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Coupled-cluster approximation for spin lattices: Application to solid He
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We have extended the coupled-cluster approximation to the spin-lattice problem. The efficiency

of this method is demonstrated on simple antiferromagnetic Heisenberg models in one and two di-

mensions. We then apply it to the problem of the ground state of the spins of solid 'He in the pres-
ence of multiple spin exchanges. The first-order transition field between the two ordered phases is

calculated, using the exchange parameters determined from first principles. Its variations as a func-

tion of the molar volume are predicted.

I. INTRODUCTION

The coupled-cluster approximation (CCA) has been
developed mainly for application to systems of fermions
(e.g., nuclear matter). It has proved to be very useful in
quantum chemistry where very accurate energies are re-
quired to explain chemical phenomena. The theory has
gradually been taken over into other areas of physics
where accuracy beyond that provided by Hartree or
Hartree-Fock variational wave functions is needed. An
excellent, although not very detailed review' provided us
with the stimulation to apply the method to spin-lattice
systems. As far as we know, the method has not been ap-
plied to such systems despite the long history of attempts
to improve on available methods for those problems.

The lattice problem we had in mind was the spin Ham-
iltonian of bcc He. This Hamiltonian is now known to
contain several types of exchange including two-spin ex-
change and three-spin exchange, which lead to
Heisenberg-type terms, and four-spin and six-spin ring
exchanges which lead to 0 - and u -type terms. Until
now the ground state of this problem has only been stud-
ied in mean-field theory ' ' or by exact diagonalization of
the 16-atom cluster, and somewhat tentatively by the
random-phase approximation. ' '"

The coupled-cluster method starts with a variational
ground state ~0) (which is provided by mean-field theory
in the case of the spin lattice) and develops a better (al-
though unnormalized) approximation in the form es~0).
The operator S contains only raising operators (in the
case of spins, flipping them out of the ground-state direc-
tion) and is usually treated in approximations denoted by

how many particles are raised by a single operation of S
as SUB2, SUB3, etc. '

of the computational effort required, it is in contrast to
the random-phase approximation (RPA), for example,
where one does not know a good next approximation
even in principle. Note that in Eq. (I) we have omitted
the S& term reflecting the fact that operators that raise a
single particle are equivalent to changes in the variational
wave function. For the spin-lattice problem we find that
the strict breakdown into SUBn is not very useful, since
some effects at SUB4 are substantially larger than certain
effects at SUB2; it is better to keep all reasonable terms
inside a compact cluster than to include SUB2 terms
where the two spins are far apart.

In the next section we introduce the method in a form
suitable for application to spin-lattice Hamiltonians of a
rather general form. In Sec. III we provide several exam-
ples of application to simple problems for which the exact
or near exact result is known. These simple examples are
useful pedagogically and also provide an insight to the
accuracy to be expected from the method. In Sec. IV we
study the multiple exchange Hamiltonian first on a
square lattice then on the bcc lattice with realistic ex-
change parameters. This last problem formed the
motivation for the transportation of the CCA method to
spin lattices. In He a number of spin ring exchanges are
important in the order 2, 4 planar, 3, 6 hexagonal, 4 fold-
ed, etc. , as suggested by analytic approximations and
more quantitatively by Monte Carlo calculations. Thus
we have included terms up to SUB4 inside a planar clus-
ter of four spins, which treats the first three kinds of ex-
change rather completely and have made corrections to
take account of the relatively smaller six-spin term in the
Hamiltonian. In the future it may be possible to treat
consistently a larger cluster including the six-spin ex-
change.

S =S2+S3+S4+

The method is manifestly convergent towards the exact
result as more terms in S are included. Even though it
wi11 not be possible to go very far in this process because

II. THE COUPLED-CLUSTER METHOD
ON SPIN SYSTEMS

We will consider a lattice of X spin- —, sites. These spins
will interact through a Hamiltonian of the form
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(P2)

P2 i&j

(P4)

+ g g F~&~scr; o~~o/or+
. B—g o';,

P4i &j&k&1 l

o+ =(o "+io~)/2, o =(o" —io~)/2, o' .

Thus if we write

U;cr, U; =C (i)crr,",
where p is summed over +, —,z, and by defining

(4)

(2)

where B is the magnetic field times the magnetic moment

@fan/2, the F's indicate the kind and strength of the cou-
pling, P„ indicates the kind of cycle or panel of spins in
the interaction of n spins, the greek indices run over spin
directions (x,y, z) and are summed as implied by their be-
ing repeated, and the latin indices run over the N spins
(with restrictions indicated by the panel P and the ine-
qualities on the summation). We have assumed, as is usu-
al, that the 0's refer to directions in the Zeeman basis,
that is with a, along the direction of the magnetic field.
As examples, ordinary Heisenberg coupling will result if
F is of the form

B (i)=BC'(i),

G,' (i,j )=F &' C (i)C~(j),

etc., we have for the Hamiltonian in terms of raising,
lowering, and o' operators in the mean-field basis,

(P2)

H = g g G,' (i,j)of'o)
P2 i&J

(P4)

+ g g G,„'„(ij,k, l)arcr,'oil", o(
P4 l &J

F~p=J5 p,
+ —$B (i)or' .

p l (8)

while the four-a part of the four-spin ring exchange
Hamiltonian is of the form

F prs=K(5, g5 s+5pr5 s 5r5—ps) .

The panels P& imply a summation restriction over certain
kinds of pairs for example nearest neighbors, next-nearest
neighbors, etc. The panels P4 would run over planar qua-
drilaterals with nearest-neighbor sides, folded quadrila-
terals of nearest neighbors, etc. We have not included P3
because combinations of three spins violate time reversal
and do not appear as a result of spin permutations (al-
though strange magnetic interactions could lead to
three-cr terms).

As mentioned in the Introduction, the transformation
of the basis to one where the state ~0) is a variational
minimum is an important step in the application of the
coupled-cluster method. The mean-field approximation
is equivalent to the Hartree minimization in that the state
constructed is a product of single-particle wave functions
(spinors in our case), which gives minimum expectation
value of the Hamiltonian. The local mean fields give a
direction for each spin's coordinate system and we can
build a basis where the 2 states are specified by which
spins are flipped from their mean-field direction. Intro-
ducing the set of 2X2 rotation matrices U, that rotate
the coordinate system of the ith spin from the Zeeman
(magnetic field) basis to the Neel (mean-field) basis the
Hamiltonian becomes

(P2)

H = g g F &' (U, cr, U, )(U&o&~U.
~

).

P2 «J
+ B$(U o';U—; ) .

Each factor Ua U represents a traceless 2 X 2 matrix and
can be written in terms of the three matrices a, a~, a' or,
as is a more convenient form for our purposes,

(oiHio) .
~I

Here we have assumed U =exp(ieo /2). The last
member is zero because 0 is chosen to minimize the ex-
pectation value of the energy.

One of the characteristics of the CCA method is that it
yields an unnormalized ground state. This prevents our
being able to prove a variational theorem but results in
terminating series and more tractable solutions. The
CCA ground state is taken to be

fc ) =e'/0), (10)

where

(P2) (P3)
S = g g y; cr,+cr+ +g g . r, qo,+cr+ol+,"

p~ i&j p3 i &j&k

(P4)

P4 i &j&k&1

where successive terms are denoted SUB2, SUB3, SUB4,

This Hamiltonian forms the convenient starting place for
the application of the CCA. In all cases we have studied,
it has been convenient to choose the matrix U so that the
rotations are about the y axis, which keeps the expression
for the Hamiltonian real. We have also taken the con-
vention that states ~0) has all spins "down" (i.e.,
o ~0) =0). Besides being a "best" starting place because
the state ~0) in this basis is the mean-field (i.e., variation-
al in a Fock space) ground state, the Hamiltonian (8) has
zero matrix elements between ~0) and any state with a
single spin flipped. This can be seen from the fact that
variation of a given spin direction is essentially the same
as adding some of the flipped state. Algebraically

&o~, H~o&=(0 2 nU, %' AU„O)aU, .

BH;
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etc. As mentioned earlier we can omit S, terms because
these are equivalent to changes in the mean-field basis.

The commutation relations among the operators we
are using are exp( S—)crl,'o'cryo i

. exp(S) =o r cr J'cr go i (24)

In practice, we shall proceed in the following way. We
use the property

[cr~, oj']=0 ifi' or if p=~,

[o, ,o,+]=—cT', ,

[o', , c ~+]=2o ~+,

[cT;,cT, ]=—2o,

We also have

(12}

(13a)

(13b}

(13c)

with

o; =exp( —S)o;exp(S) =o; + [cr;,S]+—[[o,,S],S] .1

(25)

All that we now need are the exp(S) transforms of the
three operators: cr;+, o, , o', Fro. m Eq. (25) we obtain

(cr,+) =0=(o, )

cr,+o, +ca, o,+=1.

(14)

(15)

—+ +
i i

o, =o, +[sr, , cr,+]4;—a,+S~,

o ', =[c7,+, cr, ]+2o,+4, ,

(26a)

(26b}

(26c)

The formal statement of the CCA method is as follows:
Assume that the (unnormalized) ground state of the sys-
tem is of the form G(ps}(i }cr a'

l@&=e IO&, (16)

which is always possible' if I cp ) is not exactly orthogonal
to IO). Then

(17)

or

I +
i

+~i- } ~

He'lo& =E,e'IO& .

Multiplying on the left by e one has

HIO) =e sHesIO) =Eol0) .

Now since IO) is normalized we may write

(OIHIO)=(Ole He IO)=En,

(18)

(20)

ii j i ) I
2 «i- —— +

and by the orthogonality of
I
n ), IO), where I n ) are excit-

ed states of the mean-field basis

(nlHIO) = (nle He IO) =0 . (21)

Equations (21}are the requirements on S so that (20) will
be true. In fact, there are more Eqs. (21) than parameters
in S to be adjusted, but in practice if the lower states'
equations are satisfied the energy given by (20) is a good
approximation. One attractive feature of the method is
that there is a clear succession of approximations (SUB2,
SUB3, etc. , for example) that leads to the exact ground
state.

An important point, which leads to finiteness of the
equations, is that H is a closed expression for any finite
level of approximation. First note that

1H =e Hes=H + [H,S]+ [[H,S],$]+, —(22)

+ ——
-iaaf

I J

g(pz} ( }-
2 4-—'a

t

if—-ilE

g ~g ~0. ~0 (23)

so that the series (22) is always finite for H's with a finite
number of e's in each term.

and, since S contains only o 's and H contains only a
finite product of o's, each successive commutation with S
reduces the operators in the progression

FIG. l. A diagrammatic representation of the dilerent terms
contributing to HIO) for a quadratic Hamiltonian, within the
"SUB2 coupled-cluster approximation. " A dashed hne

(P2)
represents a link G~, ' (i,j) in the general expression (8) of the
Hamiltonian. A solid line represents a pair-Rip amplitude gkI in

Eq. (11). A star ( e ) represents a creation operator o z . These
diagrams are to be summed over a given lattice with the conven-
tion that all ends remain free.
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where o,+4,. represents the sum of all terms of S that are
connected to the site i (i.e., which contain o; ).

(P2) (P~)

4, = g g y,,cr,++ g g r,,„o,+cr„+
pi j pi j(k

2 3

exact results and/or other approximations.

A. The Heisenberg antiferromagnet
in one and two dimensions

(P4)

pt j&k&1
(27}

1. The antiferromagnetic Heisenberg linear chain

Here in the usual notation the Hamiltonian is simply

The sums over P„' are over those panels that include the
site i T. he sums over j,k, I, . . . are restricted to the
panels P„' In E. qs. (26) we have written a' as [o +, o ] to
emphasize that it is often convenient in automatic calcu-
lations to have fewer kinds of operators.

The expression of H is obtained by substituting the re-
lations (26a)—(26c) into (8). In fact, we only need HIO),
and this is the more convenient form: Using the relation
(15) we can move all o

&
to the right, and, since

cr& Io) =0, we are left with operator products that con-
tain exclusively raising operators o.+.

The calculation is straightforward with a quadratic
Hamiltonian. We simply have to calculate the following
terms: 0 i'o J, with p, r C I +, —,z ]. The results are con-
veniently represented by the diagrams of Fig. 1 when S is
terminated at the SUB2 level, so that only the first term is
retained in Eq. (27}. We use the following conventions:

(P2)
A dashed line represents a G,' (i,j ) link in the Hamil-
tonian (8). A solid line represents a y,. link in the expres-
sion for I [relation (27)]. The stars (» ) represen't ol+,

operators. The coefficient of terms in the expression for
HIO) that have a given arrangement on the lattice of
0+'s is given by the sum over diagrams that have their

(P2 ja's so arranged. Each diagram is weighted by 6,' (i,j )

for the single dotted line and by gk for each solid line
and by the coefficient leading the diagram in Fig. 1.

Because of our interest in He magnetism (see Sec. III)
a computer program has been written (see the Appendix)
for treating more complicated Hamiltonians, which in-
clude 0. terms. Its automatically performs the 0),' prod-
ucts, reduces them with the help of Eq. (15) and sums
over a given lattice. The resulting set of nonlinear cou-
pled equations (21) is usually solved by the Newton-
Raphson method. '

III. THE ILLUSTRATION OF THE METHOD
ON SIMPLE MODELS

In this section we present three simple examples
demonstrating the applicability and accuracy of the
coupled-cluster method on spin-lattice Hamiltonians.
The first one is pedagogic: The concepts introduced in
Sec. II are illustrated on the Heisenberg antiferromagnet
in one and two dimensions (square lattice). Secondly, we
show that the method works as well in the presence of a
an arbitrary magnetic field B. Finally, since our objective
is to apply the method to a frustrated Hamiltonian with
competing interactions (the physical situation in solid
He), we study the Heisenberg linear chain with frustrat-

ed antiferromagnetic interactions between first and
second neighbors. In all cases, comparison is made with

N

H — g tr; 'tr;+ )
i=1

(28)

This can be transformed into the mean-field (or rather
Neel} basis

N

[2(tr tri~+&+tri tri+i)+tritrf+&] .
2 '

1

(29)

In this basis the two degenerate Neel states correspond to
all spins "down" (in their individual coordinate systems)
or all spins "up." We arbitrarily choose the "down" state
as our starting state Io).

Assume S to allow Gipping a nearest-neighbor pair,
which is to say in the Neel basis that neighboring pairs
are raised. Note that this is not the whole SUB2 approxi-
mation usually discussed but is only a subset of possible
two spin excitations

s=yy (30)

+tr itr i+i]

Using the diagrams of Fig. 1, we have

(31)

Hlo) = ——y [(I+2x&)lo)+(2—
4y&

—6yf)o,+o,++&Io)
I

+(2gf)cr,+cr,++3IO) +(4gf)o,+cr,++,o,++2cr,++3IO) ] .

(32)

The parameter y1 is determined by setting the second
term in Eq. (32) to zero so that H is diagonal in the space
of Io) and all states with two nearest neighbors flipped.
Thus

0=2 4+1 6+1 or y&= 3

The ground-state energy is then

Eo/NJ = (OIH IO) /NJ

= —( I+2y )/2= —0.8333. . . .

(33)

(34}

Table I shows how this compares with mean field, spin
waves, ' and the exact result. '

We also compare with the result obtained with the
variational "resonant-valence-bond" (RVB) wave func-
tion (in its simplest formulation) proposed by Ander-

From Eq. (24), the transformed Hamiltonian becomes
simply

N
H=e He = ——g [2(cr,+cr,++&+sr, o, +&)

i=1
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TABLE I. Ground-state energies of the antiferromagnetic Heisenberg linear chain (first line) and of
the antiferromagnetic Heisenberg model on a two-dimensional square lattice (second line). The ener-
gies within a scheme of successive "coupled-cluster approximations" with increasing cluster size
(CCA1, CCA2, . . . ) are compared to the mean-field (MF), spin-wave, "RVB variational" and exact' or
nearly exact' results.

One dimensional
Two dimensional

MF

0.5
1.0

RVB

0.750

Spin waves

0.865
1.316

CCA1

0.8333
1.297

CCA2

0.8725
1.306

=exact

0.8863
1.33

son. ' It is worth noticing that the exp(S) formalism that
we are developing contains the RVB wave function as a
particular case. If we split the chain into odd and even
bonds and take

+ + + +g Xe~2i ~2i+ I+X0~2i —i+2i (35)

with g, =1 and go=0, we obtain

exp(S)IO& = g (1+o',+, o',+,.„)10&, (36)

which simply represents the RVB wave function [we use
the properties that all o,+ commute and (o,+} =0].
However, by applying the same formalism with Eq. (35),
the equation (33) is replaced by the system

0=1—2X, —2X,Xo
—X', ~

2&o 2X Xo Xo
(37)

which gives back the symmetric solution y, =go= —,
' as

we previously assumed. Of course, the result y, =po is
not exactly contrary to the spirit of the RVB idea al-
though the bonds are not "saturated" as is often as-
sumed.

Note that the third and fourth terms in Eq. (32) are not
actually zero in the preceding approximations. The next
logical level of approximation is suggested, however: in-
clude in S terms that flip third-neighbor pairs and terms
that flip four first neighbors as found in the third and
fourth terms of Eq. (32). This will allow cancellation of
terms of that type (and creation of other remainder terms
presumably of a still smaller size}. Thus a logical se-
quence of approximations for lattice spin systems is to in-
clude at the 6rst level creation operator that are in the
Hamiltonian, which connects the ground state to other
states in the mean-Seld basis. At the second level include
in addition those terms that are remainders in Hlo& at
the Srst level, etc. In other words, if we take S„ to in-

clude remainder terms from H„ ilo& (where Ho is the
starting Hamiltonian in the mean-field basis), then we
have a succession of approximations that will eventually
converge to the exact result. Thus at the next approxi-
mation we take

S= g(bio'; o';+, +y3o; o;+3+air; o, +io;+3';+3) .+ + + + + + + +

(38)

When this is carried out for the linear chain, we obtain

& lo &
= ——y I (1+2', ) lo &+(2—4y, —6y', +4yix3+4x33+4~)~+~++, Io &

1

+ (2yi 8y3 8—yiy3+—2a)a,+rri++3lo&

+[4g+8xix3 —4i(1+i4xi+x3) 8xix3] —i+ i+i i++2;+3lo&+ I . (39)

The requirement that the second, third, and fourth terms
of Eq. (39) are zero leads to yi =0.3725, y3=0.0372, and
s=0.0655. The corresponding energy [first term of Eq.
(39}]is then

Eo/NJ = —(1+2yi)/2= —0.8725

(only 1.5% above the exact value —see Table I).

In comparison, the fu11 SUB2 approximation, which a1-
lows all possible pair flips in S,

S = g y„cr,+cr, +„,
i, n

(40)

does not improve the energy substantially. Table II
shows the results of a numerical solution of the equations

TABLE II. The fast decrease of nth neighbor spin-Hip amplitudes y„within the SUB2 coupled-
cluster approximation applied to the antiferromagnetic Heisenberg linear chain.

13

0.337 244 0.021 654 0.002 884 0.000487 0.000093 0.000019 0.000004
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2. The antiferromagnetie Heisenberg model
on the square lattice

We consider the Hamiltonian

(])
H= —$o, o,

i (j
(41)

on a two-dimensional square lattice (the sum is restricted
to nearest neighbors). In the Neel basis, the Hamiltonian
(41}is transformed into an expression similar to Eq. (29).
Using the diagrams of Fig. 1, the equations at the lowest
level of the coupled-cluster approximation (CCA1) are
obtained easily. The first-neighbor pair flip amplitude g&
is a solution of the equation

1 6g& 5+]=0 or y~ =0.148 33 (42a)

with n= 15 neighbors included in S. We observe a fast
decrease of the g„'s. The energy is Eo/NJ = —0.8372,
only slightly better than the value obtained with the first
elementary approximation. In conclusion, the succession
of coupled-cluster approximations that we propose is
more appropriate to the spin-lattice problem.

The solution, p&=0.1531 +2=0 K =0.0179, leads to a
ground-state energy

Eo/NJ = —(1+2yi) = —1.3062 .

This energy is compared in Table I to molecular field,
spin waves, ' and a recent accurate variational calcula-
tion' using Monte Carlo methods. The accuracy (2%%uo) is
comparable to that obtained in one dimension. Although
the energy correction with respect to the molecular field
is smaller in two dimensions, we do not expect a better
accuracy because the CCA2 cluster extends to a relative-
ly shorter range.

B. The antiferromagnetic Heisenberg
linear chain in a magnetic field

We now illustrate the coupled cluster method in a
slightly more complicated situation where the spin direc-
tions in the Neel state are not aligned. In a magnetic
field, the Zeeman term

and the ground-state energy is Hz= B go (44)

Eo/NJ = —(1+2yi)= —1.2967 . (42b)

At the next level (CCA2), we include in S the terms that
flip second neighbors (y2) and those that flip four spins
on a square (a., ). The systein of coupled equations is cos(8) =B/B, , (45)

is added to the Hamiltonian (28). The molecular-field
state has two sublattices with spin directions at angles 8
and —8 from the magnetic field. The angle 8 is given by

0= —1+6']+ y] —6y~ —2K, ,

0=x&x2+ 212

0= P ~
+2P &Pp +2+]Ks Xp +Ks

(43)

where 8, =2J represents the transition field to the fer-
romagnetic state, and the magnetization increases linear-
ly with 8 up to 8, . The Hamiltonian is easily
transformed into the Neel basis

H= —g I[cos(28)—1](o, o, +,+o,+o,++, }+[cos(28)+1](o,o,++, +o;+o, +, )
i=1

+( —1)'sin(28)[o', (o, ~, +o,++, }—o';~, (o; +a,+ }]+cos(28)o';o',~, I

+B g [cos(8)o'; —( —1)'sin(8)(o, +o,+)] . (46)

The spin axes have been chosen to avoid imaginary terms
in this expression: The y axis is fixed and (x,z) are rotat-
ed around y.

In contrast to the simple examples studied in Sec. III A
there are some terms in the Hamiltonian that at the most
elementary CCA1 level generate new linear o,+. ~0) terms
in H ~0), which are proportional to y;. . In order to satis-
fy the relation (21) with ( n~ corresponding to one-spin-
flipped states, we have to reintroduce in 5 the operators
that flip one spin, a,.o.,

+. , to balance these new terms. At
the next CCA2 level, together with the pair- and four-
spin flips, we also have to take into account in S the
terms that flip three spins: 'T. o o,+-+ ]o..+2,

N

i=1
+ + + + + + ++Ti&i Oi+1&i+2+K&i Vi+1&;+2Oi+3) (47)

As already emphasized, the action of exp(a,+o,+ ) on ~0),

exp(a,+o,+ ) ~0) =(1+a,+o,+ ) ~0), (48)

induces a rotation of angle 8; =arctan(a; ) for the spin i.
In order to preserve the symmetry of the two sublattices
with respect to the direction of the magnetic field we
have to take opposite value of the a s
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a,.=( —1)'a and r, =( —I )'r . (49)

M = BE(B)I—BB . (50)

The results are shown in Fig. 3 (dashed line) and com-
pared to the molecular field (dotted line) and Griffiths ex-
act result' (solid line). Except in the neighborhood of
the critical field where the exact result exhibits an infinite

slope, the agreement is good. The inset shows the varia-
tions of the angle 8 [we have plotted cos(8) in terms of
B /B, ], which, for each value of the field, is readjusted as
explained before (dashed line). There is a large departure
from mean field (dotted line), which corresponds to the

Starting from the molecular field state ~0), the parame-
ters a,y„(n =1,2, 3),r, ir in S [cf. Eq. (47)] can be deter-
mined from the set of coupled equations (21), ~

n )
representing excited states with one, two, three, and four
spin Aips.

There is a simpler alternative that we would rather use.
We may as well readjust the angle 0, slightly away from
molecular-field value in order that the preceding set of
equations has a=0 as a solution. The calculations are
simpler, and we thus start from a ~0) state that in princi-
ple should be closer to the exact ground state than the
Neel state.

The ground-state energy's dependence on the magnetic
field B is represented in Fig. 2. The CCA1 (short-dashed
line) and CCA2 (long-dashed line) coupled-cluster ap-
proximations are compared to the molecular field (dotted
line) and to the exact result of Griffiths' (solid line).

The CCA2 curve is suSciently close to the exact result
for a reasonable estimate of the magnetization to be ob-
tained by simply di8'erentiating

MlM 0
1.0

0.8

0.6

0.4

0.2

0.$ 0.2 0.4 0.6 08
B/B

C

1.0

fact that the exact zero field susceptibility is much lower
than the molecular field estimate.

C. The frustrated linear chain

FIG. 3. Reduced magnetization M/MD, as a function of the
magnetic field ratio B/8, for the antiferromagnetic Heisenberg
linear chain. B,=2J is the transition field to the ferromagnetic
phase. The coupled-cluster approximation CCA2 (dashed line)
is compared to molecular field (dotted line) and exact result of
Griffiths' (solid curve). The inset shows cos(8), for the coupled
cluster (dashed line) and for the mean field (dotted line) as a
function of the same ratio. 8 is the angle between sublattice
spin direction and the applied field.

-E /a0
1.5

Here we study the Heisenberg linear chain with com-
peting antiferromagnetic interactions between first and
second neighbors. The Hamiltonian is

J N

H =—g (o, o, +, +'i)o, o;+2) .
2

(51)

1.0

CCA1
CCA2

.-. mean field

0.5 '

0.0 0.2
I

0.4 0.6
I

08 l.0

FIG. 2. Energy of the antiferrornagnetic Heisenberg linear
chain as a function of the magnetic field ratio B/B, . B,=2J is
the transition field to the ferromagnetic phase. The coupled
cluster approximation for two cluster sizes: CCA1 (short-
dashed line), CCA2 (long-dashed line) is compared to mean-field
(dotted line) and the exact result of Griffiths" {solid curve).

It is suitably represented by a railroad-trestle lattice (Fig.
4), which for rl= —,

' may be viewed as a piece of the frus-

trated triangular lattice. It has been shown that for
g= —,', the RBV wave function [Eq. (36)], is an exact
ground state' with energy Eo/J= —0.75. We shall
study it for 0 & g & —,'.

The molecular-field state is a simple alternate antiferro-
magnetic phase (cf. Sec. III A) up to q=0.25. Then the
stable phase is helimagnetic. For simplicity, we shall
keep the simple antiferromagnetic phase over the whole
range 0 & g & —,

' as a ~0) state (if we start from a helical

phase, the form to give to the three-spin-Aip amplitudes

r;Jk is not straightforward). As we shall see, the results
obtained in this way are satisfying for the range 0 & g & —,

'

that we study.
At the first CCA1 level, we include in S the terms that

fiip pairs of first neighbors (y, ) and second neighbors
(yz). With the help of Fig. 1, the following equations are
easily obtained:
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FIG. 4. The railroad-trestle lattice.

0= —2+4(1—rj)y, +6g —4y2,

o=(8—4rj)X2+ 8XlX2

The physical solution is

q —I+[ 1 —q 2+3]'"
2 3

(52)

(53)

E =const X (0; o;+2) =0 .
rj

As noted in Sec. III A, the RVB wave function is includ-
ed in our formalism if we allow unequal y between left
and right neighbors. Including this possibility we obtain
the RVB state as a solution for g=0.5. However, at the
CCA1 level, if we follow that solution slightly away from
g=0.5, we do not reproduce the maximum either and E
moves rapidly away from the exact solution. Further
studies are needed around that point; they are beyond the
scope of this paper.

IV. THE SPIN SYSTEM IN He

A. The multiple-exchange Hamiltonian

The general spin-exchange Hamiltonian is written

The energy H,„=—g (
—1) Jl P

pa
(54)

Eo/NJ = —(1—rj+2y, )/2

is represented in Fig. 5 (short-dashed line).
The next order (CCA2) is solved by computer. We in-

clude pair flips up to third neighbors and four-spin flips
(~). The results are compared in Fig. 5 (long-dashed line)
with an accurate estimate based on extrapolation to
infinite lattice of exact calculations on finite chains'
(solid curve). The accuracy is better than 2% on the
whole range (although for rj=0.4—0.5 the exact energy is
about twice the molecular-field value). However, we cer-
tainly would have to go to much higher orders to repro-
duce the rnaximurn of the exact curve at g=0.5. This
feature is related to a peculiarity of the exact RVB
ground state, which has zero correlations between second
neighbors, hence

E /J
0

-0.65

4.70

%.75

where the sum runs over all permutations P acting on N
spin variables. (

—1) represents the sign of the permuta-
tion P. A general result, first shown by Thouless, is
that even and odd permutations respectively favor fer-
romagnetism and antiferromagnetism, and all Jz's in Eq.
(54) have the same positive sign. If the only relevant per-
mutations are pair transpositions, P;, =(I+a;.o, )/2,
where cr; represent Pauli spin operators, we obtain the
usual Heisenberg Hamiltonian.

Due to the hard-core interactions between exchanging
fermions, two, three, and four particle cyclic exchange
processes are of the same order of magnitude in solid
He. Although they are smaller, six-particle exchange

processes might play a significant role in the high-field
phase of bcc He. '

Three particle permutations P;Jk=P;jP;k reduce to
effective Heisenberg interactions:

P; k+P; k'=(1+cr; o, +o', o'k+o'k 0';)/2 . (55)

Cyclic four-spin permutations PpgkI P&jPtkP;I give new
fourth-order terms: '

] 1
Pijkl+Pijkl 4 2 ~a ~p+ ~ijk!

a(P

the sum g && is performed over all distinct pairs in

Ii,j,k, lI and

0;kl=(o'; a )(o'k al)+(a ok)(irl cr;)

4.85
—

( o; cr k )(crj cr l ) . (57)

-0.90
O.o

I

0.1
I

0.2
I

0.3
t

0.4 o.5

In the Neel basis, each dot product cr; .cr is
transformed into the general expression

cos(8; —8 )(cr;"a"+o',o').
FICx. 5. The ground-state energy of the frustrated antiferro-

magnetic Heisenberg linear chain as a function of the ratio g of
second to first neighbor interactions. The CCA1 (short-dashed
line) and CCA2 (long-dashed line) coupled-cluster approxima-
tions are compared to nearly exact results' (solid curve).

+sin(8, —8 )(o';o" ir;"o' )+o~o~, (58)— .

where 0, represents the angle of the local mean field at
site i, with respect to some arbitrary origin. Here again
the y axis is fixed and (x,z) are rotated around y from one
site to the other. In that way the expression of the Ham-
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iltonian in the mean-field basis is real. Substituting Eq.
(58) into the relations (55)—(57) the Hamiltonian is
transformed into the general form (3), or into (8) if we use
the Eqs. (4).

{a) NAF {b) CNAF or PF

B. Four-spin exchange in the 2D square lattice

Two-dimensional Heisenberg ferromagnetism has re-
cently been observed in two He solid layers adsorbed on
grafoil. ' On that substrate, the He lattice is triangular
and three-particle exchange processes are expected to be
preponderant. ' A coherent interpretation of the experi-
mental results ' has been proposed within the multiple-
exchange model.

In principle, using some appropriate substrate present-
ing a suSciently strong adsorption potential with a quad-
ratic symmetry, a commensurate square lattice of He
atoms could be stabilized (a MgO powder substrate
might be a good candidate ). In a square lattice, four-
particle exchange processes should dominate, ' leading,
in contrast, to antiferromagnetism. As we shall see, the
experimental results should even be more exciting in that
case. Four-spin exchange might also be relevant in the
two-dimensional Cu02 planes of copper based new super-
conducting ceramics.

Besides this important experimental interest, the four-
spin exchange Hamiltonian in two dimensions already
presents the essential features observed in three dimen-
sional bcc He, with the theoretical advantage that the
coupled-cluster approximation can be compared to exact
calculations on finite clusters with reasonable size.

In a two-dimensional square lattice, we expect pair ex-
change between first neighbors (JNN) and four-spin ex-
change on a square (K, ) to be the most important ex-
change processes (see Fig. 6). Using Eqs. (55)—(57), the
Hamiltonian (54) is written

FIG. 6. The normal antiferromagnetic NAF phase (a) the
CNAF or PF phase (b) and the four-sublattice phase with or-
thogonal magnetizations (c) on a two-dimensional square lattice.

ENAF /N = —
JNN

—K, /4,

Ei/N = —3K, l4 .
(61)

4JNNcos(8)+8K, cos (8)=B . (62}

For all values of g, the high-field molecular-field state is a
canted normal antiferromagnetic phase (CNAF) —see
Fig. 6(b). This phase has two sublattices A and B with
respective magnetizations at angles 8 and —8, symmetric
with respect to the magnetic field with

(sqj
+

i &g&k&I
Q cr erg+9, p, i +Ep .

a&P
(59)

With four-spin exchange, the second term in (62) leads to
a strong enhancement of the magnetization
M =Mocos(8) (Mo representing the saturation value).
This phase is identical to the so-called "pseudoferromag-
netic (PF)" phase observed in bcc He. Its energy is

J& and J2 are effective pair exchange interactions between
first and second neighbors

Epp/N =2JNNcos (8)+2K cos (8)
—B cos(8) —K, /4 —JNN, (63)

Ji =JNN+&s

J2=K, /2 .

8 being given by (62). It undergoes a second-order transi-
tion to the ferromagnetic phase at a critical field

The constant
B,~=4(JNN+2K, ) . (64)

Ep =N( JNN+K, l4)

represents the energy of the Hamiltonian (54) in the
paramagnetic phase at infinite temperature. In all that
follows, Ez will be chosen as the origin for energies.

For 7) =JNN/K, & 0.5, the zero-field Neel state is a nor-
mal two-sublattice antiferromagnetic ("NAF"} phase
[Fig. 6(a)]. For i) &0.5 the molecular-field state is a four-
sublattice phase with orthogonal magnetizations shown
in Fig. 6(c). The energies of the two phases are, respec-
tively,

(Note that the molecular-field value of this transition field
is indeed exact. ' ) For @&0.5, there is, at a relatively
low-field —compared to B,2—a first-order transition from
the four-sublattice phase to the "PF"phase.

In order to test the accuracy of the coupled-cluster ap-
proximation on this Hamiltonian, we have first estimated
the ground-state energy by the general methods used in
the literature for low-dimensional Heisenberg or XYmod-
els. ' Exact ground-state energies are calculated with
the Lanczos method for finite systems of N=4—20 parti-
cles. Extrapolation of energy plots as a function of 1/N
are made to estimate the ground-state energy for the
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infinite system.
We first apply the method of Ref. 25. The exact

ground-state energy is calculated for the finite clusters of
%=4,8, 16,18 particles, represented in Fig. 7, with period-
ic boundary conditions (the N=10 or 24 particle clusters
used for the Heisenberg model are not suitable here,
due to their peculiar unsymmetrical boundary conditions,
see Fig. 7). The energies are plotted in Fig. 8 as a func-
tion of 1/N for a pure four-spin exchange Hamiltonian
(JNN =0). A least-squares quadratic fit (solid line) extra-
polates to

-E /K

2.5

2.0

1.5

Eo/NK, = —l. 14 (65)

for the infinite lattice, a value much smaller than the
mean-field estimate EM„/NK, = —0.75.

We can also adapt to our problem another method
used more recently for the triangular lattice. The exact
ground-state energies are calculated for successive rows
of four-spin cycles with length 1 and width w (see Fig. 9)
with free boundaries. For each fixed width w, the energy
is plotted as a function of I/1 and a value E(l = ~, w) is
deduced for infinite length through a straight line extra-
polation (cf. Fig. 9). In inset the values of E(l = oo, w)
such obtained are plotted as a function of 1/w. An esti-
mate of the ground-state energy

Eo/NK, = —l. 18+0.05

is deduced for the infinite system from a straight line ex-
trapolation.

We now apply the coupled-cluster approximation to
the four-spin exchange Hamiltonian. The lowest order
should include all pair- and four-spin flips in S which are
already generated by the Hamiltonian:

(1) (2)
S =y, g o+cr++y, y o+0+

i (j i (j

1.0

I.
1/4

FIG. 8. Exact ground-state energies for N particle square
clusters with periodic boundary conditions as a function of 1/N.

The two first sums are restricted to first and second
neighbors, respectively, and the third is performed over
distinct square four-spin cycles. Starting from the mean-
field four-sublattice state [Fig. 6(c)], we obtain for
JNN =0 a ground-state energy Eo/NK, = —1.16, in good
agreement with the previous estimates [Eqs. (65) and

Eo/NKs

(sq)
o.+o-+cr+o-+ .i j k I (67)

2.0—
i (j(k (t

j&
+JJ

/ J ~ Ja A
I
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I
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FIG. 7. Finite square clusters of various size with periodic
boundary conditions in the two-dimensional square lattice.

FIG. 9. Exact ground-state energies for successive rows of
four-particle cycles with length I and width lL). For fixed width,
the energies are plotted as a function of 1/I and linearly extra-
polated to I~~. Each of the extrapolated values is plotted in
the inset as a function of 1/w. An estimate of the energy
Ep/(NEg ) = 1.18+0.05 for the infinite system I~~,m ~
is deduced.
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(66)]. The values of the three parameters in S are

p, =0.1566, F2=0.0434, and ~, =0.0605.
It is worth noticing that the study of spin correlations

on the exact ground state of finite systems, with the same
1/N extrapolation methods, proves that the stag-
gered magnetization of the four-sublattice phase tends to
zero for the infinite system (see Ref. 24 for more details).
In contrast, a two sublattice long-range order seems to
subsist for N~ ~ with large fluctuations (cf. Fig. 2 of
Ref. 24). However, if we start from the two-sublattice
"NAF" phase as ~0) state for the coupled-cluster approx-
imation, we obtain Eo /NK, = —0.9166. . . with

y, =F2=0 and ~, = —0.3333. . . . This energy value is
much lower than the mean-field value

ENAF/NK, = —0.25 [cf. relation (61)] but still higher
than our best estimate Eo/NK, = —1.18+0.05 [see Eqs.
(65)—(66)].

It is also interesting to check the accuracy of the
coupled-cluster approximation in the presence of both
first-neighbor pair exchange and four-spin exchange.
With JNN =K„starting from the NAF phase, which is
the stable state in mean field, the coupled-cluster approxi-
mation gives Eo/NK, = —1.70 with y, =0.06, F2=0, and

~, = —0.17. The energy is close to the estimate based on
extrapolations of exact results on N=4, 8, 16,18 particle
clusters using the method described in Fig. 7:
Eo /NK, = —1.76. (Starting from the four-sublattice
phase as ~0), we obtain a higher value Eo/NK, = —1.46.)

As already noted, the "CNAF" phase with enhanced
magnetization, or "PF" phase, is always stable at high
field for any value of the parameter ratio g =JNN /K, .
We now apply the coupled-cluster approximation in arbi-
trary magnetic field starting from the PF state. With
pair- and four-spin flips [Eq. (67)], we have to include in S
the terms that Hip three spins on a triangle with two
first-neighbor and one second-neighbor pairs:

1.0

Mo .

0.5

1.0

0.5

(b)
r

r

/

g &.25

0.0
0.0 0.5 1.0

B/Bc2

p,p '

s ~ s

0.0
I I I I I

0.5 1.0
8/Bc2

1.0

0.5

(c)
rr

r

1.0

M . (d)
r7

rr

/, '
=1.0

difFerentiation of the energy with respect to B [relation
(50)].

Figures 10(a)—10(f) shows the evolution of the magneti-
zation curve as a function of the parameter ratio
g= JNN/K, . The results of the coupled-cluster approxi-
mation (dashed lines) are compared to mean field (dotted
lines) and exact results (solid staircases) for a finite 16-
particle system with periodic boundary conditions. The
most exciting result is a "plateau, "which is observed in a
range 0.1&B/B,2&0.4 with a slowly varying but rela-
tively high magnetization M=O. SM0. This striking be-
havior, which does not appear within molecular-field ap-
proximation, is exhibited by both the coupled-cluster ap-
proximation and exact results on finite systems. It should
be the most interesting feature to observe experimentally

(sq)
o+o+o. +o. + .i j k I

(1) (2) ( T)

i&j i&j i&j&k

(6&)

0.0 '

0.0 0.5 1.0
B/Bc2

I

0.0 0.5 1.0
B/Bc2

for a triangle with two A and one B spins,

+tj k

(69)

i &j&k &I

As explained in Sec. III B, to conserve the symmetry of
the two alternate sublattices with respect to the magnetic
field, ~,jk must change sign for all symmetries which ex-

change the two sublattices A and B:

1.0
(e)

0.5

0.0,~', .
0.0

rg

r

I a I I

0.5 1.0
B/Bc2

1.0

M

0.5

0.0

r
J

Q =c
r

I I I I

0.5 1.0
B/Bc2

for a triangle with two B and one A spins.

The procedure is the same as discussed in Sec. III B. The
angle (9 is readjusted with respect to the mean-field value
and y, ,gz, ~, ~, are determined in order to satisfy the cou-
pled system of Eqs. (21).

The quantity that is the most interesting and accessible
to experiments is the magnetization. We have proved in
Sec. III 8 that a good estimate can be obtained by

FIG. 10. The reduced magnetization M/Mo for the PF
phase of the two-dimensional square lattice with pair (J» ) and
four-particle exchange {K,) as a function of B/B,2. Figures {a)
to (f) are for various values of the parameter ratio g= JNN/K, .
B,2 is the transition field to the ferromagnetic state. The cou-
pled cluster approximation (dashed lines) is compared to the
molecular field (dotted lines) and to exact results for a 4 X4 par-
ticle cluster with periodic boundary conditions (solid staircases).
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1.0
coNO

-Eo
B~

7 1.0
CON . (b)

-Eo

0.5 0.5

(e.g., for He adsorbed on an appropriate substrate with a
commensurate square lattice). As rl increases this plateau
is smeared out; however, a strong enhancement of the
magnetization subsists at low field, even for relatively low
values of K, [see Fig. 10(e) with K, =JNN/4]. The
enhancement of the magnetization at low field is a
characteristic property of four-spin exchange interac-
tions. It is also seen at finite temperature in the zero-field
susceptibility, which has been theoretically calculated
through high-temperature series expansions and exact
results on finite systems. The corresponding variations
of the angle 8 (dashed lines) and energies (solid lines) are
shown in Fig. 11. The angle 8 differs appreciably from
the mean-field value (dotted lines) and already accounts
for the shape of the magnetization curve (Fig. 10) with a
fiat region for 0.1 & BlB,2 & 0.4.

The first figures of each set [10(a) and 11(a)], corre-
sponding to a pure four-spin Hamiltonian (JNN=O),

show evidence of a technical difficulty. The set of
coupled-cluster equations (21}does not have a real solu-
tion in the range 0.15 (8/8, 2 &0.5. Two procedures are
then possible: (i) We can take the complex solution and
retain the real part of the energy or (ii) we can keep the
parameters in S real and optimize them by minimizing
the sum of the squares of the second members of Eqs.
(21). We chose the second alternative, but the results of
the two methods are not significantly different on the
scale of Figs. 10(a} and ll(a}. The singularities in the
magnetization which are evident in those figures result
from the change in methodology at the end points of this
region.

The last figures [10(f}and 11(f) of each set] correspond
to the pure Heisenberg model on the two-dimensional
square lattice. Another important feature to be noticed is
that, in contrast to the molecular-field result, the second
derivative of the magnetization curve is negative just
below the transition field 8,2 for all values of the parame-
ter ratio g.

In conclusion, we have found by comparison to exact
calculations on finite clusters of N=4 —20 particles that
the coupled cluster approximation also works quite well
for fourth-order interactions such as are found in the
multiple-exchange Hamiltonian. Some interesting pre-
dictions on the shape of the magnetization curve have
been made with four-spin exchange on a two-dimensional
square lattice.

Oeo ' » I l ~ I I I
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FIG. 11. The ground-state energies (solid curves), cos(8)
(dashed lines), within CCA and molecular-6eld values of cos(0)
(dotted lines) as a function of B/B, 2 for the same parameter
values as in Fig. 10. 8 is the angle between the sublattice mag-
netization and the applied magnetic field.

C. The bcc phase of solid He

1. Generalities

One peculiarity of bcc He magnetism is that some pa-
rameters, such as the first coefficients of the high-
temperature series expansions of thermodynamic data,
which can be calculated exactly, are difficult to measure
accurately. In contrast, some quantities, as the first-order
transition field between the two ordered phases, which
have long been measured with precision, are the most
difficult to predict theoretically. Our first motivation in
this work was to obtain a reasonable estimate of this tran-
sition field.

Two ordered phases have been observed experimentally
in the millikelvin range. ' In zero field there is a four-
sublattice antiferromagnetic state: the so-called
"UUDD" phase [Fig. 12(a)]. All spins have the same
orientation in a given (100) plane and, along the direction
(100) the spins alternate in a sequence of two "up" planes,
two "down" planes. . . . This structure was first suggest-
ed by nuclear magnetic resonance experiments and later
confirmed by neutron diffraction. At a relatively low
field (B„=0.45 T at T~O), there is a first-order transi-
tion to another magnetic state with cubic symmetry [Fig.
12(b)], which presents all features of the PF phase de-
scribed in the previous subsection. The magnetization of
this phase is already of order 0.5MO at the (relatively
small) transition field B„. The second-order transition
field 8,2 to the ferromagnetic state is thought to be of or-
der 20 T, on the basis of recent experimental investiga-
tions. Hence with a ratio 8„/8,2=0.02 we see that
these two phases, degenerate at 8„, are almost degen-
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(a) UUDD (b}CNAF or PF

8
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teractions within coupled-cluster approximation is possi-
ble in the future. It represents a large amount of work
but will be worthwhile if more accurate Monte Carlo cal-
culations of these small exchange frequencies are avail-
able.

2. Retaining only the main exchange processes

We consider the following multiple exchange Hamil-
tonian:

(1)
Hex JNN P Pij

i &j

FIG. 12. The UUDD and CNAF or PF phases in the bcc lat-
tice of solid 'He.

(2) (T)
+JNNN y Pij JT y (Pijk +Pijk

i &j i &j&k
( PI)

+&p g (Ppr+P;, al »
i &j&k&1

(70)

crate at zero field. This is the major difficulty in predict-
ing 8, &

theoretically.
Although the main qualitative features of the phase di-

agram are provided by the preponderant exchange pro-
cesses ' (pair exchange between first neighbors, JNN', tri-
ple exchange on the most compact triangles, JT, and cy-
clic four-spin exchange on planar cycles with four first
neighbors, Kp, see Fig. 13), calculations from first princi-
ples ' have revealed that the exchange frequencies do not
decrease with the number of particles involved as fast as
previously conjectured. Some higher processes (six-spin
ring exchanges, etc.), although smaller, should be taken
into account in quantitative theoretical predictions. We
shall first apply the coupled-cluster approximation to a
model including the three dominating exchange process-
es: JNN, JT, and Kp. "Mean-field corrections" (in a
sense that will appear in the following) will be added to
take into account smaller exchanges as six-spin cyclic
permutations. A fully consistent treatment of six-spin in- J] =JNN+3( 2JT+Kp)

J2 =JNNN
—4JT+&~

J3 =Kp/2

(72)

where P;~, P;jk, and Pjk& represent cyclic permutations of
two, three, and four spins, respectively. The sums are
performed on first (1) and second (2) neighbor pairs, the
most compact triangles ( T) and planar four-spin cycles
(Pl) (see Fig. 13). (Although small, we have also included
second-neighbor pair exchange because it does not com-
plicate the treatment of the Hamiltonian). When the per-
mutation operators are expressed in terms of Pauli-spin
matrices [cf. Eqs. (55)—(57)], we obtain

J) (1) J2 (2) J3 (3)

i&j i&j i&j
g p (+t)

+ g g o op+0;kl +Ep (71)
i &j&k&I a&p

J&, Jz, and J3 are effective pair exchange interactions be-
tween first, second, and third neighbors

t hree-spin
exchang

four-spin
Q,jkl is given by (57) and

six- part icle ring exchange

Ep =N (2JNN +3JNNN /2 6JT+3Kp /2)

is a constant which will be taken as the origin for energies
in all that follows.

At the lowest level of the coupled-cluster approxima-
tion one should include in S all n-spin flips generated by
the Hamiltonian itself: pair flips between first, second,
and third neighbors, three-spin flips on the most compact
triangles, four-spin flips on planar four-site cycles.

(i) The PF phase.
We take

(1) (2) (3)
Spp=g) g H; N~ g2 g Hg &1~++3 g K; &J.

i&j i &j I &J

FIG. 13. The main ring-exchange cycles in bcc 'He.

(T) ( pj)
+ X 7i)k~i~o'j~o'k +~p g oi~o'1 ok o'I

i &j&k i &j&k &I

(73)
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()A, ) (2A, )

SvvDD= X Xi X o' o'J +Xz X o' &J
i!=a,b i &j i&j

(3A, )

+~kg ~+ +

i&j
(P1 )

i &j&k &1

(74)

As explained in Sec. IVA, to conserve the symmetry of
the two alternate sublattices with respect to the magnetic
field, r,~k is chosen according to the rule (69).

+i k

for a triangle with two A and one B spins.

7ijk

for a triangle with two B and one A spins.

The procedure is the same as defined in Secs. III 8, IV A:
in arbitrary magnetic field 8, the angle 8 is readjusted
with respect to the mean-field value and y„y2, y&, r, and

Kp are determined in order to satisfy the coupled system
of Eqs. (21).

(ii) The UUDD phase.
In this case, we shall restrict the coupled-cluster calcu-

lation to the zero-field case. The experimental transition
field 8„ to the "PF" state is so small ( 8„ /Bz= 002 }

that its energy is always very close to the zero-field value.
(A correction —yM„B /2, where yMF represents the
molecular-field susceptibility will be taken into account in
the calculation of the transition field 8„).

This phase needs more parameters since, with four
tetragonal magnetic sublattices [Fig. 12(a}],its symmetry
is lower. Each of the first, second, and third neighbor
pair flips are partitioned into two subgroups: (g&,gt),
(y2, yt), (y3 g3) depending whether they correspond to
antiferromagnetic or ferromagnetic bonds, respectively.
All planar four-spin cycles have three spins in the same
direction and the fourth one in opposite direction, how-

ever, they can be classified into two kinds (irf„Kp) de-

pending whether the spins on second-neighbor links are
identical or not (see Fig. 14}. There are no three-spin
Nips in zero field.

FIG. 14. Different spin configurations for various cycles of
the UUDD phase in bcc He.

The index A. refers to the partition shown in Fig. 14.
We choose the parameters determined by Monte Carlo

calculations (cf. Table III) adjusted from u =24.12
cm /mol to the melting molar volume 24.22 cm /mol
with a scaling factor u' [the "Griineisen" coefficients
I =Bin( Ji, }/Bu are of the same order, 16(I (20, for all

important exchange parameters ' ]:

JNN =0.5, JN~N =0.07, Jg =0.21, It P =0.29 (75)

EvvDD /N ——1.07

in mK, with

(76a}

all in mK.
The magnetization of the "PF"phase obtained, within

the coupled-cluster approximation by differentiating the
energy [Eq. (50}] is shown in Fig. 15 (solid curve); it is

compared to the molecular-field approximation (dotted
line). At high field, 8/8, 2=0 8there is. a change of the
magnetization curvature, which becomes negative in the
neighborhood of 8,2. The mean-field approximation does
not account for this important feature.

In Fig. 16, we compare the energies of the "PF" and
"UUDD" phases at low field within the coupled-cluster
approximation (solid lines). For the UUDD phase, the
coupled-cluster approximation is applied in zero field.
With S given by Eq. (74), the solution of the coupled-
cluster equations (21) leads to

TABLE III. The main exchange frequencies calculated by Monte Carlo methods from the first prin-

ciples (first column). The four largest are obtained with a reasonable accuracy. Large error bars sub-

sist on the others. We have scaled them to melting molar volume, using a factor v
' (second column).

Type of exchange

JT
Kp

KF
Sl
S2

Exchange frequency (mK)
at 24.12 cm /mol

0.46 (+7%)
0.065 (+10%)
0.19 (+10%)
0.27 (+10%)

0.027 (+18%)
0.036 (+30%)
0.022 (235%)

Exchange frequency (mK)
scaled at 24.22 cm /mol

0.495 (+7%)
0.07 (+10%)
0.205 (+10%)
0.29 (+10%)

0.03 (%18%)
0.039 (+30%)
0.024 (+35%)



214 M. ROGER AND J. H. HETHERINGTON 41

X/N

1.0

0.9

0.8

0.7

field, as assumed here, the mean-field ground state is an
eigenstate of the J, operator. Since the Hamiltonian
commutes with J, it does not mix states with a different
magnetic quantum number. The g and Kp terms in S all
would mix in such states. (When BWO however the
mean-field state is not an eigenstate of J, and application
of the Hamiltonian on that state can change the average
magnetic quantum number. )

In a small magnetic field B a quadratic correction:
—yM„B /2, where

XMF [2(2JNN +JNNN
—16JT+ 12Kp )] (77)

0.6

0.5
0.0

I i I I I i I

0.2 0.4 0.6 0.8
BjB

1.0

FIG. 15. The magnetization of the PF phase of bcc He re-

taining only the most important exchange processes: J» =0.50
mK, J»N=0.07 mK, JT=0.21 mK, and Kp=0.29 mK. 8,& is

the critical transition field to the ferromagnetic state. The re-

sults of the coupled-cluster approximation (solid line) are com-
pared to molecular field (dashed line).

and

g& =0. 1 132 g~ = 0.0366 g3 =0.0090

+b +b +b &a &b 0

(76b)

The last five coeScients are automatically zero: In zero

E (mK)

-0.5

DUHIO

-1.0

I

15 ( I ) I I & I i I

0.0 0.2 0.4 0.6 0.8 1.0
8 (T)

FIG. 16. The energies of the PF and UUDD phases at low
field for the following set of exchange parameters: JNN =0.50
mK, J»N=0.07 mK, J&=0.21 mK, and Kp=0.29 mK. The
coupled-cluster approximation (solid lines) is compared to the
spin-wave approximation (dashed lines) and molecular field

(dotted lines). The transition field between the two phases is

8„.

represents the molecular-field susceptibility ' is added to
the energy.

For the PF phase, the coupled-cluster approximation is
applied in arbitrary magnetic field. The solution has a
completely different symmetry: all parameters in S are of
the same order of magnitude. For example, at the transi-
tion field B„with the UUDD phase, we obtain

and

p& =0.0583 p~= 0.0158 g3 = 0.0077

7 = 0 0121 Kp= 0 0103 (78)

B,i=0.42 T . (79)

Although B„is in close agreement with the experimental
data: 0.45 T, the second-order transition field to the fer-
romagnetic state

B,~=8[JNN+6(Kp —JT)]=10.1 T (80)

is only half of the experimental value B,&
=21 T.

As emphasized in Ref. 8, although small, higher-order
ring exchanges (as six-spin exchange) play a significant
role in the PF phase at high field and increase substantial-

cos(8)=0.648 .

For comparison, the energies of both phases have also
been calculated by a spin-wave approximation and are
shown in Fig. 16 (dashed lines). We use the relations
D26—34 and D60—62 of Ref. 3. The summations over the
first Brillouin zone are performed numerically using
Gaussian quadrature. For both phases, the spin-wave re-
sults are very close to those obtained within CCA. We do
not know the significance of this fact. This is not quite
surprising for the UUDD phase where only quadratic
terms finally remain in the CCA [when all possible pair
flips are included, the spin-wave theory appears as some
subset of the SUB2 CCA (Ref. 1)]. For the PF phase
where higher-order terms contribute, such an agreement
may suggest that both approximations are good when ap-
plied to the multiple-exchange Hamiltonian.

The dotted lines represent the mean-field approxima-
tion. The fluctuations are important with a correction of
order 30% for the ground-state energy of the UUDD
phase. The energy correction is lower for the PF phase
and, consequently, the transition field B„(in T) between
both phases is higher than the molecular-field value. We
obtain within CCA
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ly the transition field B,2. %e shall take them into ac-
count in the following section.

M/M

1.0

3. Corrections for smaller exchange processes;
six-spin ring exchanges, etc.

From Refs. 5 and 6, the next processes to take into ac-
count are six-spin ring exchanges and folded four-spin ex-
change (KF ) Tw. o kinds of six-spin exchange cycles have
a significant contribution (see Refs. 6, 8, and Fig. 13), we
shall keep the notations of Ref. 8: S, and S2. The
relevant parameter for six-spin exchanges in mean-field
equations is, in fact,

0.9

0.8

0.7

0.6

S, =Si+3S2 . (81)

and (82)

S;„=0.11+0.04 mK .

Since the Monte Carlo calculation of S;„ is still inaccu-
rate, we shall allow some readjustment of this parameter
within the error bar given by Ceperley and co-workers
[see Eq. (82)).

The exact value of the transition field B,2 to the fer-
romagnetic state is

B~2=8[JNN+6(Kp+Kp+S;„—Jr)] . (83)

Taking S;„at the upper limit of the error bar: S,„=0.15
mK, we obtain B,2=21.2 T, in good agreement with the
experimental value. Hence, we use the following set of
exchange frequencies:

JNN=0. 50 mK, JNNN=0. 07 mK, JT=0.21 mK,
(84)

K+=0.29 mK, KF=0.03 mK, S;„=0.15 mK .

We now apply the coupled-cluster method, with the
following approximation: we only keep the lowest-order
terms in the small parameters Kp, S„and S2 (=0.03
mK, see Table III), and neglect higher-order terms like
Kpg KpK, S,y„, S,a, S2y„, and S2it, . . . . The contri-
butions of folded four-spin and six-spin exchanges to the
ground-state energy are thus the same as their contribu-
tion to the mean-field energy:

From Table III, the values of these parameters, scaled at
melting molar volume U=24.22 cm /mol are

KF =0.03+0.006 mK

05I I I i I I I i I I

O.o o.z o.4 o.e 0.8 i.0
B/Bc2

FIG. 17. The magnetization of the PF phase of bcc He, with
corrections due to six-spin ring exchanges and folded four-spin

ring exchange. The exchange parameters are: JNN =0.50 mK,
JNNN =0.07 mK, JT=0.21 mK, Ep =0.29 mK, Kg=0.03 mK,
and S;„=S&+3S&=0.15 mK. The coupled-cluster approxima-
tion (solid curve) is compared to the experimental data' (~).
The molecular-field approximation (dashed line) is also shown.

as can be seen from Eq. (9).
The magnetization curve thus obtained for the PF

phase is represented in Fig. 17 (solid curve} and com-
pared to the experimental results. The agreement is ex-
cellent.

The energies of both phases at low field are plotted in
Fig. 18. For the UUDD phase, a correction yMpB—/2
is added to the zero-field energy (cf. preceding subsection)
with

E (mK)

-0.5

-1.0

BEp„= 3Kp/2 S,„/4+—12Kpm —+8S;„m (85)

for the PF phase, where m is the magnetization
m =cos(8}. For the UUDD phase,

AEUUDD =KF /2 Six ~4 (86)

For the PF phase, the contribution to the first
coupled-cluster equation with one spin flip is

-1.5
0.0

I i I i I i t I

0.2 0.4 O.e 0.8 1.0
B (T)

&0!~;(aa)!0)=
BEEpF

= —sin(e}[48Kpcos (8)+48S; cos (8)] (87)

FIG. 18. Energies of the PF and UUDD phases, within
coupled-cluster approximation with corrections due to six-spin
ring exchanges. The exchange parameters are the same as for
Fig. 17. The transition field becomes: B,I =0.76 T.
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XMF= [2(2JNN+ JNNN
—16Jr +12Kp+8KF+4S;. ) 1

'

= (4.06 mK )
' (88)

This molecular-field susceptibility is in close agreement
with the experimental value: (3.84 mK) '. Godfrin
and co-workers claim that the molecular-field suscepti-
bility should be reduced approximately 20% by the fiuc-
tuations. This is true for a Heisenberg model, but this
does not seem quite obvious to us for ring exchange
Hamiltonians. Four-spin exchange enhances the suscep-
tibility so that in the paramagnetic phase, in contrast to
the Heisenberg model, the susceptibility is higher than
the mean-field estimate. ' This latter effect might com-
pensate the former.

The energy of the UUDD phase at zero field is

EUUDD = —1.095 mK. It is in agreement with the experi-
mental value EUUDD = —1.24 mK, obtained by Fukuya-
ma and co-workers ' if one takes into account the error
bars on the exchange frequencies (10%) (Ref. 6) and on
the coupled cluster approximation (a few percent).

The transition field B„=0.76 T between the UUDD
and PF phase is higher than the experimental value: 0.45
T. This difference is compatible with the errors bars on
the exchange parameters. Note that other smaller ex-
change processes that we have neglected might lower this
calculated transition field.

4. Relation to finite temperature phase diagram
and other measured quantities

is in agreement with experimental data: 8= —1.8+0.2
mK. A rough estimate of the critical temperature T„ for
the first-order transition at zero field from the UUDD to
the paramagnetic phase is

EUUDD /ln(2)

where

EUUDD =J~NN /2 2Jr 3Kp /2+Kp/2 S(~ /4

(90)

= —0.842 mK (91)

represents the mean-field energy of the UUDD phase.
We obtain T„=1.2 mK in a reasonable agreement with
the experimental value =0.92 mK. '

The second-order critical transition temperature of the
NAF phase to the paramagnetic phase is

T~2 =4JNN —3JNNN
—12JT +6(Kp+ Kp ) +3S;„/2

= 1.4 mK (92)

a value close to T„. In a more realistic approximation,
it would probably move below T„, in agreement with the
experimental results. '"

We finally emphasize that the set of exchange frequen-
cies represented by the relation (84) is compatible with all
other thermodynamic data on bcc He. For example, the
Curie Weiss temperature

8= —[4JNN+ 3JNNN+ 18(Kp+Kp 2JT )+ 15S,„—/2]

= —1.54 mK (89)

Other smaller exchange parameters have been taken
into account in Ref. 8. In contrast to six-spin ring ex-
changes, their effects are weak. However, since the ener-

gy difference between the UUDD and PF phase is very
small, they might affect substantially the transition field.

We have chosen the six-spin exchange parameter S; at
the upper limit of Ceperley's error bars to account for the
experimental transition field H, 2 of order 21 T. As point-
ed out by Godfrin and Osheroff, higher-order ring ex-
changes, although exponentially decreasing, might give a
significant contribution to H, z. In that case, the experi-
mental data could be interpreted with a lower S,. and
some small eight-spin exchange. Unfortunately, the pre-
cision of the Monte Carlo calculations for high-order (six
and eight spin) ring exchanges is poor.

We think that it is reasonable to wait for more accu-
rate Monte Carlo calculations of all of these small ex-
change parameters [some of them such as the rigid rota-
tion of a compact four-particle tetrahedron (cf. Fig. 13 of
Ref. 2) remain to be investigated] before taking them into
account. We could then apply the coupled-cluster ap-
proximation in a completely consistent way, including all
exchange processes.

5. Predictions for the variations ofB,t/B, t
in terms of the molar volume

Jp Cpsp exp( —A p /g ) (93)

The dimensionless action A~ for various exchange fre-
quencies is given in Table IV. The symmetry factor sz
represents the number of equivalent exchange channels in
the 3N-dimensional configuration space: s~ =12 for pair
exchange between first neighbors, s&=8 for pair ex-
change between second neighbors and sz =1 for all other
ring exchanges considered. Cz is a prefactor which
varies slowly as a function of density. The variation with
density enters through the parameter g,

fi a
[8mo* e]' cr'

(94)

which varies strongly with the first neighbor distance a.
Also in Eq. (94) m represents the mass of a He atom,

Most experiments on bcc He magnetism have been
performed at the melting molar volume. A few experi-
mental studies ' at lower molar volume have shown
that most physical quantities (critical temperature T„,
coe5cients of high-temperature series expansions, suscep-
tibility. . . ) simply scale as vr with y=18+2 (this some-
what surprising result is also obtained from exchange-
frequency variations calculated from first principles ).
The physical parameter which is the most sensitive to
small variations of the ratios between various exchange
frequencies is precisely the transition field B„between
the two almost degenerated UUDD and PF phases. It is
interesting to predict, at least qualitatively, its variation
as a function of the molar volume.

The variations of the exchange frequencies with molar
volume have been predicted within a multidimensional
WKB approximation. We have
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TABLE IV. Action Ap and symmetry factor sp [cf. Eqs. (93) and (94)] within a multidimensional
WKB approximation (Ref. 5). In spite of its relatively large action, J» is favored by its large syrnme-
try factor.

s,
WKB action'

Symmetry factor
10.2
12

9.09
1

8.47
1

10.13
1

10.58
1

a=10.22 K and cr =0.265 nm are the parameters of an
effective pair potential e(o'/a)' which were determined
to account for the variations of the macroscopic elastic
quantities pressure and compressibility (see Ref. 4, Sec.
IV).

Although the applicability of this approximation at the
physical densities of bcc He, has been severely ques-
tioned, the Monte Carlo calculations have remarkably
confirmed its predictions. Figure 19 shows a plot of
ln(Jp )/sp), Jp ' representing the Monte Carlo value
of various exchange parameters at 24.12 cm mol (Refs. 6
and 36) (see Table III) as a function of the corresponding
action Ap within WKB calculation [cf. Eq. (93) and
Table IV]. All points are roughly aligned on a straight
line of slope —1/g = —1.1, which represents the Eqs. (93)
and (94) with the theoretical value of g at v=24. 12
cmi/mol. The dispersion around this line is compatible
with the differences in various Cz prefactors.

As first emphasized in Ref. 5, the fact that JNN is of
the same order of magnitude as E~ is due to its important
symmetry factor sp =12, its action Ap being larger and
comparable to the action for six-spin exchange. As a
consequence, when the density increases, JNz is expected

to decrease faster than Ez. This has an important conse-
quence: Since JNN favors the PF phase with respect to
the UUDD phase, the transition field B„should increase
when the density increases.

Using Eqs. (93) and (94) with Table IV and the values
of Jp at 24. 12 cm /mol given by Ceperley et al. , we pre-
dict

Jr/JNN 0.64, Kp/JNN =1.15, S;„/JNN =0.34 (95)

at 20.07 cm /mol. Note that these predictions differ
from the values given, somewhat tentatively (the pre-
cision is poor) by Ceperley et al. at this low molar
volume. Ceperley's values,

JT /JNN 0.27 Kp /JNN 0.40 (96)

rather suggest an enhancement of JNN with respect to
It.z, and, in that case the transition field B,] should de-
crease and eventually the UUDD phase should disappear.

Using the method of the preceding subsection (see Fig.
18), and with the exchange frequencies given by Eq. (95),
we predict B„/B,&=0.055 at v=20.07 cm /mol, which is
to be compared with the theoretical value
B,&/B,2~0.036 at melting molar volume. Similar calcu-
lations have been done at a few intermediate volumes.
Figure 20 shows the variations of the ratio between the
two transition fields: g(v) =B„/B,2 as a function of the
molar volume. This curve should only be considered as
semiquantitative: at melting density, the calculated value
/=0. 036 differs substantially from the experimental one
/=0.0215. However the predicted derivative

0.06-

30-
0.05-

10
Ap

FIG. 19. Semi-log plot of the Monte Carlo values Jp of the
exchange frequencies, ~ divided by the respective symmetry fac-
tors sp as a function of the WKB approximation' for the action
A p. The straight line represents the Eqs. (93) and (94), with
slope —1/g = —1.1, calculated at v=24. 12 cm /rnol. Both cal-
culations are in remarkable agreement.

0.03
20 22

I I

24
v (cmazmole)

FIG. 20. Predicted variations of the ratio of the transition
fields g =B„/B,2 as a function of molar volume.
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a -3= —4.4X10
BU

in cm should be more accurate.

(97)

V. CONCLUSION

cr, =cr, +[o, , o,+]4, —o,+1,', (26b)

o ', =[cr,+, cr, ]+2o, 4, ,

where o.
,+4, represents the sum of all terms of S which

are connected to the site i (i.e., which contain o, ).

(P2 i (P3)

cr,++ g g ~„„o,+o„+-

pt J PI j&k
2 3

(P4)
+ g g K(JI ICT& O'I CTI +

pi j&k&l
4

(27)

The sums are restricted to the panels P„' connected to i
As shown in Sec. II, the expression of H ~0) can be re-

duced to a sum of terms like

We have extended the coupled-cluster approximation
to the spin-lattice problem and proven that it works quite
well for various quantum-spin Hamiltonians from the
Heisenberg model to more complicated systems with
quartic interactions. We have predicted some interesting
properties of the magnetization for a two-dimensional
square lattice of He adsorbed on an appropriate sub-
strate.

Using the exchange parameters determined from the
first principles, ' we have calculated the transition field
between the two ordered phases of bcc He and predicted
its variations in terms of the molar volume. At melting
density, the best estimate of this critical field is a factor
1.7 too large but within the large theoretical error bars on
the exchange frequencies is consistent with the experi-
ments. The magnetization curve of the high field phase
fully agrees with experimental results. The agreement
with other experimental data at finite temperature is also
noted. In spite of the skepticism expressed by some au-
thors, solid He might be one of the rare quantum
many-body systems where all magnetic properties can be
quantitatively interpreted, starting from the Schrodinger
equation.
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APPENDIX

We present here a short description of the method used
to mechanize the computation of a product of n opera-
tors o; summed over a given lattice.

We start from the relations (26,27) of Sec. II:
—+ +

(26a)

(P„) '' I0) .

We have written a computer program to calculate any
given product having this form with i,j,k, l. . . fixed. In
the following description, the fixed sites will be renamed
i p, jp kp Ip ~ ~ . , other indices wi11 represent free sites
connected to the fixed sites through S.

We have to substitute one of the expressions [26(a)—(c)]
to o. at each site, expand the product and reduce each

0

of the elementary 0. operator products thus obtained
( A, =+ ), taking into account the commutation rules
(12—15). (The o operators can be moved to the right
and eliminated since 0 ~0) =0 and we are left with prod-
ucts of raising operators o ). Note that this may lead to
a huge number of terms. To fix the ideas, consider a
product of four operators 0. in the bcc phase of He

0

where I contains about 100 different terms. Each cr
0

contains 4, i.e., 10 terms and the expanded product in-
volves 10' elementary products. Fortunately, most of
them vanish, due to the fact that all o.+ commute and
(o + )'=0.

To avoid the impossible task complete construction of
the 10' terms, we have to write an algorithm which stops
the construction of a given set of terms as soon as two 0.+

operators are found on the same free site p di6'erent from
ip, jp kp lp ~ ~ ~ . Lowering operators 0. do not com-

0

mute with the 0.+, however, they only occur on fixed
0

sites ip, jp kp Ip ~ ~ . and these are treated separately.
The essential part of the algorithm is a short subrou-

tine which is used to reduce the operator products ap-
plied to ~0) as they are constructed and returns as soon
as it detects two raising operators on the same free site.
Such operator product is specified by the state s of each

0

of the fixed sites ip, jp kp Ip. ~ . which is 1 for a raising
operator 0.+ occurring on that site and 0 otherwise, and
by the labels on the lattice of the free sites corresponding
to the other 0.+ operators (p&io,jo,ko, lo . . ) which .are
present. The key subroutine performs the following task.
It multiplies a given product by a new operator o „on the
left and determines the new product or returns if the re-
sult is zero. (i) If n is a free site (n/ioj o, ko, lo. . . ) the
subroutine compares the new label n to all the labels of
raising operators already contained in the previous prod-
uct; if it matches with one of them the result is zero, oth-
erwise the subroutine stores the new label n (ii) If n is.
one of the fixed sites ip, jp kp lp . . . , the state s„ is
changed with the simple following rules: (a) if A, =+, the
result is zero if s„=1, otherwise s„ is changed from 0 to
1, and (b) if k= —,the result is zero if s„=0 (since o.„
commutes with all operators on other sites, it can be
moved to the right and cr „~0)=0); otherwise s„ is
changed from 1 to 0 [we use the relation (15):
o.„o.„+=1—o., o„, and the second term obviously does
not contribute].

In this algorithm, most terms are eliminated from the
first steps of the factor expansion and the calculation be-
comes feasible. The total amount of time needed for the
PF phase of bcc He was about one CPU hour on Convex
Cl computer at Saclay. This CPU time could have been
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reduced by taking into account the symmetries on the lat-

tice. However, we did not take advantage of this saving
so as to avoid complications and sources of errors in pro-
gramming.

The coupled-cluster equations are directly written by
the program in algebraic literal form. Then these equa-
tions are solved by the Newton-Raphson program
MNEwT of Ref. 12.
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