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We propose a phenomenological model for the copper oxide superconductors in which one com-
plex s-wave order parameter (OP) is associated with each of the N conducting layers per unit cell,
with N —1 equal spacings d and one different spacing d', the c axis repeat distance
s =d'+{X—1)d. The layers are coupled by Josephson-like tunneling, with parameters g, and gz,
respectively. The Gaussian fluctuation free energy is diagonalized, yielding N distinct T, values.
Just above the highest T„ the fluctuations are usually dominated by the three-dimensional (3D) re-
gime of a single cellular OP. In the 2D regime further above T„more of the OP's contribute to the
fluctuations, their relative contributions depending upon the g, and g2 values. The temperature (T)
and angular (8) dependence of the resulting fluctuation magnetization M(8, T) is calculated. In a
weak magnetic fleld B [B &Bp =/pl(svrrt, ), where Pp, vr, and r~ are the flux quantum, intralayer
Fermi velocity, and phase coherence lifetime, respectively], the susceptibility y,s is diagonal in the
crystal representation, resulting in an ordinary (anisotropic mass) 8 dependence at fixed T near T, .
At very high fields in very high-quality single crystals (co, v& »1, where co, is the pair cyclotron fre-
quency), M is best evaluated in the field representation. The component Ms(8, 'r) exhibits anoma-
lous oscillations in its 8 dependence, arising from degenerate multiple minima in the pair potential,
provided that the effective high-momentum cutoff q, is suSciently large. In this field regime, q, is
either on the order of ms/a, where a is the intralayer oxygen site repeat distance, or equal to
tr[1+(B/Bp)sin8]. The oscillations are similar to de Haas-van Alphen oscillations in the B depen-
dence of the normal state M. They are broadened by local, clean-limit dynamic effects but should
be observable for v&k& T, /A'»& 1 and N & 2, which we argue is the case in the best samples. In ad-
dition, the fluctuation specific heat (FSH) and Aslamazov-Larkin conductivity are calculated for
B=O, including dynamic effects. For arbitrary N, the FSH above T, is found to be proportional to
g„(T)/T. For fits of the theoretical FSH to experimental data, it is necessary to modify the mean-
field expressions for T (T„such that the entropy of the superconducting transition remains zero.
An example of such a modification is given. All fluctuation quantities exhibit dimensional crossover
(DCR) from 3D behavior near T, to 2D behavior further from T, . For the fluctuation diamagne-
tism the DCR temperature To(8) depends strongly upon 8 in the vicinity of m/2, where it diverges.
Away from T, dynamic effects are found to be important and can be so strong as to mimic DCR be-
havior, even for 8=~/2, for which DCR should not occur. The dynamic effects make quantitative
corrections to the fluctuation quantities for T as close as 1 K to T, . For N =2 detailed plots of the
above fluctuation quantities for a range of the microscopic parameters are presented.

I. INTRODUCTION
Since there is to date no consensus on the microscopic

mechanism for the copper oxide superconductors, a phe-
nomenological model capable of making predictions for
the superconducting properties of the entire class of ma-
terials may prove useful. There has recently been some
evidence accumulating as to the symmetry of the order
parameter (OP) in YBazCu307 s (Y 1:2:3). Muon-spin-
relaxation experiments and mixed-state-magnetization
measurements have indicated no deviation from the
BCS-like temperature ( T ) dependence of the penetration
depth k with applied magnetic field H direction. ' 0
NMR results have shown some evidence of a Hebel-
Schlichter peak just below the transition temperature T„
although contradictory results have very recently become
available. Far-infrared measurements gave a good fit to
the Mattis-Bardeen (BCS) formula. More recent mea-
surernents are qualitatively consistent with the BCS
clean-limit result. Recent high-resolution x-ray-

diffraction measurements have not seen any evidence for
a coupling of the orthorhombic strain of the OP. Togeth-
er, these experiments strongly suggest a nodeless OP in
momentum space.

The mobile quasiholes (arising from the holes in excess
of one per Cu site) are essentially restricted to being on
the oxygen sublattice within the CuOz planes and on the
bridging oxygen sites adjacent to the Cu02 planes, except
during interlayer tunnelling, as evidenced in
La2 „Sr Cu04 by electron-energy-loss spectroscopy and
neutron scattering' experiments. The Cu + holes are lo-
calized' for x =0, with a Mott-Hubbard gap, and exhibit
spin Auctuations. " These Cu + holes play some role in
the superconductivity, however, as evidenced by NMR
experiments. ' For materials such as Y 1:2:3 (for
5 & 0.4) which are superconducting, recent angular-
resolved-photoemission experiments' have demonstrated
the existence of a clear Fermi edge, proving that the nor-
mal state above T, is a Fermi liquid. The normal-state
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resistivity p, is extremely anisotropic, as demonstrated in
a Bi compound by Martin et al. ' In addition to a much
larger magnitude, the p„has a different T dependence
from p„or pbb, as was found' in TaSz(pyridine), &z.

This demonstrates convincingly that the interstitial layers
between the conducting planes are insulating.

Within the last two years, there have been several re-
ports' ' of observations of superconducting fluctua-
tions in the copper oxide materials. These fluctuations
have been reported in the conductivity, ' the specific
heat, ' and the magnetization. ' In measurements of
p; (T), the downturn from quasilinear behavior in p„
and p» has been attributed' to fluctuations, appearing to
exhibit dimensional crossover (DCR) from three-
dimensional (3D) behavior near to T, to 2D behavior fur-
ther from T, . This attribution was based upon a fit to the
Lawrence-Doniach' (LD) static result for the (s wave)
Gaussian fluctuation conductivity in a layered supercon-
ductor. In that model, one layer per unit cell edge is as-
sumed.

In the specific-heat report, ' an analysis based upon the
3D Gaussian regions both above and below T, led the au-
thors to conclude that the ratio of the fluctuation specific
heat (FSH) above T, to that below T, was too large to be
consistent with s-wave OP symmetry. However, as we
shall see in the following, those authors did not perform a
self-consistent fit, as they did not account for the substan-
tial entropy of the FSH. Very recently, however, those
authors' have performed measurements upon a very
high quality single crystal, and have concluded that the
best fit to their new data is for an s-wave superconductor.
In the conductivity' and specific-heat' data, and also in
recent dc magnetization measurements' of the upper
critical field H, 2, the coherence lengths extracted were
sufficiently short as to limit the electrodynamics to the lo-
cal limit, except in very large fields.

In the magnetization measurements, ' precursor super-
conducting fluctuation diamagnetism (SFD} was report-
ed, but no attempt to fit the data with available theory
was made. This is not too surprising, as the available
theory' ' ' to date is only for the case H~~c, and the ex-
periments were performed on powder samples. Hence we
believe it would be useful to perform calculations of all
three of these fluctuation quantities, accurate enough to
perform fits over the majority of the T range of the obser-
vations, and specific to the copper oxide materials. We
recall that fluctuations above T, are expected to be ob-
servable for T, & T ~ 2T„as was found in Pb/Tl alloys.

In this paper, we present a model that we believe
should prove useful in fits to the superconducting fluctua-
tion and other behavior of the copper oxide superconduc-
tors. The model is a straightforward generalization of

I

the LD model' for s-wave layered superconductors, gen-
eralized to include N conducting (CuOz, presumably) lay-
ers within a c-axis repeat distance (unit cell edge) s, with
N —1 equal spacings d, and Josephson tunneling parame-
ters g, and gz between the different spacings d and d';
s = (N —1)d +d'. For those materials such as Y 1:2:3ex-
hibiting Cu-0 chains, we assume that the chains are
essentially inert, as the pairing of quasiholes is assumed
to take place in the conducting layers (either the CuOz or
bridging oxygen layers), not in the chains. The presence
of the chains could cause an anisotropy of the pair
effective mass within the nearby layers, which we include
whenever possible. To our knowledge, this model encom-
passes all of the Cu-0 superconductors known to date.

We solve this model explicitly for the Gaussian fluctua-
tion free energy for N~4. For g, Agz, only one of the
OP's found to have the "bare" T, value (unreduced from
its g, =

gz
=0 mean-field value), the others having lower

T, values. Near to T„the 3D fluctuations are dominated
by this single OP. For g, comparable to gz, additional
OP's make substantial (but unequal) contributions to the
2D regime, their relative contributions depending upon
g, and gz. For arbitrary N, we calculate the angular (8)
and T dependence of the SFD, M(8, T} for both weak
and strong fields. For quantitative comparison of the
theory with experiment, we have generalized our model
to the level of the time-dependent Ginzburg-Landau
model, including the dynamic effects present in the local,
clean limit. In order to determine the material pararne-
ters as consistently as possible, we have also performed
the analogous calculations for the zero-field FSH above
and below T„and for the (free energy-derivable) zero-
field fluctuation conductivity. For comparison with ex-
periment, we have presented detailed plots of these quan-
tities for a range of microscopic parameters for N =2.

The outline of the paper is as follows: In Sec. II, we
present the model, and solve for the eigenvalues of the
Harniltonian. In Sec. III, we calculate the SFD in the
static limit. We consider both the weak field regime (Sec.
IIIA), for which the quantization axes are those of the
crystal, and the strong-field regime (Sec. III B), for which
the field itself defines the quantization axis. In Sec. IV,
we extend our results for the SFD to include dynamic
effects. In Sec. V, the FSH is calculated. The fluctuation
conductivity tensor is calculated at the same (above) level
of approximation in Sec. VI. Finally, in Sec. VII, we
present a summary and discussion of our results.

II. THE MODEL
We propose that the superconducting free energy is of

the form

F, F„= g f d—z f d r g (Ta)~f „(r)~'+(b/2}~1( „(r.)~ + g (2m„) '~(iB„2eA„)g„~—
~

1 Js n=1 p=1,2

2
Js +nd

+g, g P,„exp 2ie A—3dz
js+I n —1)d

2
{j+1)s 2+g& g &exp 2ie —A3dz —pi+i i +B /(8n)

js +{X—1)d
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where M is the number of unit-cell edges, 1( „(r) is the (s
wave) complex OP at the position r on the nth layer in
the jth unit cell edge, m„ is the intralayer effective mass
in the a (@=1) and b (@=2) directions, a(T)
=ao(T T—, ) (near to T, ) and b are the usual GL
parameters, g, and g2 are respectively the weak intracell
and intercell interlayer couplings due to Josephson-like
tunneling of quasihole pairs with charge +2~ e ~, A „and
A 3 are the magnetic vector potential components,
8=VX A, 8„—=8/Bx„, s=d(N —1)+d', and we have
set c =A'= 1. In these units, the flux quantum go= m /~e ~.

All parameters (other than 1( „)are assumed independent
of layer index, for simplicity. Equation (1) reduces to the
form of Klemm, Luther, and Beasley (KLB) for N= 1,
which is an extension of the LD model' to an arbitrary
local magnetic field B direction. The phase factors in the
tunneling terms are necessary to insure gauge invariance
of the free energy. Nonlocal effects are neglected.

Very recently, there have been reports of copper ox-
ide superconductors doped with electrons rather than
holes. This phenomenological model can easily treat
those materials as well, with a change in the sign of the
quasiparticle pair charge to —2~e ~.

In the Gaussian regime above T„ the ~P term can be
neglected. In this regime, B is constant both in direction
and in magnitude, and essentially equal to H, differing
from H only by the (small) fluctuation magnetization.
We take B=B(sin8cosg, sin8sing, cos8) with respect to
a, b, and c. The resulting Gaussian fluctuation free ener-
gy is minimized with respect to variations in 1(t,„, leading
to an eigenvalue equation for each 1( „. We define
s, =—2g, , Ez —=g, +(2, y„—= —g„exp(i(()„) for v=1, 2, where

(t, =q, d, $2=q, d', q, =k, —2eA3, q =q, s, and k,—is the
wave vector in the c direction,

1(t „=(Ms) ' g Pk „exp[ik, [js+(n —1)d]( .
lk, m/s

Defining HO=K+ Vo to be the intralayer part of the
Hamiltonian, the full Hamiltonian H =K+ V differ from
Ho by purely interlayer potential-energy-like terms. In
essence, the pairs on a given layer move with kinetic en-
ergy K, feel the (harmonic) potential Vo due to their
direct interaction with the magnetic field, but also feel
the field-dependent potentials (V—Vo) due to the pres-
ence of the other layers.

If the crystal were not periodic, we would have to diag-
onalize an NM X NM matrix, containing nonvanishing
elements along the diagonal and the positions neighbor-
ing the diagonal. In this case, the periodicity of the lat-
tice forces the amplitudes of g,„and g,'„ to be equal, so it
is possible to sum up all of the contributions to V —Vo by
diagonalizing an N XN matrix. For general N, the prob-
lem maps onto that for the calculation of the phonon
bands for N atoms in a one-dimensional unit cell. Since

[H —Ho, V]= [H Ho, Vo] =0, —

we let A, be any eigenvalue of H —Ho. This diagonaliza-
tion is exact for B~~c. For a complete treatment for an ar-
bitrary direction of B, see the Appendix.

For N=2, we must diagonalize a 2X2 matrix, which is
easily done by solving the determinant equation

r&+X2
=0,

'Y &+'Yz
(2)

for which the eigenvalues are

A, + =g, +g2+[gf+ f2+ 2()(2cos(q) ]' ' .

The eigenvectors for N=2 are

q/, +=.exp(~ri))[qk )+exp(~gp)1'/, 2]/&2,

(3)

respectively, where g, and ri2 depend upon P, and P2.
Note that for g, =gz=g and s =2d, A, reduces to the
LD form, 2([1—cos(q, d )]. For either g& (((2 or
(2&&(,, A, is again of the LD form, J[1—cos(q)],
where J=g, (2/(g, +(2). In addition, there is the X+
band, of energy 2(g, +gz) —Jcos(q). For the special case
that g&

= (2, we have

A ~ =2([1+cos(q /2)] .

This case is pictured in Fig. 1(a). For this special case,
the bands are degenerate at q=m. . More generally, for
g, A(2, this degeneracy is removed, as pictured in Figs.
1(b) and 1(c). Since the 3D regime of the fluctuations
arising from the low-energy band (with the highest-T,
value) is for a(T) less than the maximum in this band,
the higher-energy band will make at best a weak relative
contribution to the 3D fluctuation regime, unless g, and

g2 are nearly equal. It can make a substantial relative
contribution to the 2D fluctuation regime above T„pro-
vided that g, and gz do not differ greatly in magnitude.

The new physics comes from the existence of the
second eigenvalue A, +, analogous to an optical phonon
band. In ordinary superconductors, one would have such
additional order parameter bands, but the intersite hop-
ping energies would be much larger (i.e. , on the order of
I—5 eV) than in the copper oxides, making those bands
unobservable in the fluctuations. The relevant parameter
here is g&, for which there is no direct measure to date.
However, one would expect g&

—
~ J, ~

/4nT„.
g2-

~ J2~ /4n. T„for small
~ J; ~/4n T„where J& and J2 are

the single quasihole tunneling energies in the normal
state.

Positron annihilation studies in Y-Ba-Cu-0 have
shown a doubly periodic quasihole Fermi surface with
flat regions in the c ' axis direction in reciprocal space,
the amplitudes of the two components being comparable
to each other. We thus expect J, 52J~, so that g, S4g2
for that material. Since the DCR temperature To in that
material has been claimed from conductivity measure-
ments' to be roughly 15 K above T„ this would imply

$2
~ 30 K. In the copper oxides, some of the Bi and Tl

compounds are extremely anisotropic, presumably due to
the very small gz values, as one might expect the g,
values for these materials to be roughly the same as in
Y-Ba-Cu-O. However, the N= 3 compounds, for exam-
ple, have a different Cu02 layer sandwiched between two
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to calculate the SFD at an arbitrary direction of 8, and
then to do a powder average over all of the crystallites in
the sample. However, as measurements on an aligned
powder have just become available, we have kept the
full angular dependence of the fluctuation magnetization
M. We consider the weak and strong-field regimes sepa-
rately. These regimes are given by co, ~& && 1 and
co,~&&&1, where

co, =2eBl(m, mjc )'~

is the pair cyclotron resonance frequency for B normal to
the x;xi plane, and r& is the effective (pair breaking)
phase coherence lifetime arising from inhomogeneities.
Note that the m; are pair effective masses. As we shall
see in the following, the weak-field regime is further re-
stricted by

8&Bp /pl(sUpry),

where vz is the Fermi velocity in the ab plane.
In the weak-field regime (co,r&«1), the pairs com-

plete at most a small fraction of a Landau orbit before
dissociating, so that the notion of a Landau orbit is essen-
tially meaningless. In this limit, it is most natural to
choose the quantization axes to be those of the crystal,
just as in a correct calculation of Landau diamagnetism
in a crystal. However, the susceptibility y & is only diag-
onal in this representation (even in the 8~0 limit) for a
finite phase coherence length L& =UF~&, due to complica-
tions in taking the thermodynamic limit, arising from de-
generacy effects. We note that in addition to the sum
over the discrete "Landau" orbits, one must integrate
over the continuous degrees of freedotn k in calculating

Xo,~
In the strong-field regime (co, r&»1), the pairs com-

plete many Landau orbits, so that M is best evaluated in
the representation defined by the magnetic field direction,
as in the case of the de Haas-van Alphen (dHvA) effect.
In this limit M contains the components Ma, M&, and

M&, respectively, where 8 and P are unit vectors normal
to B. Practically speaking, as long as the pairs complete
at least a substantial fraction of an orbit (co, r&&0. 1), the
field representation will be sensible. We note that one
could attempt to solve for the strong-field regime in the
crystal axis representation, expanding the nonlinear ele-
mentsofM inpowersof IB ). However, asinthecase
of the dHvA effect, one would require a large number
( & 10) of powers in the IB; ) to obtain a convergent ex-
pansion (unless the pair bands were nearly ellipsoidal in
symmetry), as periodic functions are not well approxi-
mated for arbitrary argument values by a finite power
series. More important, one must eke a proper account
of the degeneracies of the eigenualues Such an e.xpansion
would thus necessarily be limited to weak field regime.

We first consider the case B~~c. Choosing A to depend
solely upon y results in a degeneracy with respect to k„
values that can be removed by a shift in y, giving rise to
the Landau degeneracy factor. One must integrate over
the continuous variable k„which appears in A.„(sk, ).
For B~~c, there is only one minimum in the (harmonic)
potential; the discrete eigenvalues are nondegenerate.

The case of B~~a (or b) is very different. Consider the

simplest case of the LD pair band,

', =J[l —cos(k, s+2eBsy)],

setting ~&= ~. In this case, the eigenvalue equation is
the Mathieu equation in the dependent (position) variable
y. Even for a finite crystal, the k, s in the argument of A,

can be eliminated by a shift in y (which amounts to add-
ing a constant to A3), giving rise to the Landau degen-
eracy factor. One must integrate over the (unbounded}
continuous degrees of freedom k„, which appears in the
free-particle form k„l2m, . For an infinite crystal, ~ has
an infinite number of degenerate absolute minima, lead-
ing to bands of eigenvalues for 8%0, and infinitely degen-
erate discrete harmonic oscillator levels for B=O. A
good picture of this is given by McLachlan. 2 This is
analogous to the tight-binding principle for the energy
levels of a periodic array of N atoms a variable distance
apart.

For B~~a and finite effective length L in the b direction,
the degeneracy of the eigenvalues depends upon L. If
8&Bp=gpl(sL), there can be only one absolute
minimum of the potential, and the corresponding low-
energy eigenvalues are nondegenerate. For 8 &38p/2,
there are at least two degenerate absolute minima. For

Os=12 A and L =10 pm, the eigenvalues are nondegen-
erate for Bp=1.7 kG, so this limit (8 &Bp) is very
relevant in large (L & 10@m), untwinned single crystals.
In samples with grain size L or intertwin distance L„
L &min(L, L, }. This is because the OP's on opposite
sides of a twin or in different grains are weakly coupled,
differing in phase. In Ya-Ba-Cu-O, L, «L (except for
isolated parts of the best single crystals), empirically
obeying L, =C(Lg)' for 2&Lg&50pm, where
C=1.7(A)' . ForL, =10 A, Bp=17T. Wetherefore
interpret the effective length L as the phase coherence
length L& =vz~& in the ab plane.

For a tensor representation for the SFD to be valid,
one must be able to calculate all tensor elements in that
representation. Hence, even for 8~0, the crystal repre-
sentation is only useful for a finite L&. y & is only diago-
nal in this representation for the fully nondegenerate case
B & Bo. If degeneracies in the absolute potential
minimum are allowed, g;, develops nonanalytic off-

diagonal terms. For example, terms such as
(8„) (8, )'~ in the free energy, while proportional to
B, cannot be properly treated in the crystal representa-
tion.

For an isotropic pair excitation spectrum, the SFD was
calculated using the field quantization procedure by
Schmid. For an ellipsoidal pair excitation spectrum
(analogous to an ellipsoidal Fermi surface in ordinary
Landau diamagnetism), both field and crystal quantiza-
tion procedures give the same result for all field
strengths, due to the rotational invariance of the pair ex-
citation spectrum (in appropriately scale-transformed
coordinates). For a general pair excitation spectrum, as
for a general Fermi surface, these procedures give
demonstrably identical results for fields along one of the
crystal axes. For arbitrary field angles, they should also

give identical results. For the technical reasons already
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noted, however, one has to be very careful in taking the
thermodynamic limit. The calculations are nontrivial ex-
cept for the two cases we shall consider: The weak-field
limit (co,r&«1) with no degeneracies (8 &Bo) in the
crystal representation, and the strong-field case
(co, r& » 1) in the field representation, introducing a
high-momentum cutoff to avoid such thermodynamic
limit problems.

We shall argue in the following that for the best super-
conducting copper oxide samples, both field regimes are
experimentally accessible. Our exact expressions can
readily be evaluated numerically, even in the presence of
local, clean-limit dynamics.

A. Weak SeMs

—~k~ TX —1

Xzx
„=o 6$o(mzm3„) 1/2

dk„
—~ 2m[ a(T) +a(T,„)+(k„/2m I )]

(13a)

n even (odd) inside the argument of A,„, as the k, depen-
dence of q is contained in the Landau degeneracy factor.
We may then expand X„(2eB„ys) [X„(m+2eB„ys), for n

odd] to order 8„,obtaining a hartnonic oscillator Hamil-
tonian with a free-particle dispersion (k„/2m, ) along B.
Results for B~~b are obtained by interchanging m, and
m2. We fin

z— fDVk, e p[ P(Fs Fx)l
k, 5,p, g

In weak fields such that co, ~&&&1 and B &Bo, we use
the crystal representation, B=(B„,B,B, ), and the SFD
volume susceptibility

y,p( T) = d (F—IV ) Ir)8 r)Bp,
where F is the Helmholtz free energy. It is easy to show
that y &

is diagonal (y &=g 5 II) for any choice of A.
We therefore consider only the cases of B parallel to one
of the crystal axes (x, ) expand F to order 8, to calculate
the zero-field y, and then take the thermodynamic lim-

it, guaranteeing that BL&~0.
For B~~x, the Gaussian partition function Z may be

written after the OP diagonalization as

I I

M
CV

I I

o

0

2.5

2.0—
0.01

1.5-

1.0-

0.5-

0.0—

—0.5,

=(mz/m, )y„„,

I

—2

(13b)

where

N —1

Fs Fx= X X X X Ek;leak .pl'
g=1 n=O p=O k

Hn 4k np Ek np Pk np (12a)

the index p counts the Landau levels, k is the wave vec-
tor in the x direction (~~B),N& is the number of flux
quanta in the sample (i.e., the Landau degeneracy), and
E„„arethe eigenvalues of the Hamiltonian (see the Ap-np

pendix),

I I

0

I—

M
CV

e

2.0-

1.5-

8 — 0'
(b)

k"(0) = 20
0.01, 2/9

where

H„=a(T)+ g (2m„) '(it)„2eA„)—
p=1,2

—0.5 I

—3

! 0.0—
o

0

0.01, 0. 1 0
0.10, 2/9
0.10, 0.10

I

—2
+A.„(q)+5X„(q) . (12b)

For a=1,2 the sum over k in Eq. (10) is unrestricted.
For a=3, the sum is restricted by ~k3~ &m/s. For
B~~c (a=3), we choose A= —B,yx, yielding a harmonic
oscillator Hamiltonian, with a dispersion along B given
by A, „(sk, ). For B~~a, we choose A=B,yz.

In order to calculate the Helmholtz free energy
F= —P 'ln(Z) (where P= 1/ka T) to order 8, we need
only find the eigenvalue to order B, due to the Landau
degeneracy factor. For B~~c, the eigenvalues are always
proportional to 8, For B~~a, w. e may set k, =0 (n./s) for

log„b (T/T, )

FIG. 4. Log-log plot of y„/T versus ln(T/T, ) for 0=0 for
both high and low fields. {a) g,&o{01=15A, a=0. 1 and 0.01,
y=0. 1 and 9. For @=0.01, y= —', both bands are included.
The open circles and filled triangles are the results of the static
approximation; solid and dashed lines are dynamic results for
the same parameters. {b) g,&o{0)=20 and 10 A. The legend in-
dicates e and y values. For g,ho{0)=10 A and a=0.01, both y
values shown have n =1 contributions. All calculations are dy-
namic ones.
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and

dk,

6pp(mtm2) n —p «I» 2m—[a(T)+X„(sk,)]

(13c)

g,g 8,$, T)= [y„„cos (P)+y~~sin (P) ]sin (8)

+y„cos (8) . (13d)

We note that y„„(and y~~ ) has a 3D T dependence, con-
taining two terms proportional, respectively, to
T/[ln( T/T, „)]',as the integral over k„can be per-

where we have used Eq. (8) for the minimum in the OP
band .

We remark that this simple form for the weak field y
leads to an angular dependence of the SFD that is of the
anisotropic mass form,

formed exactly. As discussed in the following, we have
modified the form of a( T) to coincide with that expected
from BCS theory. This result shows clearly that there is
no DCR in the T dependence of the SFD for BJ.c. g„de-
pends differently upon T due to DCR effects, so that a
simple T-independent anisotropic mass description of the
SFD applies only in the 3D region for weak fields.

The powder average of y,g 8,$, T ) is easily found to be

(g) =(g„„+&~~+g„)/3. In Figs. (4a) and (5a), we have
presented plots of y„„/T and y„/T for
s( =m, /m3p) =0. 1 and 001, y[ =g, (2/(g, +gz) ]=0.1

and 2/9, and g,bp(0) = 15 A. Figures 4(b) and 5(b) are
log-log plots of y„„/T and y„/T for g,bp(0)=20 A and
10 A, including the dynamic effects discussed in Sec. IV.
Note that the static calculations of g /T plotted in Fig.
4(a) have slopes of —

—,
' .

B. Strong fields
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0
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0
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I0 0-

0. 1 0, 2/9
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(.5(0) = 20 A

0.01, 2/9
0.0 1, 0. 1

0. 10, 2/9
0. 1 0, 0. 1

Iog „/ (T/T, )
FIG. 5. Log-log plot of y„„/ T vs ln( T / T, ) for 8=90' for low

fields. (a) g,bo(0) = 15 A, a=0. 1 and 0.01, y =0.1 and 2. For
c=0.01, y = 9, both bands are included. The open circles and
solid triangles are the results of the static approximation; solid
and dashed lines are dynamic results for the same parameters.
(b} g yo(0) =20 and 10 A. All calculations are dynamic ones.

We now turn to the more interesting case cu, ~& && 1 .
This regime is attained when

8 /H, 2( 8 ) »A/( r~ks T, ),
where

8,2( 8)= T, IBH,2( 8, T )/8TI,

evaluated at T, . If ~&kz T, /I were on the order of unity
as has been suggested, ' it would be impossible to study
this high-field regime. From normal-state resistivities,
~k& T, /A ~ 1, where ~ is the single quasihole scattering
time. However, we must have r&ks T, /R » 1, since
numerous workers have obtained essentially the same T,
values in each of the vast majority of the materials stud-
ied t If there were a shift of as much as 2 K down from
the bare (homogeneous) T,p (in the absence of pair-
breaking effects), then the standard Abrikosov-Gor'kov
pair-breaking theory would imply r&k~ T, /fi —1 8 in
Ya-Ba-Cu-O. In the best samples, with the highest T,
values, we are very likely to have r&ks T, /A' & 100 or
larger.

The partition function in the Gaussian regime for
strong fields is similar to that for weak fields, differing in
one essential feature. Writing B in terms of its com-
ponents in the crystal axis representation, as already not-
ed, we must rotate the crystal axes so that one of them (c,
for example) becomes parallel to 8, in order to quantize
the Hamiltonian properly. In this limit, k in Eqs. ( 10)
and (11) becomes replaced with k„ the wave vector along
B. In addition, the summation over k, values is restrict-
ed to Ik, I

(k,p= m. /s Icos8I, due to the rotation. This
form for k,o is easily seen to be correct by considering an
infinite thin slab of thickness 2m. /s normal to c * in re-
ciprocal space. As the integration is along the direction
of 8, for 8=0, k, =k„which is bounded by +sr/s For.
0=~/2, k, =k, which is unbounded, as already dis-
cussed. For B at an angle 0 with respect to the normal to
the slab, the integration limits are trivially found to be
+n /(s I cos8 I ).

If v
&

were infinite, we could use this procedure to cal-
culate the weak-field regime (which would agree with
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those of Sec. III A, provided that we first took 8~0 be-
fore taking the thermodynamic limit): All (nondegen-
erate) potential ininima would contain an infinite number
of Landau levels, and the procedure would therefore be
exact. By taking the thermodynamic limit before setting
B~0 (the usual procedure), we are implicitly assuming
an infinite degeneracy of the B~0 eigenvalues for
8=m/2. As we shall see, these thermodynamic limit
problems are easily handled in the field representation by
introducing a cutoff q,

* in the wave vector integration in
the c ' direction, which incorporates the ~&& 00 restric-
tion. However, ~&( ~ also restricts the applicability of
this approach to larger fields (co, i.&

& 1).
In addition, the anharmonicities of the potential wells

cause the eigenvalues to become nonlinear in B. Howev-
er, we may approximate these potential wells by their ex-
act minimum positions and curvatures, which is valid for
B/H„(8) «1. Hence, the region of (rigorous) validity
of this strong-field calculation is

fi/(i. &k~ T, ) «B /H„(8) «1,

pendix). We note that the only k„dependence of H„ is
through the variable 2eBy —k„, so that k„can be elim-
inated by a shift in y: 2eBy —k ~2eBy. The k, cosO
term inside the argument of X„could for 8%0 be re-
moved by a shift in y, causing it to appear in the harmon-
ic potential term. However, since we have already re-
moved k, accounting for the Landau degeneracy, there
is nothing to be gained by doing so.

Note that for 8=0, we recover the correct harmonic-
oscillator Hamiltonian with a dispersion in the continu-
ous degrees of freedom given by A,„(sk, ), where

~k, ~
&ir/s. For 8=ir/2, we obtain the expected Hill (or

Mathieu, in the LD limit) equation, with a dispersion in
the unbounded continuous degrees of freedom given by
k„/2m i, exactly as in the crystal axis representation. As
for the weak-field crystal axis representation calculation,
there will not be any DCR to the 2D regime for 8=m. /2
in the temperature dependence of the SFD (as T is in-

which is theoretically attainable for T~kB T, /h») 1 As
noted in the introduction to Sec. III, however, both pro-
cedures are exact for all field strengths for 8=0, neglect-
ing nonlocal effects. However, for B/H, i(8)«1 and
i.ksT, /fik 1, nonlocal effects make at most a small
correction to the local dynamic calculation results, '
so our results should be accurate in this regime. Experi-
mentally, the fields involved would most likely be in the
range 10-50 T in untwinned ultra high-quality single crys-
tals of Ya-Ba-Cu-O. In the Bi and Tl compounds, twin-
ning is not a problem, so one "merely" needs homogene-
ous single crystals with a very sharp T, .

For simplicity of the argument, we assume B lies in the
ac plane, (/=0). Results for P=n/2 can eas.ily be found
by interchanging m

&
and m2. This derivation is correct

for all P values for the uniaxial case mi=mz. For
/%0, ii/2, the problem is nontrivial, unless m i

=m2. We
take the vector potential to be A=B( —y cos8, 0,y sin8).
We then rotate about the b(y) axis by 8, so that
c~5=B.

Under this rotation, k, transforms like B„mixing with
k . Note that the resulting potential is independent of x,
so that 1( may be written as

u (y )exp[i( k„x +k,z ) ]= u (y )exp[i( k„X+k,z )],
invariant under the rotation. Hence, B„and 0, behave as
c numbers, in that they only operate upon exp(ik„x ) and
exp(ik, z) in the preceding expression for g. We thus
have

H„=a(T)(i8 ) /2m~

04-

N

IO) 02-

CV

0.0

0 k, s/iTII

4 I

40, 1.0
40, 0.9 ~'

45, 0.0
45, 0.9
45, 1.0
50, 0.9
50, 10

0

18

(a)

(b)

20

+ [cos8(2eBy —k„)—k, sin8] /2m,

+A,„[s[(sin8(2eBy —k„)+k, cos8] [

+5X,„[s[sin8(2eBy —k„)+k,cos8] I . (14)

In what follows, we neglect 5A.„,as we are primarily in-
terested in the eigenvalues of I„ to order B (see the Ap-

FIG. 6. {a) Plotted is the potential experienced by the
quasihole pairs for field angles 8 in the vicinity of 45', as a func-
tion of the reduced real-space position y, for various values of
k, . (b) Quasihole pair potential versus y for 8=80' for
k, =m/2s. The case c=0.01, y =

9 is essentially identical to the
@=0.01, y =0. 1 case pictured.
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V(y, k, )=(cos8y/s —k, sin8) /(2m
&

)

+J[1—cos(y sin8+sk, cos8)],

which is ~ 0. We recall that

(15)

—k,o
& k, & k,o

=m /(s
~
cos8

~ ) .

creased from T, ), regardless of the band index n .Hence,
Eq. (14) has the correct limiting behavior as 8~0 and
m. /2.

Note that as B~0, the eigenvalues of the Hill
(Mathieu) equation reduce to those of the harmonic oscil-
lator, but deviate from them as B increases. Hence, for
this direction of B, we would expect DCR in the field
dependence of the SFD, similar to the DCR in H, 2 below

7; for Bic. We have estimated the crossover field B* at
which this occurs by expanding the lowest eigenvalue to
order B,obtaining

8' —16(m z /m 3 )
' $0/(ms ) .

For Y-Ba-Cu-O, B' is on the order of 240 T, making this
diScult at best to observe. Hence, it is reasonable for
8 «8' to calculate the eigenvalues to order 8 (as in the
weak-field case), but keeping account of the degeneracies
of the eigenvalues, as discussed in the introduction to Sec.
III. Since sk, cos8 is bounded by hn, this degeneracy
only arises because the bounds upon g are +L&/2.

Equation (14) further contains an additional very in-
teresting feature: the presence of multiple potential mini-
ma, degenerate with the absolute minimum, for particu-
lar values of the field angle 8. To illustrate this important
point as simply as possible, let us consider the case of an
LD band, and let y =s(2eBy —k„). Note that for
N= 1, 5A, =O. The potential in Eq. (14) can then be writ-
ten as

V„(y)=a(T)+A,„(q'}+(q'cos8—sk, ) /(2m ~s sin 8)

+[2eB(g—g *)]a„(8,q" )/(2m |), (18a)

of Ma(8, T) that resembles the field dependence of the
dHvA effect. The appearance of one (k, =+sr/s) of the
first secondary minima degenerate with the primary one
is pictured in Fig. 6(a). We note that at k, =+a./s, as 8 is
increased through 45', the secondary minima are always
higher in energy than the primary (k, =0) one, except ex-

actly at 45'. The secondary potential minima never be-
come lower in energy than the primary one. As H, 2 is

given by the lowest eigenvalue of the Hamiltonian, this
means that this degeneracy has no effect whatsoever upon
the angular dependence of H, 2. In the 3D regime just
below T„H,2(8, $) is given by the usual anisotropic
mass form. Note that for N & 1, these degeneracies are
only exact to order 8. For N=2, the n =0 degeneracies
are also exact for the special case g,d =$2d'.

In Fig. 6(b), the potential for 8=80' is pictured, show-

ing that the potential is a tilted "washboard" potential,
allowing for multiple (but nondegenerate) minima at the
same k, value. Note that in this case, there is a local
maximum, which must be excluded from the region of in-
tegration, if one is to make the harmonic approximation
about each of the minima.

In order to find the general 8 dependence of the SFD,
we write H„=T+ V„(y), where T=(i "d ) /2m2, and V„J'
is the sum of the constant, harmonic, and periodic parts
for the nth band. Since for both the 8=0 and m/2 cases,
V„reduces to the harmonic-oscillator form for small B, it
is reasonable to expect such behavior for arbitrary t9. To
find the behavior in this limit, we expand V„(g) about its
minimum value(s), which occur(s) at y '. We then have
to solve the transcendental set of equations,

At k, =0, the absolute minimum of V(y, O) ( =0) occurs
at y =0. As k, is increased (decreased) from 0 to its max-
imum (minimum) value, V(y, k, ) changes to

V(y, +k,o)=(cos8y+Wan8) /(2m~s )

q'=s(2eBy 'sin8+k, cos8),

cos8(q "cos8—sk, ) = —m, s sin 8A, '„(q ' ),
and

(18b)

(1gc)

+J[l+cos(y sin8)] . (16) a„'(8,q')=cos'8+m, s'sin'8A, '„'(q')) 0, (18d)

8 =tan '(2m —1)'~2, n even, (17a}

where m =1,2, 3, . . . is a natural number. The preceding
discussion can be easily generalized to arbitrary k„(q),
and Eq. (17a) applies rigorously for n even. For n odd,
we find

8 =tan '(2m )'~, n odd . (17b)

Since the two terms in V are both ~0, another absolute
minimum degenerate with the above one can only occur
if both terms vanish. The first term vanishes for
y =En sin8/cos 8. With this value of y, the second
term =J[1+cos(~tan 8)], which vanishes at the set
I 8 ] of discrete 8 values given by

where the last relation is necessary to insure a minimum
in the potential. We note that since A,„(q ) is periodic in
q*, Eq. (18c) is related to the problem of the metastability
of the pinned charge-density wave condensate below
threshold, and represents the rninirna of the "washboard"
potential. In this context, it arises naturally from the
periodic Josephson junction array of the layered super-
conductor. As expected, there are several regions of
different behavior, arising from the presence of multiple
minima.

Since Eq. (18a) is of the harmonic-oscillator form, the
eigenvalues of the Hamiltonian may be found to order B
exactly, yielding

As 0 is increased through 0, the magnitude of the SFD
jumps almost discontinuously by a fraction 2/m of its
value for 0 (0 . This results in an angular dependence

Ek =a(T)+A,„(q')+m, s tan 8[A, „'(q*)] /2
Z

+(2p+1)eBa„(8,q*)l(m &m2)'~ (19)
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where we have used Eq. (18c).
We now may calculate the SFD. For B/H, 2(0) «1,

we calculate F/V to order 8, where the Helmholtz
free energy F= —P 'ln(Z), P= 1/(k&T), and Z is the
partition function, obtaining F/V ~f(0,$)B /2 in
the thermodynamic limit. The magnetization

I

M =BMa+ OM s+ PM&, where Ma = 3(F/V ) Ir)B,

M& = B—'B(F/ V) /BO, and M& =(B sin0) 'd(F / V ) /
BP, M& vanishing for uniaxial anisotropy. We define

yz=—M&/B. Since F contains the Landau degeneracy
factor (B lgo), it suffices to calculate E to order B. From
Z, we have

1V —] ~ koF/V= —[B/(POP)) g g J (dk, /2m)in[a/(PE& „)].
n =0 p=O

(20)

Differentiating F/V with respect to B, using the Poisson summation formula ' (to calculate the sum over Landau lev-
els), and integrating by parts (neglecting the wildly oscillating boundary terms in the usual fashion), we obtain,

where

k&T . & —
~ i„dk,a„(0,q')6(a„(0,q'))

in
6go( m

&
m z )

'
o

—i,o 2n.[a ( T ) +f„(0, q
*

) ]
(21)

(22)f„(0,q')=k„(q')+ m, stan 0[A, '„(q')] /(2A ),
and 6(z ) is the Heaviside step function. Using Eq. (18c) to change the integration variable from k, to q, we obtain,

ok~ Ts —& —
~ ~e„*,„dq'a„(0,q')6(a„(O, q'))m3„

12$g cos0~ m „=z —e ',„2m [Z„+m 3„s f„(0, q
'

) I(2' ) ]

where q*,„ is the maximum allowed solution of

m =q",„cos 0+m~s sin OA, '„(q',„)Ifi

(23)

(24)

and Z„=s/[2(3„(T)],where (3„(T)=(m/m3„)'~ g,&(T), m =(m&m2)'~, and g,b(T)=[2ma(T)] '~ is the geometric
mean coherence length parallel to the layers. In Eqs. (22)—(24), we have reintroduced the quantity fi for clarity. The in-
tegration region for positive q* is pictured for relevant parameter values in Fig. 7. Note that near to 0=m/2, there are
many excluded regions, due to the restriction a„0. An example of this was shown previously in Fig. 6(b).

We note that as 0~0, q*,„~m, leading to a ya that reduces to the weak field form [Eq. (13c)]. In order to obtain
Eq. (13a) for the weak-field 0=m. /2 result, one must introduce a cutoff in the q' integration, such that no degeneracy is
allowed, as already discussed. Letting y=(, (2/(g, +gz) as for weak fields, the LD form is obtained for y~O, —,'. The
maximum value of y is —,

' by inspection. The A, „can then be characterized in terms of the two parameters c, =m/m3O
and y. The DCR temperature To„ for the nth band is found by setting Z„[TO„(0)]equal to the maximum allowed
value of

m3„s f„(0,q*)/2,

yielding,

Z„[TO„(0)]= max [m,„s A.„(q*)/2+m, m, „s tan 0[A, '„(q')] /4)' (25)

For y~O and 0~0, this reduces to Z„[TO„(0)]=1,the
familiar LD result. For y )0, the values of Z„[To„(0)]
are less than this, as pictured for %=2, n =0 in Fig. 8.
We note that as y~O, the Zo[Too(0)]~1 for 0& 0,. ,
where 0, is the angle at which the first zero of ao(0, q')
occurs. For y)0, Zo[TOO(0)] is still a constant for
8 ~ O„but that constant decreases monotonically with in-
creasing y from 1 (for y=0) to I/v 2 (for y= —,'). For
0) O„ZO[T~(0)] is less than this value, exhibiting a
kink at 0, . For c.=O. 1, 0, is found to be -71'. As c~O,
0,~90'. We note that in all cases, as 0~90',
Zo(Too)~0, implying no DCR for this field angle, even
as c.~O, although in that special case, the DCR tempera-
ture jumps discontinuously from its 0=0 value to ~ at

0=90. Similar results are obtained for n )0, diff'ering
primarily in that the DCR temperature occurs at larger
Z„values.

Although in the interest of some degree of brevity, we
have not shown the angular dependence of yz in this stat-
ic limit, Figs. 8—10 [which were calculated including dy-
namic effects] examined with a bit of imagination indicate
that the special angles given by Eq. (17) appear dramati-
cally in g&(0, T). In addition, the lack of DCR is evident
in ga(n /2, T) in these figures. Note that for n =1, there
is an additional broad maximum [not present in Eq.
(17b)] at O=n /6, since the curvature of the band is nega-
tive for small q'. Except for this maximum in ya(0) at
fixed T, each of these 0 values, an additional minimum
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in the potential has become degenerate with the ground
state. We note, however, that the denominator in Eq.
(23) is only small for the n =0 band, so that the magni-
tude of the peaks for the upper bands is small relative to
that of the n =0 band, unless T, &

is near to T, . Curious-
ly, if T„=T„the peaks in the n = 1 band will also be ob-
servable, and ~ould be out of phase with the n =0 peaks.

Physically, the pairs move in orbits that are effectively
extended beyond the first Brillouin Zone in the c ' direc-
tion (in the periodic zone scheme). This effective exten-
sion arises from the component of B in the ab plane, and
has nothing to do with the rotation. We recall that the
requirement for gauge invariance of the free energy intro-
duced a phase difference proportional to A, between the
OP's on adjacent layers. Since above T„Bis a constant,
A3 varies linearly in position along the ab plane, giving
rise to a pair potential that is periodic in real space. The
origin of these peaks is due to a combination of the exten-

sion of the pair orbits beyond the first zone (by the mag-
netic field at the appropriate 8 values) and to the presence
of degenerate minima in the potential for these angles. If
there were no cutoff (arising from finite-size effects or
other mechanisms) in the maximum q

* value allowed, the
orbits for 8=m/2 would be truly open. Such was also the
ease for 0=m. /2 in the weak-6eld regime.

If no additional physical processes are introduced into
the problem, g&(m/2, T) would be logarithmically diver-
gent, for as 8 is increased towards tr/2, ya(8) would pick
up contributions of relative weight (2m —1) ' from an
infinite number of degenerate minima [see Fig. 6(a)]. We
emphasize that this divergence arises solely from the
infinite degeneracy of the energy levels for 8=ir/2 for
6nite fields, as already discussed. Hence, it is necessary
to introduce a cutoff in q* which is more stringent for 6
near to m. /2 than that given by Eq. (24). There are
several possibilities for this cutoff, one of which has al-
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FIG. 7. Shown is the integration region for the high-field sus-
ceptibility calculation, as a function of the field angle 8. The el-
lipses centered at q =(2@+1)m. in (a) and 2pm in (b) are exclud-
ed, as they correspond to maxima in the potential. (a) c, =0.01,
@=0.1 n =0, q, =11.7m", (b) m=0. 01, y= —,n =1,q, =11.7m.

FIG. 8. Plotted is the high-field g, [To(8)]/2s vs 8 for n =0
and several values of y. (a) c.=0.10, (b) c.=0.01. The dimen-
sional crossover temperature To(0) is found from these curves
combined with Eq. (29a) and $,0(0)=&eg,~o(0). Note that
g, (T):—g'3O(T).
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turn experienced by a quasihole moving in the presence of
at t e angle 0. This cutoff is very sensitive to the pre-

cise details of the normal-state band filling, and could be

a nearly half-filled band) kF to be on the order of 7r/2a,

where a is the 0-0 intralayer nearest-neighbor distance.

sufficient to allow two peaks in the angular dependence of
gB(H, T), and would be more stringent (for high-quality
single crystals) than the phase coherence cutoff. In the
figures presented in this paper, we have merely treated q,

*

as a constant, less than or on the order of mrs/a. For
a igned powders of Y-Ba-Cu-O, it is likely that the finite-
size cutoff will predominate, especially for lower-field
values. It should be noted however th ta q, is propor-
tional to s, so that this cutoff will be greatest for high-

FIG. 9. Show9. Shown is a plot of the high-field ya(0) for=,c = . , ~,bo ) = 15 A and y = —', at four temperatures.

(a) T/T, =1.01, (b) T!T,=1.07, (c) T/T =1.15 a d (

.75. The solid (dashed) lines are for qc= 11.7~(3.74m ), respectively.

ready been discussed somewhat in the introduction to
Sec. III.

Assuming that the cutoff arises solely from physical
processes present in the model, it would be due to the

nite phase coherence length L &. As mentioned revi-
ously, for the field in the a direction, the argument of the

L& 2 (y '—(L&/2) The dege. neracy for that field an-

gle and BWO was given by mod[2eBsL&/2n ]. This result
can easily be extended to arbitrary 8, using Eq. (18b).
Hence, for the finite-size cutoff, we have
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q,'/rr = (B /B )soi 8n+ 1, (26a) (b)

(26b)

where kF is the minimum value of the Fermi rnomen-

where the one arises from the maximum valu f k, 0,eo s,cos,
an o=Po/(sL&). We note that q,*~tr as 6)~0, and
re uces to the correct finite-size cutoff as O~m. /2 dis-
cussed previously. In samples that are highly twinned or
that ex ibit many grain boundaries ( h h

s — —0 ), this phase coherence cutoff would like-
1 be the dy e e ominant cutoff, except for very large B values.

er other mechanisms, as this cutoff would diverge as
0~~/2 for L&~ ~.

Since q /s represents the allowed pair momentum
values near the minima in the potential, it must be re-
stricted b the alloy wed single quasihole momentum
values, +kF+q*/2s, which depend upon the quasihole
band structure and the 8 direction. H
that if the

'
ec ion. ence, we expect

at i the single quasiholes are restricted to being in the
first Brillouin z (one (e.i., do not themselves move in ex-
tended orbits), the maximum q* value would be on the
order of

q,
' =2skF
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FIG. 10.G. 10. Shown are plots of the high-field (0) f
c.=0.01, ~ (0 =1

- e yB 0m=0,
)=15 A for two values of y (0.01 and —) t

l f *117
an —,two

values of q, [11.7n., solid line, and 3.74vr, dashed lines) at four
temperatures. Upper: (a) T/T, =1.01, y= —', ; (b) T/T, =1.01,
y=0. 1; (c) T/T, =1.07, y= —; (d) T/T, =1.07, y=0. 1.
Lower: (a) T/T, =1.15, y=2/9; (b) T/T, =1.15, y=0. 1; (c)
T/Tc=1 75 y= pl (d) T/Tc= 1'75~ y=0 1
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quality materials with X 2, and will increase with X.
We remark that while q,

* depends upon 0, the question
of whether the first peak (at 8, = rr/4) occurs or not really

depends upon the value of q,'(8, ), which must exceed 2m

for the full peak to appear. If rr &q,'(8&) &2m. , a smaller
rise, followed by a rapid decrease in yz(8) will occur near

0&. If in some material, q,
* were always well below 2m in

magnitude, then yB(8) behaves in the 3D regime accord-
ing to the anisotropic mass law, being proportional to
ao(8, 0). Curves for two arbitrarily chosen values of q,

'
are pictured in Figs. 9—13.

In Figs. 4 and 9—12, it can be clearly seen that the
overall anisotropy [g&(O, T) gz(r—r/2, T)] in the high-
field y& depends strongly upon the cuto6' q,'. For
q,
' & 2rr, gz(8) for the n th band closely approximates the
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FIG. 12. Log-log plot of the high-field gz/T vs ln(T/T, ) for
8=85.5' and 90', g,~o(0)=15 A. The legends indicate e, y, q,
values (a) 0=85.5', (b) 0=90'.
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anisotropic mass form [HATT(8)-a„(8,0), as in the low-
field regime] in the 3D regime. For 2Tr&q,'&4Tr, one
anomaly is allowed, and the overall anisotropy in the 3D
regime is considerably less (on the order of a factor of 3)
than that of the anisotropic mass form. For larger q,

*

values, more anomalies are allowed, and the overall an-
isotropy can even be reversed in sign from the low-field
value, even in the 3D regime, provided that c and q,

* are
both suSciently large, respectively. Hence, the presence
of these extended orbits can drastically change the angu-
lar dependence of HATT(8, T) from the anisotropic mass
form, even in the 3D regime of the fluctuationsI

We remark that as Ms is proportional to BgTT/(}8, max-
itna and minima in HATT(8) will result in zeros for Me(8).
In torque experiments, one measures M X H, so the
torque is proportional to M&. This would be in addition
to the torque arising from the anisotropic Van Vleck sus-
ceptibility, which should have an angular dependence of
the ordinary sin(28) form, so one should look for oscilla-
tions on top of this background. In addition, if g, and (2
were comparable, T„ for the n=1 band (for N=2)
would nearly equal T o.

clean limit for impurity scattering. The TDGL theory is
also expected to give a much more accurate estimate of
the fluctuations for T well above T, ; it is necessary to in-
clude these dynamic effects in order to obtain an accurate
fit in the 2D regime. As we shall see in the following,
quantitative deviations from the preceding static behav-
ior are found to occur for T as near as 1 K from T„so
that dynamic effects should also be included in compar-
ison with the specific-heat data, ' which extends roughly
10 K on either side of T, .

We assume that the dynamic processes present in the
Gaussian fluctuations are well approximated by the
TDGL theory, modified to include N layers per unit cell.
We assume that the OP P „relaxes according to

( n XN, 1) (27a)

loPIN + /11( jN —
T
+ 920j + I, I NjN

(n =N) (27b)

IV. DYNAMIC EFFECTS UPON
THE FLUCTUATION DIAMAGNETISM

As is well known for the dHvA effect, one would ex-
pect impurity scattering and the finite T to modify the
sharpness of these anomalies. For the normal-state
dHvA effect, one must have extremely clean samples and
low T in order to observe any oscillations. The restric-
tions in that case arise from the Fermi-liquid nature of
the normal state: At low T and high purity, the Landau
levels do not overlap, and as the field is increased, succes-
sive Landau levels pass through the (sharp at low T) Fer-
mi energy EF. Finite T on the scale of EF will smear the
quasiparticle density of states as well as broaden the Lan-
dau levels.

For the SFD in the copper oxide superconductors, on
the other hand, the temperature corresponding to T=O
in the dHvA effect is T, . As for broadening of the levels,
the relevant quantity is the phase coherence lifetime ~&.
In this case, the overlapping of the Landau levels is less
important, as the (pair) Landau levels are not to first ap-
proximation affected by the sharpness of the quasihole
density of states near EF. Rather, the peaks in gTT(8)
arise from the degeneracies at different k, values in the
pair potential. As already stated, there is good reason to
believe ~&k~ T, /A)) ~k~ T, /A 1. We therefore believe
the dominant broadening mechanism would be from the
finite T (relative to T, ). This broadening will arise from
fluctuations of the OP s in time, or dynamic effects. Since
the microscopic pairing is thought to be local in nature,
especially as the coherence lengths are so short (10—20 A)
within the planes, nonlocal effects will make at most a
moderate modification to these results, provided that
8 /H, 2(0) « 1.

To estimate the broadening of these anomalies, we
have extended our calculation to the level of the time-
dependent Ginzburg-Landau (TDGL) theory, using the

rjo&, T
+—I) T 4,, 2+ r)24I T, N Hf-j T—

(ioI+ I „Eq )Qb =0, (27d)

where

I „=16m g,'b„(0)kTT T,„/Tr

in the clean limit at T,„. For n =0, I o is equivalent to
8/(Trao), the standard result. For n&0, I „ is reduced
from this value by the factor T,„/T„as g,b„(0) is as-
sumed to reflect the range of the microscopic interac-
tions, which we take to be nearly independent of n. For
N=2, the g,b„(0) are rigorously equal, but for N ~ 3,
they are only approximately so. Therefore, we have
henceforth kept the band index subscript associated with

4b. (0).
We note that in a full BCS calculation, I „becomes T

dependent away from T,„. To solve for the full T depen-
dence of I „, one would need to solve the microscopic
model appropriate for N bands, which is analytically
diScult. To incorporate this T dependence approximate-
ly, we multiply the respective contributions to the free
energy from each of the bands by their respective I „

(n =1), (27c)

where T)o describes the relaxation of gj„due both to in-

tralayer temporal processes and to the hopping of the
pairs to the nearest-neighbor layers, and g„g~ account
for the corresponding increase in the OP's on the
nearest-neighbor layers due to the hopping. For N=1,
the g, process could be incorporated into the go process,
as all of the OP's have the same T, value. For N ~ 2, one
Fourier transforms gj„(t) to TtII„(oI), and then diagonal-
izes the resulting Hamiltonian exactly as in Sec. II,
evaluating the resulting damping constants I „at
q =co=0 and at T= T,„. The equation of motion for the
nth OP g (after the diagonalization) is thus given by
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values, in order to match the static calculation as T T, .
This has the effect of giving the various relaxation rates
the same value at the highest T, (T,p). This procedure is
shown explicitly in Sec. V.

The free energy now contains contributions from each
of the fiuctuating OP's, with N(co) of them fiuctuating at
frequency co, where

N(co) = 1/[exp(Pco) —1]

is the boson occupation number. One must integrate the
imaginary part of the inverse of the quantity in square
brackets in Eq. (27) (i.e., the effective pair propagator)

over the positive frequencies, weighted with the factor
N(co)+ —,'. For rks T, /fi & 1, however, the zero-point
term gives rise to a large constant that is essentially B
and T independent, and can be dropped, as first pointed
out for bulk materials by Maki. For dirty layered su-
perconductors with the field in the c axis direction, the
dropping of the zero-point term is also appropriate.
As it is likely that 10& rks T, /fi& 1 for the materials of
interest, we assume that the dropping of the zero-point
term is a reasonable approximation.

We may then write down the expression for the high-
field SFD that should be accurate over the entire T range
of the measurement. We find,

& —i 16k' T,„(,t,„(0) „a,dg ~',„dq'a„(8,q')B(a„(8,q*))
yB(8, T)=-

3ir slcos8 pp p e —1 p co +r „[Z„+mi„sf„(8,q')/(2' )]
(28)

where r„=8r„(T,„/T), and r„=(4/m. )[(3„(0)/s] is the parameter introduced by KLB to characterize the degree to
which DCR effects will enter into the "old" layered compounds. ' In Eq. (28), we have set co=Pco, so that both in-
tegration variables are in dimensionless units. We have also included A' in the appropriate place, for clarification.

The low-field SFD can be found by modifying Eq. (13) in the same manner. Since y„(T) (for weak fields) is identical
to gii(0, T) (in high fields), g„ is given by Eq. (28) with 8=0. By inspection,

—16 ~ ' - codco dq k, Tg.b. (0)
3m. spp „=p p e —1 p pi +r „[Z„+m3„sA„(q)/(2. fi )]

(29a)

+ZZ

Log-log plots of the dynamic y„/T versus ln( T/T, ) are given in Fig. 4, using the BCS form of a( T ) described in the
following. Since y is given in terms of y„„by Eq. (13b), we need only find y„„. After integration over k„, we find

—2m k (TT,„)' ( (0) „codro{[co +(r„Z )]' r„Z-
=p 3')pm'„gi„(0)V ir p (e~ 1)[N 2+(r„Z2)2]1/2

Log-log plots of y„, /T versus ln( T/T, ) are given in Fig.
5, using Eq. (29) for the dynamic calculation, and the
BCS form of a( T ) described in the following.

To properly take account of the different T, values for
the different bands as well as the BCS T dependence (aris-
ing from the digammalike functions in the clean-limit mi-
croscopic theory), we take the T dependence of gi„ to be

g,„(T)=43„(0)lln(T/T, „)l (30a)

where T,„ is not given by the oversimplified GL form
above [Eq. (8), with a ( T ) linear in T—T, ], but rather by
the solution to

(T,„/T,p)ln(T, p/T, „)=2m(, i(0)mi [nA, „(q*)]. (30b)

This definition of T,„ is consistent with Eq. (30a), but we
must compensate for it in A.„(q) [and hence f„(8,q)] by
the appropriate subtraction,

X„(q )~X„(q ) =X„(q ) —min~ [X„(q)], (30c)

so that a(T)+f„(8,q) remains invariant under this
redefinition of g3„(T ).

We note that the difference in these logarithmic forms
from the GL forms for gi„(T) is on the order of 10% in
the vicinity of 2T„so that it is important to use the

preceding forms [Eq. (30)] in order to fit the data. The
dynamic corrections as given by Eq. (28), make a substan-
tial correction to the T dependence of the high-field static
result at fixed 8 [Eq. (23)], differing by more than a factor
of 2 for T-2T„as can be seen in Fig. 4(a) for 8=0.
The greatest correction to the T dependence of g, howev-
er, is for weak fields and 8=m. /2, as can be seen in Fig.
5(a). In the static limit, y „(T)/T fits a straight line with
a slope of —

—,
' on a log-log plot, but the dynamics cause

to decrease much more rapidly with increasing T,
mimicing DCR behavior (which does not occur in this
case). Hence, while it is considerably easier to use the
simpler static form to fit the data, detailed fits should be
performed with the full dynamic form. As we shall see in
the following, this is also true for the fluctuation conduc-
tivity and FSH, unless one restricts the region of the mea-
surement to a very narrow range near to T„and is not
interested in DCR effects.

In Figs. 9—11, we have plotted the contributions to the
high-field yn(8) from the upper (Fig. 9), and lower (Figs.
10 and 11) bands, for four values of T/T„ two values of
q,', y=0. 1, and —'„and for v=0. 01 and 0.1, respectively.
For N=2, g, i,„(0) is independent of n. We note that the
sharp rises present in the static limit are greatly smeared
by the finite T. For T/T, =1.01, the sharp rise is re-
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duced (from a factor of 3 in the static limit) to a 20% rise
near to 0, , the T smearing changing the 8 dependence of
yB(8), as some weight from this peak is smeared out over
a large angular region. In the 2D regime, the anomalies
in yB(8) are still present, but further reduced in magni-
tude. In the absence of these peaks, the gn(8) ~a0(8, 0)
in the 3D regime, as for weak fields. Except for this finite
T smearing, this simple anisotropic mass law is essentially
obeyed in the high-field 3D regime for 8 & n/4

In order to obtain a good fit to the data, it is necessary
to limit the number of parameters as much as possible.
Very recently, it was shown that in aligned powders, the
T dependence of the normal-state background could be
eliminated by plotting the measured relative susceptibili-
ty

y„(T) y„„(T—) [or ya(O, T) g&(m—/2, T)] .

To measure the 8 dependence of the high-field SFD, one
should also fit to a relative susceptibility, such as
yB(8, T) yB(n/2—, T). This procedure is essential, as it
was found for weak fields that the normal-state back-
ground susceptibility bends down sharply as T, is ap-
proached from above. In addition, Cu NMR data ' are
suggestive of a strongly T-dependent spin relaxation near
to T, .

In weak fields, there are the three parameters c., y, and

g,„(0) to fit. In strong fields, q,
' is also a fitting parame-

ter, so that one would require measurements at a number
of 8 values. The parameter g, i, (0) can be estimated from
dc magnetization measurements of H, 2(0). A recent mea-
surement' has produced the value of 13.7 A for g,b(0),
for example. One could, in principle, use this procedure
to determine e, by comparing H, 2(n/2) with H, z(0).
However, one would need very strong fields ( ) 50 T) to
be able to determine H, 2(n. /2) accurately. This has not
yet been done. Note that "irreversibility" problems
have often manifested themselves in a nonlinear H, 2(T)
curve near to T, (obtained from ac susceptibility and/or
resistivity measurements), even for 8=0, making esti-
mates from those published data unreliable. Another
possible method of determining g,b(0) reliably is by a
comparison of SFD and FSH data on the same sample, as
we shall see in Sec. IV.

The effective mass anisotropy c. below T, can also be
estimated from dc magnetization measurements or torque
measurements in the reversible intermediate state, lead-
ing to estimates for Y-Ba-Cu-0 of c.=0.04—0.06.
These results are consistent with lower critical field H„
measurements on Y-Ba-Cu-O. As we shall see in Sec.
V, however, there is at least a reasonable doubt as to
whether those low-T values ought to apply above T, .
The best procedure to determine the values above T, is to
base the determination solely upon measurements done
above T, .

In Fig. 4(a), we have provided log-log plots of
yii(O, T)/T[=g„(T)/T] versus ln(T/T, ) for the pa-
rameters used in Figs. 9—11. At this 0 value, g& is in-
dependent of the cutoff q,*. We have also shown the
same calculation in the static limit, in order to indicate
precisely the degree to which the static calculation can be

trusted. Near to T„ the static calculation is not too bad,
but consistently exceeds the dynamic calculation in the
experimentally accessible regime ( T/T, ) 1.01). On a
log-log plot, the apparent slope of log, 0(

—y„/T) vs

log, 0[in(T, )] is steeper in the experimentally accessible
regime [e.g. , outside the critical region] than the static re-
sult of —

—,', being on the order of —0.55 to —0.65, de-

pending upon the parameter values. For c.=0.01, y =—'„
the n = 1 band has a T„value of 0.78 T„and contributes
substantially to the 2D regime of y„. In Fig. 4(b), we

have presented additional curves for g,b(0) values of 10
and 20 A, respectively, using only the dynamic theory.
For g,b(0)=20 A the T„value of the n =1 band for
c.=0.01, y =

—,
' is shifted down to 0.45 T„and makes less

of a contribution to the 2D regime of y„. For g,„(0)=10
A, the T„value for a=0.01, y= —,

' is shifted up to 0.90
T„and for c.=0.01, y=0. 1, it is 0.68 T„so the n =1
band contributes substantially to the 2D regime, even for
this small y value. In Figs. 5(a) and 5(b), log-log plots
with the same parameters are given for y„„(T ) /T versus

T, as discussed previously. In this case, the static results
are greatly modified by the dynamic corrections.

In Figs. 12(a) and 12(b) we have provided log-log plots
of the high-field gz/T versus ln(T/T, ) for field angles in

the vicinity of n /2. At 8= 85. 5', DCR for e =0.01 is still
present [see Fig. 6(b)]. At 8=90', the numerical calcula-
tion is dimcult; we therefore made quadratic extrapola-
tions from the values 86.4', 87.3', 88.2', and 89.1', re-
spectively. The results of these calculations extrapolated
to 90' are presented in Fig. 12(b). We note that while

yri(n/2, T) does not exhibit any DCR eff'ects, the slope of
log, a( yz/T) ver—sus log, 0[in(T/T, )] curve does bend
downward, as in the low-field case pictured in Fig. 5. In
both field regimes, this downward bending is not due to
DCR effects, but rather to dynamic effects.

An additional point of note is that the slope of the two
curves with n = 1 bands exhibiting nonvanishing T,
values is greatly affected in the high-T regime, even
though the effective dimensionality is 3 for this direction.
In particular, at 8=m /2, the high-field gii(m. /2, T ) is very
sensitive to q,', so that this angle ought to be studied
carefully in high fields in order to limit the range of possi-
ble q,

' values.
Since most of the experiments to date have been per-

formed on unaligned powders, in Fig. 13 we have present-
ed the powder average calculation in a similar log-log
plot of the high-field SFD. We note that the powder
average is sensitive not only to E, y, and g,b(0) (the vari-
ation with which is not pictured here), but also strongly
dependent upon q,*.

V. FLUCTUATION SPECIFIC HEAT

We now turn to the fiuctuation specific heat (FSH).
Compared to the SFD, the FSH in zero field is elementa-
ry to calculate. For bulk superconductors, the static cal-
culation near to T, for a single band material has been
given by Aslmazov and Larkin. This is easily general-
ized above T, to the case of multiple OP bands and to in-
clude the dynamic processes. As the FSH is given by
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C= —T(B /BT )(F/V) in zero field, one has merely to
find the eigenvalues in zero field, write the expression for
the Helmholtz free energy, and differentiate it twice with
respect to T. In zero field, the complications of multiple
minima (and hence q,*) do not arise, as the eigenvalues
are simply given by

&„(k~~,k, )= g k„/(2 m„)+a(T)+A,„( sk, ) . (31)
p=1,2

x„=k„[I„/(2m„)]'~3,

and using polar coordinates [x, =p cosrj, x2 =p sini)].
The integrals over g and p can then be done by inspec-
tion. Transforming to co as for the SFD, we obtain an ex-
pression for C+(T), accurate in both the 3D and 2D re-

gimes,

4k T,„C+(T)=
„=o nsg,.i,„(0)T

The fluctuation free energy can be written as a sum over
the logarithm of the pair propagator, which in our nota-
tion becomes

N —1F= —(2/ir) g [8/(err„)]'f drub(co) J d'k~~
n=0 0 00

X dq, Q,q+= 0
0 e —1

where

f, (x,q)=x/[(x +1)Y„(q)],

(33a)

(33b)

where

X J dk, (2m ) Im[ln(D)],—m/s
(32a)

(32b)

f2(x ) = tan '(x ),
Y„(q ) =r„[Z„+m „3~sX„(q ) /( 2 iri) ],
Q„=co/Y„(q ),

(33c)

(33d)

(33e)

As mentioned in the preceding section, the factor
(8/m. r„) is inserted to approximate the T dependence of
I „, and is necessary in this TDGL approach in order
that the FSH reduce to the static result very near to T, .
The FSH above T, is then given by taking two deriva-
tives with respect to T of Eq. (32). Note that the usual
Aslamazov-Larkin term involves both derivatives acting
upon the pair propagator, but there is an additional term
(which is not divergent near to T, ) obtained by
differentiating the propagator only once. To obtain a re-
liable form for the FSH far from T„we have investigated
this extra term as well.

After differentiation with respect to T, it is then possi-
ble to simplify Eq. (32) by first perforining the integrals
over k1 and k2, before taking the imaginary part of the
quantity in curly brackets, as in the static case. This can
be done by letting

and

:-=A /(2m3„s rk Ts,„) . (33f}

We note that = is typically on the order of 10,and that
f2(x ) is bounded by 0 and n /2 in magnitude. Hence, the
inclusion of the additional term proportional to = only
makes at best a correction on the order of 1%, even in
the 2D regime. Henceforth, we shall neglect it. Equation
(33) reduces to the LD form obtained recently by @nader
and Abrahams~' in the static limit as y~0. [Note that
we have put A' back into Eq. (33).] Recall that X„(q ) and
the (3„(T)present in Z„[=s/(2(3„)] are given by Eqs.
(30c) and (30a), respectively.

Below T„only the n =0 band (with the highest T,„
value) survives in the Gaussian regime. We may expand
about the mean-field solution to calculate C ( T ) arising
from the Gaussian fluctuations below T„

2k T

ir sg, i, (0)T o e~ —1 o r) +r o[Z +m3os'Ao(q)/(2A' )]
(34)

where g, b (0)=g,bo(0)/3/2, Z =s/(2/3 ), and

g3 —( T ) =$3o( T ) /&2. If only the n =0 band were present
above T„C ( T ) would exceed C+( T ) at fixed

~
T T,~—

in the 3D regime by the factor 2', due to differences in
the coherent volume and the freezing of half of the de-
grees of freedom. However, the suppression of T,„ for
n %0 from the mean-field value to zero reduces the
overall amplitude of C (T) below T, .

In order to properly fit the specific-heat data near to
T„ it is essential to ensure that the superconducting tran-
sition be second order, or else the entire BCS picture
would break down. This implies that the total entropy
change hS during the transition from the normal to the
superconducting state must equal 0. In conventional su-
perconductors, the entropy associated with the fluctua-

I

tions is negligible, as the zero-temperature coherent
volume g&(0)$3(0)(3(0) (appearing in the denominator of
C —(T) in the 3D regime near to T, ) is sufficiently large
that the fluctuation entropy can be safely ignored in com-
puting hS for the transition. For the copper oxide super-
conductors, however, this coherent volume is on the or-
der of 100—500 A, which is at least three orders of mag-
nitude smaller than in conventional materials. Hence, a
self-consistent fit to the data must include the nonvanish-
ing fluctuation entropy, and treat the mean-field (BCS)
entropy of the transition as nonvanishing. There are
many ways to do this, but the procedure we suggest
below is the simplest one of which we are aware.

We assume that the norinal-state density of states N(0)
at the Fermi level below T, is less than that above
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T„iV(0). This change in the density of states is not
necessarily discontinuous; it could occur over a T range
of a few K about T, . As the electronic specific heat of
the normal state above T, is assumed to be of the usual
form y T, where y ~ N(0), we assume that the (modified)
BCS mean-field form of the specific heat below T, is
characterized by the parameter y & y, where
yly=N(0)/N(0). Just below T„we may then use the
BCS form for the mean-field specific heat (computed by
Miihlschlegel ), with the preceding modification,

C (T)=yTB(T T, )—

+B(T T)[2 43yT +4 76y(T T )+ ' ' ' ]

(35)

This reduces the BCS weak-coupling specific-heat jump

at T, from the usual 1.43y T, to (2.43y —y)T, . Hence,
the effective entropy conservation equation becomes

T

f dTC (T)/T+ f dTC+(T)/T+yT,
C

=y(T,„—T, ), (36)

where T,„(& T, ) is the maximum T for which the fit is
to be performed. Due to the uncertainty in the experi-
mental background (due to contributions from phonons,
etc. ), T,„ is most likely to be limited to the range
1.1—1.2 T, . In addition, we must be a bit careful in calcu-
lating the fluctuation contribution to the entropy below
T„as our expression, [Eq. (34)] breaks down as T—+0.
Hence, we should place a low-T cutoff on the first in-
tegral in Eq. (34) at T;„(roughly 0. 1—0.2 T, ), below
which we expect C ( T ) to be proportional to
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FIG. 14. Log-log plots of C+ vs ln(T/T, ) for c, =0.1 and
0.01; y=0. 1 and —'. (a) g, i,o(0)=15 A. The open circles and

solid triangles are the result of the static approximation; solid
and dashed lines are dynamic results for the same parameters.
(b) g,bo(0)=20 and 10 A. The legends indicate the s and y
values. All calculations are dynamic ones.

FIG. 15. Log-log plots of C versus ln( T/T, ) for c=0. 1 and
0.01; y=0. 1 and 9. (a) (,b (o)0=1 5A. The open circles and

solid triangles are the results of the static approximation. The
solid and dashed lines are dynamic results for the same parame-
ters. (b) g,bo(0)=20 and 10 A. The legends indicate the E and y
values. All calculations are dynamic ones.
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exp[ —b,(0)/T]. As the dominant contribution to the
fluctuation entropy arises from the temperature range
near to T„ the calculated fluctuation entropy should not
be particularly sensitive to either T,„or T;„.

One might think that it is somewhat unappealing to
have the normal-state density of states change essentially
discontinuously at T, . However, there does seem to be
some experimental evidence for a first-order transition
in the normal-state properties at T„so this assumption is
probably not too bad. We reiterate that it is only neces-
sary for the normal-state properties to change in the fluc-
tuation regime. It is still possible to construct a
Ginzburg-Landau and a BCS theory with parameters an-
alytic in T at and near to T„but changing rapidly in that
regime. Hence, the effective mass anisotropy could be
essentially constant over most of the T)T, fluctuation
regime, change rapidly near to T„and be essentially con-
stant (with a different value) below T, . In fits to the FSH,
one should allow for this possibility, in order that the fit
be fully self-consistent. It seems to us that the effective
mass anisotropy obtained from the torque and H„mea-
surements should be used in the fits below T„but not
above T, .

In addition, since we are not aware of any experimental
data to date, that has definitively exhibited an actual
specific-heat divergence at T„ it is further essential to in-
clude a distribution of T, values in the fit, or else incorpo-
rate a crossover into the critical regime. Such a T, distri-
bution should also be included in fits to the SFD and the
fluctuation conductivity, especially for the data points
near to T, . In the very recent data of Inderhees et al., ' a
very sharp transition was observed, suggestive of a cross-
over into the critical regime, as the nondivergence could
not be fit to a spread in T, values.

In Fig. 14, we have presented log-log plots of C+(T)
versus ln( T/T, ). In Fig. 14(a), the static approximation
is also shown, indicating that even for T as low as 1 K
above T„ the apparent power law divergence differs from
the static result substantially. We note that Fig. 14(a) is
very similar to Fig. 11(a), and that Fig. 14(b) is very simi-
lar to Fig. 11(b). Examination of Eqs. (28) and (33a)
shows why this is so. Even for situations in which the
upper band(s) enter into the calculation, y„(T ) /T is pro-
portional to C+( T),

y„(T) /T = [4m g, b (0) /3/0]C+ ( T ), (37)

assuming only that the g,b„(0) are independent of n

(rigorous for N =2). Hence a measurement of y„(T ) and
C+( T) on the same sample should aid in determining the
backgrounds present in each measurement, as well as give
an accurate measure of g,&(0). Once the backgrounds
are determined, fits of C+(T) and y„(T)/T to the data
should determine c.. We note that the inverse power of T
on the left-hand side of Eq. (37) arises from using the
BCS form of a( T ) [the Ginzburg-Landau form
a0(T T, ) would result —in the T appearing in the
numerator of the left-hand side].

In Fig. 15, we have presented a log-log plot of C (T)

versus ln(T/T, ). Although the approximation used here
is not expected to be valid at the lowest T pictured
(O. ST, ), there are some features which we believe to be
intrinsic that are exhibited. We note that since the upper
band does not contribute to the Gaussian fluctuations
below T„ the variation of the curves with y is less strik-
ing than above T, . In addition, it appears that the ap-
proximation of keeping only the leading two terms in the
free energy expansion in even powers of the OP may not
be too bad, as the dynamic calculation indicates that the
fluctuations fall rapidly in magnitude as T is lowered
below =0.9T„which we would expect, even for a
correct static calculation involving the proper treatment
of the mean-field solution in this region.

We note that near to T„C+(T)~ [(,b(0)(3(0)] ', so
that a comparison of Figs. 14 and 15 near to T, shows a
discontinuity in the plots of nearly &2 due to the way in
which we have plotted the curves.

VI. FLUCTUATION CONDUCTIVITY

We now turn to the fluctuation conductivity. In our
model, the absence of an explicit appearance of impurity
scattering precludes an accurate treatment of the Maki-
Thompson diagrams. We note that these diagrams do
not arise directly from the free energy, but are known to
be important in the case of thin films. A full treatment of
the Maki-Thompson diagrams should be performed from
the starting point of a microscopic calculation, involving
the single quasihole scattering rate I /r. One would then
have to calculate the free energy derivable (Aslamazov-
Larkin) diagram on an equal basis. As we shall see in the
following, any calculation of the Maki-Thompson dia-
grams cannot be trusted more than a few degrees above
T„unless it takes full account of the dynamics.

We have seen that dynamical corrections play an im-
portant role in the fits to the SFD and FSH data, espe-
cially for T/T, &1.01. As the conductivity is relatively
easy to measure far from T„and as preliminary investi-
gations have used the LD (static) model to fit their data,
their conclusions that DCR behavior was observed were
premature, as the theory was only accurate very near to
T, . Hence, we have calculated the fluctuation conduc-
tivity for our model, keeping only the Aslamazov-
Larkin term, which can be derived directly from the
fluctuation free energy. We have extended the LD model
to include multiple layers per unit cell, and have included
the clean-limit dynamics, precisely as for the SFD and
the FSH. As for the FSH, we have only treated the case
8 =0. The case of a strong applied magnetic field is very
interesting, as one would expect from the preceding dis-
cussion of the high-field SFD. Since this Aslamazov-
Larkin term and the SFD are both derived from the
free energy, the fluctuation magnetoresistance in a strong
field ought to exhibit oscillations in the field angle 8 (rela-
tive to the c axis), similar to Shubnikov —de Haas oscilla-
tions.

In their classical paper, Aslamazov and Larkin
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showed how to derive the Auctuation conductivity micro-
scopically, including dynamic effects. However, the re-
sults they derived analytically were only for the static
limit [obtained by approximating exp(Pc@) by 1+Pc@ in

I

the internal integration frequencies], valid very near to
T, . Following their derivation, we use the clean, local
limit as above, and obtain the static (i.e., dc) fiuctuation
conductivity o.

& in zero field,

iV —1

~.,=(4/~) y J' "coN(cu)dc@ J d k A A, I „(2m. ) 'l(I „E„co—)/[(I „E„+co ) ]l,
n=0

where

(38a)

and

A„=2ek„/m„ for p, =1,2 (38b)

A~=2esk'(k, s), (38c)

and where E„(kl,k, ) and I „are given by Eq. (31) and in the sentence following Eq. (27), respectively. In Eq. (37a), it is
understood that the integration over k„ is unrestricted for p=1,2, but the integration over k, is restricted to those
values not exceeding m /s in magnitude. As for the specific heat, it is possible to perform the integrations over k, and
kz exactly, using the same procedure as above. we find o. &=o 5 &, where
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FIG. 17. Log-log plots of o.„/T vs ln(T/T, ) for v=0. 1 and
0.01; y=0. 1 and 9. (a) g,bo(0)=15 A. The open circles and
solid triangles are the results of the static approximation. The
solid and dashed lines are the full dynamic results for the same
parameters. (b) (,~o(0) =20 and 10 A. The legends indicate the
c and y values. All calculations are dynamic ones.
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dqf (0„)
wisfi(mi)'~ „o o e"—I 0 r 2[Z2+m3„s X„(q)/(2A' )]

o. =(m, /m2)o

(39a)

(39b)

and

dq m 3„s [A, '„(q ) ] g(Q„)
n. ski „=0 o e —1 o fi r „[Z„+m3„s~i„(q)/(2iri )]

(39c)

where

f(x)=[tan '(x) —x/(1+x )]/x

g(x)=2/(1+x ) f (x)—,

(39d)

(39e)

and Il„ is given by Eqs. (33d,e). Note that in Eq. (39) we

have reinserted the quantity A, in order that the expres-
sions have the appropriate units. In order to compare
these results quantitatively with the usual static approxi-
mation, it is easier to first make the static approximation
[setting exp(@co)=1+Pcs] before performing the k„k2
integrals. In Figs. (16a) and (17a), we have done so for
cr „and o„, and it is readily apparent that the static ap-
proximation for o, is about as accurate as for the
specific heat and the perpendicular (0=0) SFD, indicat-
ing that the apparent power law in the experimentally ac-
cessible regime (outside the region of the T, distribution)
is more negative than in the static limit. The static ap-
proximation is much better for 0.„,but the small overall
magnitude of this quantity (and the rising background as
T decreases) probably makes it difficult to observe quanti-
tatively. Also, if one attempts to fit the high temperature
region based upon the Maki-Thompson 2D limit, it is im-
perative that one correctly subtract the Aslamazov-
Larkin contribution pictured here. In Figs. (16b) and
(17b), we have presented log-log plots of o „/T and
o „/T versus ln( T /T, ) for g, b (0)= 10 and 20 A, respec-
tively. Note that these curves do not scale with C+(T)
or y„(T ) /T, except for certain values of the parameters.

In fits to experimental data, it is important to note that
recent measurements of the SFD and the Cu NMR
linewidth ' have indicated a decrease in the normal-state
susceptibility as T, is approached from above. As spin-
flip scattering is expected to be important in normal-state
conductivity of the copper oxides, one should find some
procedure of determining the precise T dependence of the
normal state p, -. Perhaps by measuring the fluctuation
magnetoconductivity for B~~c and Blc, and subtracting
those results, one might be able to determine the correct
T dependence of the background. A recent calculation of
the fluctuation magnetoconductivity for B in these direc-
tions has been presented. ' In that calculation, the au-
thors expanded about T,o instead of T, (B ), dropping the
orbital term for Blc, which is quadratic in B to leading
order in T—T,o, but linear in 8 to leading order in
T T, (B). A numeric—al evaluation for B~~c has been
performed, which shows a nearly linear 8 dependence
near to T,o. In addition, they considered only the %=1
case. They also neglected the dynamics, which should

greatly alter the Maki-Thompson terms well above
T,(B). More important, Patton showed that in con-
densing into the superconducting state, the normal quasi-
particles attain a lifetime that vanishes as T~ T„remov-
ing the divergence of the Maki-Thompson diagrams (and
hence the necessity for introducing a r&). These may be
some of the reasons those authors inferred
i.&kii T, /h —l. 3, a value we believe is at least a factor of
~ 5 too low for the Y-Ba-Cu-0 sample measured, which
had an anomalously low T,o of 85.5 K. If their value
were correct, it would likely imply a large contribution to
I/~& from a homogeneous mechanism, which would not
be relevant to the observability of the high-field regime.

VII. DISCUSSION AND CONCLUSIONS

We have presented a model for the superconducting
properties of the copper oxide materials which differs
from previous models in that it properly takes account of
the multiplicity of superconducting layers per unit cell.
For most properties near to T„ this feature does not
make too much of a difference, but the addition of the
higher pair bands can make a substantial contribution to
the fluctuations well above T, . The degree to which the
upper bands are important depends not only upon the y
value, but also upon the g,b(0) value [from Eq. (29b)].
The smaller the g,b(0) value, the more important the
contributions from the upper bands.

In addition, we have demonstrated explicitly that dy-
namic effects are essential, if one is to properly treat the
temperature regime far from T, . Even in the 3D regime
near to T„ the inclusion of the dynamics appears to alter
the apparent divergence of the fluctuation quantities from
the classic static result ( ~

T T, ~

' ). Hen—ce, fits based
upon the assumption of this simple power law in the
Gaussian regime should be modified.

The most important result presented here is the predic-
tion of oscillations in the angular dependence of the
high-field SFD. Although we have not shown it explicit-
ly, one would also infer that a measurement of the angu-
lar dependence of the high-field magnetoresistance in the
Gaussian fluctuation regime should also exhibit
Shubnikov-de Haas-like oscillations. These oscillations
are intrinsic to the layered structure of the superconduct-
ing materials, arising from multiple degenerate minima
present in the periodic potential for Blc. In order to ob-
serve these oscillations, it is necessary to have co,~&~1,
which should be true in the best samples (with
i.&ks T, /A'»& 1) for fields in the range 10—50 T. In addi-
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tion, it is necessary that q, be sufficiently large in the an-
gular region n/4(8(m. /2 that the oscillations do not
become eliminated. This condition is most likely to be
met for materials with X ~2. We believe that for Y-Ba-
Cu-O, the parameters are likely to be such that at least
one peak in the high-field SFD should be observable.

We reiterate that the angular dependence of the high
field ga(8, T) at fixed T is predicted to differ greatly from
that at low fields. The weak field y,]](8,T) obeys a sim-

ple, "anisotropic mass" form in the 3D regime above T„
which is closely related to the H, z(8) in the 3D regime
below T, . The strong field yn(8, T) does not behave in
this manner, because it contains contributions from de-
generate absolute rninirna in the potential, whereas H, 2

only depends upon the value (not the degeneracy) of the
lowest eigenvalue. Hence, in the 3D regime, one merely
has

H, 2 =go/f 2m(, b( T)]2o(8,0)],

yk )
e——' "(qk ]+]tk p)/&2 (A2a)

and

&k 2=e+'""(4k
] Wk

—o)/v'2 (A2b)

we have

+12 2 te (4 k ]+0k p)[(Hp+&p)(4k ]+0k p}

+I) l(e,, , -e..))
-' "

+' '"'"(&
k, ] P—k, o)l(Ho+&2}(fk, ] ]tk—,o}

+ rl(kk]+0k 0)ie'""'(.

where i@le '"—:y2+yi, and C is an unimportant con-
stant. Note that y and g depend upon position in the
presence of a magnetic field.

Letting

the usual anisotropic form. Similarly, the anisotropy of
H„ in the 3D regime only depends upon the effective
mass ratio, although the precise form of the angular
dependence is more complicated than that of H, 2.
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APPENDIX

In this appendix, we demonstrate that Eqs. (11) and
(12) of the text hold rigorously for an arbitrary magnetic
field strength and direction, for the special case %=2.
Using the Fourier transform for g,„ in terms of gk,„,the
Gaussian free energy may be written as

Fs F]v=C g Jd rF„, (Ala}
k

where

12 4k 1(HO+ s2) Pk ]+4k 2( 0+e2) Pk 2

and

o+&2 —i}'i)4k o—= k oak o

(A4)

consistent with Eq. (12b) for 5X„=O.
We then obtain

F]2 le (4 k, 1+ P k, o)(+k 14k, 1 k oak P}e

+e (4k ] 0k )(0+k ilk 1 +k, oak

1

n=0

(A5a)

(ASb)

'
0k o= l]t'k oIe

which is Eq. (11) of the text. We note that we have
dropped terms arising from Ho operating on g, some of
which are non-Hermitian. These terms are nonvanishing,
and in the preceding formalism, would also cause the di-
agonalization procedure to fail. The diagonalization pro-
cedure can be made exact, and F&z made Herrnitian, how-
ever, by the following procedure: From Eq. (1) of the
text, we integrated by parts to obtain terms such as
gk ]Hoick ], with Ho operating to the right. We could in-

Z Z

stead have integrated by parts the other way, obtaining
Ho operating to the left. By symmetrizing, we obtain
Ho =

—,
' (Ho„+HoL ), where HpR and Hoi are of identical

form, but operate to the right and left, respectively. Note
that for the choice of gauge given in the text, Vg. A=O.
These three procedures differ by surface terms only. We
now let

+0k ]~]) ie '"ek 2+0k 2~r ~""0k ] (A lb)
The diagonalization procedure can be made exact by
choosing y, =go and
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p —1,2

(A6)

For the choice of gauge given in the text, this implies go
is independent of y. It is then easy to show that the fully
diagonalized Hamiltonian becomes

H„=Ho+ A,„+6k,„,
where

5k„= g (tl„ri) /8m„.
@=1,2

(A7)

(A7')

which has the same form for both n =0 and n =1. We
note that 5A,„~O for B sin8~0, and for the special case

g, = (2 and d =d', so that this complication does not arise
for Itl = 1. However, even in the case g, =gz (but dWd'),
this term does not vanish, except at 8=0. 5k„ is well
behaved for all q values.

For the choice of gauge given in the text, we have

(2eB sin8) [g&d (g&+ (2cosq ) —gzd'(g&+ gicosq ) ]

Sm 2(g, + f2+ 2(i(2cosq )

{A8)

A microscopic calculation reveals that 5X„(q=0) can
be removed by a shift in the Fermi energy, so one should
really replace M,„(q ) by

5X„(q)=5k,„(q)—5A,„(q=O) .

Hence, the eigenvalues obtained by neglecting 5X„(q ) are
exact to 0(B sin 8). 5X„will cause a reduction in T,
(for 8%0) of order B, which counteracts but does not
eliminate the upward curvature arising from dimensional
crossover in H, z for 0%0. We note that the regime of the
fluctuation diamagnetism will not be affected by 5X„.
The region of the high-field regime we have considered
here (with eigenvalues linear in B) will also not be
affected, except that 5X„removes the degeneracies at the
special 8 values [Eq. (17)], (unless g&d=(2d' for n =0)
weakening slightly the amplitude of the oscillations in

ya(8). At these special angles, the smearing of the maxi-
ma will be greater for n =1 than for n =0.

This derivation is easily generalized to the case of
single-particle propagation in a two layer system, using
second quantization. That procedure leads to a micro-
scopic derivation of Eq. (1), which will be presented else-
where, It is straightforward, though very tedious, to gen-
eralize this procedure to arbitrary X.
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