for the singlet pairing, the intersite pair perpendicu-
lar to the magnetic field enhances H, 2, while for the trip-
let pairing it reduces H, 2. For example, when 8=He,
6', enhances H, 2, while 5,' reduces H, 2. This is explained
by the fact that the motion of the pair in the perpendicu-
lar plane to the magnetic field is suppressed by the rela-
tive phase relation inside the pair for the singlet state, but
enhanced for the triplet state.

We also obtained the result that the s-symmetry state
shows the same anisotropy as the on-site pairing state,
though the intersite interaction is strong. This suggests
an answer to the question raised in Sec. I that if the order
parameter has s symmetry, the presence of the intersite
interaction does not affect the anisotropy of the macro-
scopic property such as H, 2 while the d- or p-symmetry
state affects its macroscopic anisotropy.

As far as the system is not degenerate, the angle depen-
dence of H, z is found to be given by the formula of the
effective mass approximation. This means that in the
nondegenerate case, the symmetry of the ordered state is
not changed even when the direction of the magnetic field
is changed, and a single type of ordered state leads to an
angle dependence of the usual one-component GL model.
However, if the two or more symmetry states are degen-
erate, the angle dependence of H, 2 cannot be fitted by the
simple effective mass approximation. In this case, the

TABLE III. Classification for the triplet pairing in the layered material, the quasi-one-dimensional
material, and the cubic material. There are two degenerate states for the intralayer intersite pairing
and the interchain pairing, respectively. The cubic material has three degenerate states.

V'&0, V„'= V'&0

~z ~~x ~v

layered

material

0'
0y interlayer

0
la~aEy 0 1 intralayer intersite

0 0

~z) ~x ~y

quasi-one-

dimensional

material

0
0 . . intrachain intersite

0
laLy 0 1 interchain

gt Q Q

V'= V'= V'&0x y z

Ez fx ty

cubic

material

~x 1 Q Q

0, 1, 0 intersite

0 0 1
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switching between the different symmetry states occurs
with the rotation of the magnetic field. This degeneracy
probably occurs for the d-wave pairing in the cubic ma-
terial and for the p-wave pairing in the tetragonal materi-
al. We expect the possibility that the measurement of the
angle dependence of H, 2 for UBe», cubic heavy-fermion
superconductor, might reveal this anomalous angle
dependence, if the pairing of this material is of the non-s-

wave type. When the angle dependence is observed, one
will be able to distinguish the pairing symmetry, p wave
or d wave, from the shape of the H, z((9) curve.

The measurement of the angle dependence of H, z in

the basal plane of the tetragonal heavy-fermion supercon-
ductor is reported to have no anisotropy, ' but in the
tetragonal system, the anomalous angle dependence of
H, 2 is realized only for the d„and d, symmetry of the
pair for the case of the singlet pairing. The experimental
result of no anisotropy in the basal plane of the tetrago-
nal heavy-fermion superconductor does not directly mean
the s-wave pairing, since this alone cannot eliminate the
possibility of the d & 2 or d, 2 2 symmetry states.

However, the possibility of the p-wave pairing is unlikely
because in this case an anisotropy in the basal plane
should be observed.

In several points, further investigations are possible.
Our study is valid near the transition temperature be-
cause we expanded the gap equation by the small value of
6, so extension of the theory to lower temperatures is re-
quired. The role of intersite interaction at a lower tem-
perature may be different from that at the transition tem-
perature.

The effect of impurities on the on-site and intersite
pairing must be different. Therefore, the properties of the
intersite pairing state may be modified in a different way,
and this provides an insight into the role of the intersite
pairing.
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