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Oscillations of a fluxon in a finite-length ac-biased Josephson junction
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A model of a moderate-length damped Josephson junction with an ac drive applied at its edges is

considered, and a uniformly distributed dc drive is also taken into account. Dynamics of a fluxon
oscillating between the edges are reduced to a discrete map. It is demonstrated analytically that,
with the increase of the ac-drive s amplitude, a solution appears that describes periodic oscillations
of the fluxon; with the subsequent growth of the amplitude, this solution undergoes a period-
doubling bifurcation that is demonstrated to be supercritical. These analytical results are in accor-
dance with recent numerical findings reported by Salerno et a1.

Fluxon oscillations in a long but finite Josephson junc-
tion are a traditional object of theoretical studies (see,
e.g. , Ref. 1). A long dc-biased damped Josephson junc-
tion is described by the well-known model of McLaughlin
and Scott

P„(x =0)= —
—,
' e sin(tot),

P„(x =L)= —
—,'csin(cot),

(I}„(x=0)= —
—,
' e sin(cot),

P, (x =L)=+—,'csin(cot) .
(2b)

Following Ref. 4, I will refer to the couplings of the rf
field to the junction corresponding to the boundary con-
ditions (2a) and (2b) as to the magnetic and electric cou-
plings, respectively.

A fluxon is described by the exact solution to the un-
perturbed equation (1) (i.e., the one with a =f=0)

Pk(x, t)=4tan '(expIo[x —g(t)](1—V )
' j),

where o =+1, g(t)= Vt, and V are, respectively, the
fluxon's polarity, center-of-mass coordinate, and velocity.
If the junction is sufficiently long (L ))1), a fluxon near
an edge is described (in the case e=O) by the so-called
breather solution (see, e.g. , Ref. 5). We are interested in
the low-frequency breather which has the approximate
form

Pb„=4 tan [g sin(gt)sechx], ~g~ && 1 (4)

[of course, the solution (4) is physically meaningful only

P„—P„„+sing = —aP, ,' f, ——

where p is the normalized magnetic flux in the junction,
a is a phenomenological dissipation constant, and f is the
dc bias current density (external drive for fluxons). An ac
component of the drive can be generated by external rf
field applied to the junction. The corresponding bound-
ary conditions at the junction's edges x=0 and L are
given, in a general case, by a linear combination of the
two following sets of equations:

'sm '( —,
' ge ) (6)

The solution (4) and the relations (5) and (6) are meaning-
ful both for real and imaginary g: In the latter case, the
solution (4) describes a free fluxon-antifluxon pair.

The energy of the fluxon described by the expression
(4) at x )0 is

Ek = g 4C'- (7)

(including the case of imaginary g). As it has been
demonstrated in Ref. 6, a reflection of the fluxon from the
edge x=0 (at e%0) gives rise to the change

h, E =—4m ee sin5„, 5„=cot„,

of the kink's energy, t„being the reflection moment. The
dissipation [aAO in Eq. (1)] gives rise to the additional
item '

b,zE = —4~'a+0(ag) .

At last, a flight of the fluxon between the edges of the
junction gives rise to the energy input

63E = vcrfL— (10)

from the dc drive.
As it follows from Eqs. (6)—(10), the dynamics of the

fluxon reduce to the discrete map (similar to the ones ob-
tained for allied problems in Ref. 6), which takes the
form

at x )0]. The breather (4) may be interpreted as a bound
state of a fluxon in the physical region x ~ 0 and its "mir-
ror image" (antifluxon) in the unphysical region x &0, the
distance between them being

21 =in[4( sin (gt)],
provided e '« l. As it follows from Eq. (5), the time
between a maximum overlapping of the fluxon with the
edge [t=O in Eq. (5)] and a moment when the fluxon is at
the middle of the junction (l =L /2) is

41 2037 1990 The American Physical Society



2038 BORIS A. MALOMED 41

$2+1=(„+m(1ra+ ,'0—fL)+mes'in5„,

5„+,=5„+m+2cog„+1sin '( —,'g„+,e )
(1 la)

in the case of the magnetic coupling, and

~ +1=0 +~(~a+ ,'crfL—)+nesin5„,

5.+1=5„+2co„~,sin '( —,'g„~,eL/2) (1 lb)

in the case of the electric coupling. In Eqs. (11), the in-
dex n refers to nth reflection of the fluxon from either
edge x=0 or x =L, and it is implied c0 « 1 (the low fre-
quencies co will be of basic interest below}.

The map (1 la) has stationary points with the coordi-
nates ((p, 5p), where

FIG. l. A schematic graph of the function g(go) for both
signs of $2o.

sin5p= e'(na—+ ,'0 fL),—

and go is determined by the transcendental equation

2' 'sin '( —,'(pe / )=(2m —1)n/co,

m 1y2y 3y ~ ~ ~ ~

(12)

(13)

(A, —1) —p(A, —1)—p =0,
where

greco cos5p
ko(1 —

—,'e 0o)
20o

stn 1( 1eL/2g )]

(19)

(20)

A schematic graph of the function

g(go)—=2(p 'sin '( —,'gpe /
)

for gp both real and imaginary is shown in Fig. 1. The
values marked in Fig. 1 are

g2 —4e L
g

——~
e. L/2.

g e L/2 (15)

As it follows from Eq. (12), the stationary point exists
if e exceeds the threshold value

ep=(ma+ ,'ofL). — (16)

note that eo depends on the fluxon's polarity 0.. Less
trivial is the fact that there is also a frequency threshold.
Indeed, it follows from Eqs. (13)—(15) that a solution ex-
ists provided

co&a,„=2e ~", (17)

which corresponds to m =1 in Eq. (13); in the case of the
electric coupling co;„=4e

To investigate the stability of the stationary point, let
us linearize the maps (11) in its vicinity:

g„=go+ („, 5„=5o+8„. (18)

Insertion of Eq. (18) into the linearized Eqs. (11) yields
the following equation for the multiplicators A, defined by
the relations g„+,=A,g„, 5„+,=A,5„:

For the map (lib), the multiplier (2m —1) in Eq. (13)
must be replaced by 2m. Equation (13) remains valid for
imaginary g too: In this case it takes the form

2~(p~ 'ln[ —,'~gonne +(1+—,'~gp~ e )' ]=(2m —1)n/co .

(14)

e2 e2 e2+(8(3/'/rcpt)2[eL 2g/(1 1eL(2)—1/2

—2sin '( —,
'eL/ gp)] (22)

when p = —4 [see Eq. (20}].
According to Eq. (19), }1,= —1 at p= —4. This cir-

cumstance implies that at e =
e& the stationary point be-

comes unstable against period-doubling perturbations.
To analyze the bifurcation, i.e., to find out which new
stable solutions appear, it is necessary to take account of
nonlinear terms in the exp13~sions of the maps (11) near
the stationary point (12),(13). This can be done explicitly
in the case when c0 is close to the threshold value (17) or
to its multiple.

Let us set (for the magnetic coupling)

co=(2m —1}2e / +0, 0& Q «e (23)

In this case, g will be close to the value g,„[see Eqs.
(15)],so it is convenient to introduce the new quantity

As it follows from Eq. (19), the stability condition ~A.
~

& 1

takes the form

—4+@+0. (21)

Note that Eq. (12) determines only ~cos5o~, while the sign
of cos5p remains arbitrary. It can be demonstrated that
the expression in the square brackets of Eq. (20) is always
positive. So, Eqs. (20} and (21) tell us that stable is the
stationary point for which e cos5p &0.

To analyze change of stability of the stationary point,
let us follow the increase of e at fixed values of other pa-
rameters. As we have seen above, the stationary point
(12),(13) appears at the value (16) of e . Inserting the ex-
pression (20) into the stability condition (21), it is
straightforward to find that the point becomes unstable at
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z =2e —
g 0(z

At last, let us define

%„=5„—(2am )n,

(24)

(25)

m being the same integer as in Eq. (23). Inserting Eqs.
(23)—(25} into Eqs. (1 la) brings us to the map f2

0
Q2

1 f2

L/2'P„+,=1I/„+—e Q —2(2m —1)e z„+, .
(26)

e &e1=eo+(2m —1) (4Q) e (28)

The stationary point (27) corresponds to periodic shuttle
oscillations of the fluxon between the junction's edges,
the oscillation period being 2~ [see Eq. (6)]. It is impor-
tant that, in the state considered, the shuttle motions
forth and back are fully symmetric. The period doubling
means breakup of this symmetry. Let us look for solu-
tions which describe the period doubling in the form

Zn 1
—

Zn +1 =Z0+Z1, Zn
—

Zn + 2 Z0 +Z2

+n —1 +n+1=+0++1& +n +n+2=+0++2 '

(29)

Inserting the expressions (29) into Eqs. (26), one can
readily exclude the quantities z, and z2 to arrive at the
system of two equations

sin(%0+ 4, )+sin(1I1O+ %2)= —2e '(1ra+ '„ofL), —
(30)

4, —%2= —
—,'(2m —1) 0 'ee / [sin(%11+4, )

—sin( +o+ F12 }] .

Expanding Eqs. (30) in powers of small %', 2, we obtain, in
the first three orders of the expansion, the following re-
sults: +,= —+2, and

q/ =6(2~ 1 ) fie / (e2 2)1/2( 2+ 2 2) —1

X [(2py1 1 )2II—1eL/2(e2 e2)1/2+4] (31)

According to Eq. (28}, the right-hand side of Eq. (31) is
negative and positive in the ranges where the stationary
point (27) is, respectively, stable and unstable.

In the case of the electric coupling, setting
co=(2m)2e +0 [cf. Eq. (23)], one can readily obtain
the same final results (27) and (31}with (2m —1) substi-
tuted by 2m.

So, at e =@1 we encounter a typical fork-like bifurca-

In terms of this map, the stationary point (12),(13) takes
the form

sin%o= e—'(ma+ ,'cr fL)—,
(27)

z =—(2m —1) 'Qe0 4

and the stability condition (21}takes the form

—4~(2m —1) 0 'e ecosoc/o 0 .

At last, the final stability condition (22) reduces to the
following one:

FIG. 2. The diagram of the bifurcations considered: At
e =so two stationary points (12),(13) appear, the stable one be-
ing that for which e cos50 & 0; at e =

e& the fork-like bifurcation
takes place. The solid and dashed lines depict stable and unsta-
ble solutions, respectively.

e L&f'— (32)

to neglect the dc driving force Fd„=2omf acting upon.
the fluxon. If the junction is very long, so that the in-
equality (23) does not hold, one may assume that the

tion, and, at least in the limit case (23) (and in the analo-
gous limit case for the electric coupling), this bifurcation
is always supercritical, i.e., it gives rise to two new stable
branches when the underlying one becomes unstable.
The sequence of the two bifurcations considered (the ones
at e =eo and at e =e1) is illustrated by the diagram
shown in Fig. 2. It is natural to expect that the period-
doubling bifurcation at 6' =E'1 is a first one in an infinite
chain of period doublings which ends at a finite value of
E' . This has been observed indeed in the recent work,
where a model of the fluxon shuttle based on a map
which is a slight generalization of the one (11}was stud-
ied numerically. In Ref. 7, the bifurcation at e =e, was
treated only numerically, in contrast with the analytical
treatment developed in the present work. A whole tree of
the period-doubling bifurcations stemming from the
sprout shown in Fig. 2 has been constructed in Ref. 7. In
particular, the first period-doubling bifurcation observed
in Ref. 7 is always supercritical, in accordance with the
results reported here. In the same time, some branches of
the bifurcation tree terminate at subcritical (inverted)
higher bifurcations.

In conclusion, it seems relevant to briefly discuss a
difference between the analytical approach adopted in the
present work and that developed for a similar problem
(the so-called reverse ac Josephson effect) in Ref. 4. In
the present paper, the analysis was based upon the
fluxon's law of motion (5) supplemented by the energy
balance equation ensuing from Eqs. (8)—(10). The law of
motion (5) implies that a force of interaction of the fluxon
with an edge x=0 or x =L, i.e., a force -e " or
—e ' "' (see Ref. 8} of attraction of the fluxon to its
' mirror image" in the unphysical region x &0 or x & L, is
dominating. It is easy to demonstrate that this force is
indeed much greater than the friction force Ff, = —8a V
( V is the fluxon's velocity) corresponding to the law of
motion (5). In the same time, we need to assume



BORIS A. MALOMED 41

fluxon moves with the equilibrium velocity Vo deter-

mined by the equation Fd, +Ff P,

loss (9), generated by the reflection of the fluxon from a
junction's edge, was neglected in Ref. 4.
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