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We measured all nine elastic constants of a nonsuperconducting single crystal of La,CuO, at 310,
297, and 44 K using a small-sample resonant ultrasound technique. Weak features in resonant fre-
quencies dependent on compressional moduli were observed near 29 K, and a broad minimum oc-
curred at 38 K, near the superconducting transition temperature of optimally doped La,CuQO,. The

features are also reflected in the specific heat.

Since the discovery of the high-temperature supercon-
ducting oxides, there has been considerable effort devoted
to determining the mechanism responsible for the high
transition temperatures. To develop an understanding of
the intrinsic properties of these systems, it is often prefer-
able to measure single-crystal bulk samples. This is par-
ticularly true for transport and ultrasound measurements,
as these are capable of probing the strong anisotropy
present.

In this paper, we report measurements on an
untwinned single crystal of La,CuQO, using a new small-
sample resonant ultrasound technique, and we have com-
plemented the results with ac heat-capacity measure-
ments. We have made the first determination of all nine
independent elastic constants of this orthorhombic ma-
terial at several temperatures, and, for our nonsupercon-
ducting stoichiometric crystal, we have observed weak
features in the compressional moduli and heat capacity
near 29 K, and a broader feature at 38 K, near the transi-
tion temperature T, of the optimally doped supercon-
ducting material.

The presence of features in the elastic constants near
T, may be important to the theory of the high-
temperature oxide superconductors. Many conventional
(nonoxide) superconductors with high transition tempera-
tures have transitions that are accompanied by structural
instabilities or structural transitions.! In some cases the
structural transition may be arrested by the onset of su-
perconductivity, but the structural instability remains.
For conventional Bardeen-Cooper-Schrieffer (BCS) super-
conductors, the increase of the transition temperatures in
materials near a structural instability is plausibly con-
nected with their strong electron-phonon coupling. For
the new oxide superconductors, the role of the lattice is
uncertain, as evidenced by inconclusive isotope shifts.?
Nevertheless, measurement of the sound velocities (and
hence the elastic constants) is important because the elas-
tic constants are a sensitive thermodynamic probe of the
environment in which the electrons pair.

Single crystals of La,CuO, were grown from a CuO
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flux, quenched, and later annealed at 650 K in N, for a
short time and cooled to 300 K over 10 h. The ul-
trasound sample was oriented to within 1° of its principal
axes via x rays. Neither x-ray nor polarized light scatter-
ing revealed any signs of twinning. Large twins in frac-
tured samples are very apparent optically. However, if
microtwins were present, we could not detect them using
the methods available to us unless they were present in
the entire sample. Thus partial twinning in our sample
cannot be ruled out. Sample dimensions were
1.73X1.76X0.70 mm®, all £0.01 mm, with the b axis
parallel to the small dimension and normal to the Cu-O
plane. The a and c axes were each oriented parallel to an
edge, although they were not distinguished. After the N,
anneal process, the measured density was 7.03 g/cm’,
compared to a theoretical density of 7.08 g/cm?, suggest-
ing reasonably good oxygen stoichiometry. The Néel
temperature T, =305 K for the ultrasound sample and
Ty=316 K for the specific-heat sample, confirming the
stoichiometry.>

Our relatively small single crystal would make pulse-
echo measurements difficult. However, we were able to
use a resonant method coupled with an elegant data
analysis technique to deconvolute the resonant frequen-
cies into elastic constants. Previous work on this prob-
lem has been done by Rayleigh,4 Mindlin,” Demarest,®
and Ohno.” The technique in its present form involves
driving a sample with a continuous acoustic signal at a
point of low symmetry, such as a corner. By sweeping
the drive frequency, the normal modes of vibration are
determined by the response of a second transducer at the
corner diametrically opposite. A typical response trace is
shown in Fig. 1, with a schematic of the experimental ar-
rangement in the inset. If a sufficient number of reso-
nances are measured, a numerical procedure can be used
to extract all the elastic constants when the density and
at least one sample dimension are known. This pro-
cedure is described in the Appendix. In our results, we
have not corrected for the unknown but almost certainly
anisotropic thermal expansion, but we expect it to be less
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FIG. 1. A schematic diagram of the sample and cell used for
the measurements is shown together with a typical room-
temperature spectrum for the sample described in the text.

than 3X 107 ¢ K ! below 45 K .2

Table I contains a summary of the determination of the
nine elastic constants (orthorhombic symmetry) at 310,
297, and 44 K. Because we did not distinguish the a and
¢ axes, we have arbitrarily assigned the a axis to the 1
subscript and the c axis to the “2” subscript of the c;;.
The resonant frequencies themselves were determined us-
ing a fitting algorithm from raw data exhibiting quality
factors (Q’s) on the order of 1000. Because we have ob-
served Q’s on the order of 3X 10* for fused silica, our
sample (not the apparatus) must be responsible for the
high dissipation. Unfortunately, we cannot rule out de-
fect structures in general; thus the high dissipation may
not be of intrinsic interest.

The bulk modulus B for our sample can be extracted
from the c;;. We obtain B =1.126X10'? dyn/cm*+0.5%
at 310 K, 1.125X10? dyn/cm? at 297 K, and
1.138 X 10'? dyn/cm? at 44 K. Ledbetter et al.,’ mea-
sured high-density powder samples and obtained very
good agreement with our results. They found
B =1.145X10"? dyn/cm? at room temperature, with a
monotonic increase to 1.159 X 102 dyn/cm? as the tem-
perature was lowered. The average compressional wave
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speed (5.05 km/s) we derive from our data is in very good
agreement with results on dense ceramics'® (5.04 km/s).
Because c¢q is much stiffer than cyy or css, we find our
average shear wave speed (3.26 km/s) to be substantially
different than that for ceramics'® (2.84 km/s). It is not
unreasonable to expect the shear wave speed to be sensi-
tive to details of the sintering process. Also included in
Table I are the results of a molecular dynamics simula-
tion carried out by Allan and Mackrodt.!! Most
significant is that the measured in-plane shear modulus
cge is much larger than their calculated value. The
discrepancy demonstrates a fundamental failing of the ex-
pected force laws obtained from simple chemical con-
siderations. This is not surprising in light of the predict-
ed metallic nature of this material'> from simple band-
structure calculations. We do not know the reason for
the discrepancies, although they may be a result of corre-
lation effects that are not included in the simulations.
The related antiferromagnetic!® properties are also not
included in the simulations, but magnetoelastic effects
away from phase transitions are generally very weak
compared to the differences shown in Table 1.

In Figs. 2 and 3 we show sets of data representing the
variation of some resonant frequencies with temperature.
Above 70 K, we used chromel-constantan thermocouples
with an absolute accuracy of 1 K; below 70 K we used
both Pt resistance and gold-iron thermocouples, with an
absolute accuracy of 0.1 K. Our temperature control was
always better than the absolute errors in the ther-
mometry, and the sample was surrounded by 1-bar He
exchange gas. The frequencies plotted in Fig. 3 are al-
most exclusively dependent on ¢4, whereas those plotted
in Fig. 2 are primarily affected by changes in ¢, and c,,.
These data were not deconvoluted to obtain the variation
in elastic constants because the deconvolution process
produces additional scatter, making the trends harder to
see. However, from our fits at 310, 297, and 44 K, we
know the dependence of each frequency on each elastic
constant at these temperatures. Between 25 and 54 K the
dependence of frequencies on elastic constants is very
close to the 44 K values. Note the features near 29 K in
the compressional modes and the change in slope at 38 K
for both compressional and shear.

Features at both temperatures are present in the heat
capacity as well, as shown in Fig. 4. Heat-capacity mea-
surements were made with an ac technique on samples
from the same batch, but not the same fragment, as the

TABLE 1. Elastic constants in 10'2 dyn/cm?. The last row is from Ref. 10, but we have taken the liberty of correcting an obvious
error by a factor of 2 in several of their numbers. Note that data at 310 K ‘was taken after the sample was removed and reinserted.
We estimate our errors as follows. The rms frequency deviation in the fitting procedure was 6 kHz. We used a varying number of
resonances (typically about 15) approximately uniformly distributed from 0.6 to 2.2 MHz. Thus the average fitting error is about
0.4%. Errors in sample dimensions and density were typically of order 1% as stated in the text. Thus our precision is 0.4% or

better, and our absolute accuracy is about 1%.

T cn Cy C33 Cy ci3 ciz Cas Css Ceo Run number
310 K 1.722 1.716 2.000 0.732 0.728 0.892 0.652 0.658 0.971 2
297 K 1.719 1.712 2.000 0.731 0.727 0.904 0.656 0.658 0.968 1
44 K 1.688 1.668 2.000 0.728 0.714 1.000 0.705 0.660 1.036 1

1.99 1.84 1.90 0.70 0.64 0.65 0.65 0.64 0.66 Ref. 10
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FIG. 2. The frequency of a resonance dependent primarily on 25 3. 0 3-5 40

c¢y; and ¢, as a function of temperature. Temperature stability
was 0.1 K and flexible 9 um PVDF transducers were used. The
frequency error bar is about 25 ppm.

ultrasound sample and were annealed in a different run.
The heat-capacity sample had a total mass of 2.2 mg
(1.5X0.5X0.5 mm?). Our calorimeter was made from
thin (6 X 10~ * cm) Mylar foil cut into the shape of a cross
with four arms (0.4 X 17 mm?), and a central square 4 X 4
mm?. This central square is the calorimeter. The four
arms were mechanically and thermally anchored to a Cu
ring that served at the thermal bath. Au-Ag and Ge-Au
alloys were evaporated onto opposite faces of the square
to be used as heater and thermometer, respectively. Ag
film evaporated onto the four arms provided electrical
contact for the heater and thermometer and also served
as the weak thermal link. The La,CuO, sample was at-
tached to the calorimeter with 0.01 mg of silicone vacu-
um grease. The entire assembly was maintained in high
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FIG. 3. The frequency of a resonance dependent only on ce
as a function of temperature. The temperature stability was 0.1
K, and rigid transducers were used. The frequency error bar is
less than 25 ppm.
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FIG. 4. Specific heat of intrinsic La,CuQO,. The dashed line
is the background, which we subtracted, and is chosen by a sim-
ple polynomial fit to the nonpeak data.

vacuum. We achieved a precision of 0.1% in heat capaci-
ty after signal averaging. The operating frequency (0.05
Hz) was chosen to be between the internal and external
equilibration rates for the calorimeter and sample. Ad-
denda were about half of the total heat capacity and were
determined in a separate run.

Two heat-capacity features, a relatively narrow one at
29.3 K and a broader one centered at 37.5 K, were ob-
served. Note the correspondence of the broader heat-
capacity peak (2.25X107* kp/molecule) with the
minimum in the compressional moduli at the same tem-
perature. However, near 29 K we see only one feature in
specific heat with an entropy of 7.57X 10~ k5 /molecule.
Such behavior might be associated with some sort of
structural defect or domain motion.'* This feature does
not appear to correspond with the small ultrasound
features at the same temperature, perhaps because the
samples were different.

In discussing the broader ultrasound minimum, we be-
gin by emphasizing several key points. First, our sample
is a single, at least partially untwinned, crystal at room
temperature that shows no surface or bulk superconduc-
tivity when cooled. Second, the sound velocities for
compressional waves normal to the Cu-O plane
(V/c33/p) and for shear waves with both displacement
vector and propagation vector in the Cu-O planes
(v ces/p) are significantly higher than for dense ceram-
ics,' indicating strong anisotropy. Third, the system ap-
pears nearly tetragonal (c4y =css, €1 =C,y, €tc.) at 297
K, but becomes increasingly orthorhombic as it is cooled.
Taken together, these qualities establish that the interest-
ing Cu-O plane produces anisotropic elastic effects, the
in-plane anisotropies increase on cooling, and that elastic
and specific-heat features appear in the nonsuperconduc-
tor at a temperature near 7, in the superconductor.
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Others have seen unusual features near 7, in both su-
perconducting and nonsuperconducting samples also.
For example, Lang et al.!® observe breaks in slope of the
thermal expansion coefficient near 37 K in both La,CuO,
and fully superconducting La, 4sSr; ;sCuO,. Bhattachar-
ya et al.'® observe a strong stiffening of the shear
modulus of superconducting ceramic La, §Sry,CuO,_,
below T, that is similar to ours in the nonsuperconduc-
tor, but do not see the same broad local minimum in the
compressional modulus. It thus appears that some of the
observed thermodynamic and conductivity features
present near T, do not require the presence of supercon-
ductivity.

A minimum in the sound velocities is not typical of
crystalline solids. It is common, however, in systems
with low-frequency relaxation processes. Such systems
include structural glasses!” such as fused silica, which has
a minimum in its sound velocities near 40 K caused by an
attenuation peak there. Such effects also occur in fer-
romagnets,'* where the activation of domain-wall motion
strongly influences the temperature dependence of the
elastic properties.

It is, therefore, compelling to look for an attenuation
mechanism sensitive to temperature in the La,CuO, sys-
tem. One possibility is the oxygen sliding mode for
which Cohen, Pickett, and Krakauer!® have calculated
the potential. They find the potential to be highly anhar-
monic, thereby providing a plausible link to attenuation.
There is some direct evidence for anharmonic oxygen
motions in neutron scattering measurements.'*?° Should
such an attenuation mechanism be responsible for the ul-
trasound results, then the attenuation will depend on fre-
quency as well. This suggests that studies of the ultrason-
ic attenuation may clarify the processes we observe in the
elastic moduli.
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APPENDIX

The determination of the resonant frequencies from the
elastic constants is straightforward, and we begin by out-
lining this procedure. The method was introduced by
Demarest® and expounded in detail by Ohno.” It is based
on some remarkable attributes, consequences of
Hamilton’s principle, of the elastic Lagrangian integral

L =fV,L dv, where.,C=%pa)2uiu,~—-%c,-jk,u,'juk,1 ,
(1)

and where the domain of integration is the volume V of
the sample, w is the angular frequency, p is the density, u;
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is the elastic displacement vector, u; ; are the strains, and
the c;;, are the elastic constants. It can be easily demon-
strated that the extrema of L, with respect to unrestricted
variation of u;’s is realized for the u;’s that satisfy the
elastic wave equation in ¥V, and that satisfy the free-
surface boundary conditions n;c;;,u, ;=0 on the bound-
ary S, whose outer normal is n;.

We exploit this fortunate fact by expanding the dis-
placement vector in a complete set of orthonormal func-
tions on V, viz.,

w= 3 @y, P/(x/a)P,(y/b)P,(z/c), 2

I+m+n<N

where the P,’s are Legendre polynomials, normalized on
(—1,1), and 2a,2b,2c are the sample dimensions. When
(2) is substituted into (1), the integrals on x, y, and z can
be done easily, and the result is an expression for L as a
quadratic form in the expansion coefficients a;,,,, which
we can abbreviate as

L=1a"(po*~T)a , (3)

where I' is a matrix linear in the ¢’s, and a is the column
vector {ay,,,}, i =1,2,3,and / +m +n <N. Extremizing
(3) with respect to a;;,,,, yields the eigenvalue equation

Ta =pow’a . 4)

I is symmetric with order (N +1)(N +2)(N +3)/2. Nis
chosen by compromising between precision and practical-
ity. For N =10, this is an 858 X 858 matrix, but if we use
a rectangular parallelepiped of a crystal having ortho-
rhombic or higher symmetry, a tremendous simplification
takes place. The matrix becomes block diagonal with
eight blocks determined by symmetry and the largest
block, for N =10, is 125X 125. Thus it is straightforward
to compute frequencies from elastic constants. The in-
verse problem is somewhat less so for many reasons.

The scheme we chose to accomplish the inversion in-
cludes the following steps.

(1) Estimate the elastic constants as closely as possible,
if at all, from other sources.

(2) Form some function F of the differences between
the observed and calculated frequencies that is a
minimum when the two sets coincide. This may be as
simple as a sum of squares, or there may be some reason
to choose instead a sum of Gaussians or Lorentzians.

(3) F is clearly a highly nonlinear function of the elastic
constants, density, and dimensions of the sample. One
now uses some systematic scheme to search this multidi-
mensional space to find the minimum of F. We have
chosen to use ZXCGS (Ref. 20), which is an IMSL (Ref.
20) subroutine that uses a conjugate-gradient algorithm
that converges on the minimum relatively quickly. The
convergence criterion employed by ZXCGS is that the
sum of the squares of the derivatives of F, with respect to
the independent variables (which, in this case, are the
c;jk’s and a, b, c), become less than some prescribed num-
ber.

Complicating factors include the following.

(a) Each resonance has a certain symmetry, and some
have little or no motion of the corners perpendicular to
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the transducer plane; hence they are ultrasonically invisi-
ble.

(b) The formation of F requires the assignment of each
measured line to a calculated one in the ideal case, or,
more realistically, at least the assumption that there can
be a one-to-one correspondence if necessary.

(c) Therefore we need to assume that none of the lines
have been missed (or at least we need to know roughly
where the missing lines are), and we need to be relatively
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confident that no spurious lines are present, or at least to
know which ones are spurious.

(d) There may be more than one minimum of F. The
minima will always be shallover in some variables than in
others, of course, which means that the shallow ¢’s will be
less accurately determined than the steeper ones. We
have not yet done a detailed error analysis of the inver-
sion scheme, so we do not have more than rough esti-
mates of probable errors.
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