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The second-order effective Hamiltonian in the representation of a set of orthogonal operators is

derived from a two-band model for Cu oxides. The contribution from the local Cu + and surround-

ing 0 spin triplet state to various hopping processes has been included. From the fourth-order

perturbation we study doping effects on the background spin-spin interaction and obtain the expres-
sion for the ferromagnetic superexchange interaction between two neighboring Cu + spins with an

0 hole in the middle. The condition for the equivalence between the t-J model and the two-band

model for Cu oxides is discussed. In terms of nonorthogonal operators for a single 0 hole, the

condition for the exact mapping of a two-band model to a single-band model has also been derived.

A critical problem, which may be relevant to the un-

derstanding of the superconductivity mechanism in high-

T, oxide materials, is related to whether the equivalence
between the t-J model' and two-band Hubbard model
can be established. The t-J model has been used to de-
scribe the motion of the holes in the 3d orbital of the Cu
ions. In the undoped case, each of the Cu ions is in the
3d state that effectively carries a spin s =

—,'. In the pres-

ence of hole doping, a hole goes to one of the Cu sites. In
the two-band model the Cu ions always stay in the 3d
states and the doped hole will go to the 2p orbital of an
oxygen site. The doped hole with s =

—,
' on an 0 site may

form a singlet or a triplet state with the spin carried by
one of its neighboring Cu (3d ) ions. If the effect due to
the higher-energy triplet spin state is completely neglect-
ed, Zhang and Rice, by examining only the hopping-
energy term of the two-band model and under the condi-
tion t, =t2, showed that these two models are approxi-
mately equivalent. Here t&=to/b, and t2=to/(Ud —5)
with to as the hopping matrix between neighboring 2p (0
site) and 31 (Cu site) orbitals, Ud as the Coulomb repul-

sive interaction between electrons on Cu site, and
b, = ez

—ed( ( Ud ) as the energy difference between 2p (0)
and 3d (Cu) levels.

In this paper the relationship between the t-J model
and the two-band model will be reexamined by including
the contribution of the triplet spin state and for general
values of t, and t2. Both the hopping term and the dop-
ing effect on the background spin-spin interaction will be
investigated. In the limit of small doping we show that
the condition for the equivalence between these two mod-
els becomes optimum when t, &0 and t2 =0. In terms of
nonorthogonal operators for a single 0 hole, we show
that the exact mapping of the two-band model to a
single-band model can also be achieved at tIXO and

t2 =0.
Let us start from the two-band Hubbard model with

both the on site (oxygen) and intersite (oxygen-copper)
Coulomb interactions being set to zero; we study the
effective Hamiltonian derived from the small to limit. Up
to the second-order the perturbation one obtains
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Here nd; =d; d, and n~ I =pl p, . d;a (pl ) is the operator creating a hole with spin tr on the ith Cu site (Ith 0 site).
c.d and c denote the energy levels occupied by a hole, respectively, on the Cu site and on the 0 site. From Ref. 3 the
phases of the 2p and 3d wave functions are taken into account according to

M, (
v I=( —l) "to .

Here i represents the site of a Cu atom and l is the site of its nearest-neighboring 0 atoms. M;I =2 if l =i —x/2 or
i —y/2 and M, I

= l if l =i +x/2 or i +y/2. x and y denote, respectively, the unit vectors along the x and y directions.
In terms of the operator, which combines the four oxygen-hole states around a Cu ion,

P; = ,' g( —I) 'pi-
IEi

(3)
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The Hamiltonian in Eq. (1) becomes

Heff d
(2)— 4to

gnd, .+
ia

4to
gn (
lo

2

+4 —+ g(d, d, P, P, d,—d, P, P, )+4—QP, P,
io I CT

(4)

From Eq. (4) it is interesting to note that these P; are normalized but not orthogonalized and they obey the following
anticommutation relations:

I(P;,P, I
=5 (5; —

5&;,)/4),

I P;,P, I
=

t P;,PI I =0, (6)

where 5(; )
= 1 if i and j are nearest neighbors and vanishes otherwise. Before we go any further, let us use the follow-

ing Wannier functions for the Cu site at R, with N, as the number of Cu sites:
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k
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where pk =[1—(cosk„+cosk~)/2] ' is a normalization factor. The operator Iti, is complete and orthogonalized in
the oxygen-hole space. Using Eqs. (7) and (8), we have
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Here t, and t2 have been defined at the beginning of this paper. The first four terms in Eq. (10) are the self-energy terms
which we call Ho ' and the remaining terms are the hopping terms which will be denoted by H', '. The parameters A,

and k, are defined as

(10)

A, =N, ' g P„'=,f f P„'dk„dk, =0.96,
(2~)2

For convenience we shall choose the 3d level Ed =4to/b and the nearest-neighboring Cu-Cu distance equal to 1. Sub-
stituting P; defined in Eq. (9) into the Hamiltonian in Eq. (4) and considering only terms up to the nearest-neighboring
hopping process in the Wannier representation, H', &-' can be shown to take the following form:

&)=4&, 'QPk 'e ' ' =
2 f f dk„dk P„'(cosk„+cosk }=—0. 14,

(2n. }2

with R; and R as the nearest neighbors. The spin of doped hole on the oxygen sites around a Cu ion at site i may form
a local singlet or triplet state with the spin (3d } on this Cu ion. The singlet state p; and the triplet states Iti,. + and

are constructed as follows:

Pi u e =di o 0'I a
(12)

In terms of these local singlet and triplet states and using the identity d;&d;&+d, &d,-& =1, which ensures the Cu ion al-
ways being singly occuPied, H', Ir) =HIO ) +HII ' in Eq. (10) can be seParated into the self-energy Part,

0" =(sp 4r1 ) /PI Plv l g(r—1+I2}~'—4r1—) X 0 0 +4rl y Wi'+0-;-++-4rl y el.vol.. (13)
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and the part for hopping processes,

H'( =ri g (QJ d d'j Q .+ —gt d,t d
1

+ —tz g (og d; d g; +erg, d, . d g; )+—g (oPJ+d'; dj g; +oQJ. 'd; dj P; +)+H.c. (14)

In deriving HQ
' and H', ' we have neglected the contribu-

tion froin A, i( =0.02) and set 8A, , A, = —1. From Ho ' it is
straightforward to show that the energy separation be-
tween the triplet and singlet states is

bE =E+ E=—8(r, +rz)hz=8(r, +rz) .

This result is very close to that obtained in Ref. 3. In Eq.
(14), the first and second terms, respectively, correspond
to hoppings from triplet to triplet states and from singlet
to singlet states. The last two terms represent the hybrid-
ization between the singlet and triplet states. In order to
ensure the equivalence between the t-J model and the
two-band model in the antiferromagnetic background,
the contribution of the hybridization terms to the
lowest-energy state needs to be small. For the purpose of
estimating the effect of the hybridization terms, we con-
sider the problem of two nearest-neighboring sites (1 and
2) according to the Hamiltonian Hiz derived from Eqs.
(13) and (14) by neglecting the first term in Eq. (13) and
the contribution of the hopping terms from one triplet to
other triplet states in Eq. (14). This approximation
simplifies the mathematics but may underestimate the
contribution of the triplet states to the lowest-energy
state. The Hamiltonian H&z can be diagonalized by the
basis operators of two independent subspaces. One of
them contains six operators: d»P, , dz&gz, d, tg, +,
dz&Pz+, d, &f»&, and dz&Pz&&. The basis operators for

r

the other subspace are simply obtained by reversing all
spins. The diagonalized HI& takes the following form:

(15)

states and the remaining terms come from the triplet
states. For t, =0 and tz%0, the coefficients in front of
the triplet states, c, =0.055 and cz=0.078. In P, (I), ,
while two terms correspond to the transition process be-
tween singlet 1 and singlet 2 states, there are eight terms
representing various hopping processes from 1 singlet to
triplet 2 and vice versa. Therefore, the weight due to the
contribution of the triplet states in P,P, should be more
than the coefficients cI and cz indicated. For example, in

a antiferromagnetic background, it is straightforward to
show that the weight of the triplet states in /tie, is

2c, = 1 l%%uo. For t, =tz, which is the limit studied in Ref.
3, c, =0.025 and cz-—0.039. If these coefficients can be
regarded as small and are neglected, then the one band
t-J model and the two-band model are approximately
equivalent to each other as long as the background spin-
spin interaction does not include the quantum operators
for oxygen coordinates. Although the method of deriv-
ing Eq. (14) involves approximations, we expect that the
terms being neglected in Eq. (14) should be very small.
Therefore, according to Eq. (14), the equivalence between
these two models reaches optimum in the limit t, %0 and
tz=0. Under this condition the coupling between the
singlet and triplet states vanishes or becomes very small,
the doped hole always stays in the lower-energy singlet
state, and the operators associated with the oxygen coor-
dinates can be eliminated from Eq. (14).

We have also employed the fourth-order perturbation
to derive correction to the background spin-spin interac-
tion from the two-band Hubbard model. The procedure
is tedious but the result is simple:

where E; is the eigenenergy, P, is the annihilation opera-
tor for a quasiparticle in state i, and P'; =P; (with all spins
reversed). The lowest-energy state is represented by the
eigenenergy E, and the operator ((,:

4tQ 4tQ
H', s'= g + (1 nprt

—n ii)s; s, —
(llj) ~ Ug 2

4t Q4

(ijl)
(n i +tini)s; s. (17)

E, = —
—,
' I(9t +zt, l2)

—[(9tz+ti ) +4(18t i +36t, tz+3tz l4)]' I,
t (16)

P, =c[d,&P& +dz&gz +c,(d»g, ++dztgz+)

In Eq. (16), c is a normalized constant,
c, =tzl2(4t, E, ), and cz=t—zl&2(4t, E, ). The first-
two terms represent the contribution from the singlet

The first term on the right-hand side of the preceding
equation describes the neighboring copper sites (i,j) anti-
ferromagnetic superexchange interaction via the middle
(0 ) state 1. The second term represents the nearest-
neighboring copper site (i,j) ferromagnetic superex-
change interaction if an 0 hole exists at the middle site
1. To our knowledge this is the first time that the expres-
sion for the ferromagnetic superexchange interaction be-
tween two copper spins with 0 site in the middle has
been explicitly derived.
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In the small doping limit, if the number operator in Eq.
(17) is treated as a doping parameter n &&+ n &&-—5 ((1,
and in view of small values for c, and cz in Eq. (16), it
may be a good approximation to replace the two-band
model by the t-J model. The problem of whether the
operator nprf+np I $

can indeed be treated as a C number
and whether the singlet-to-triplet hybridization term can
really be neglected without losing additional physics re-
quires further investigation. Our result for the hopping
Hamiltonian HI ' in Eq. (14) shows that the transition be-
tween the triplet and singlet states vanishes or becomes
very small for t, &0 and tz =0. Under this limit HP' de-
scribes only the hopping process from lower-energy
singlet-i-to-singlet-j states; the equivalence between the
t-J model and the two-band model becomes almost exact
when the 0-hole occupation number in Eq. (17) is treated
as a parameter. For other values of t& and tz, the
singlet-to-triplet hybridization terms always exist in H'& '.
For t, =0 and tz%0, these hybridization terms contribute
the most to H'& '. In the following we shall examine this
conclusion from a different point of view by using
nonorthogonal operators for the 0 hole. According to
Ref. 6, the second-order effective Hamiltonian derived
from a two-band Hubbard model in the representation of
a set of nonorthogonal operators is easily obtained as

Kn'= —4(2rz+ri) Xfi f( +4ri -&f-(+5+
1

+4t, haft f; (18)

with a spin singlet and triplet states defined by

d; )P, g+d; iP; if, =, , f, =dP,
&2

Using Eqs. (5) and (6), the following commutation rela-
tions are obtained:

[f,+,f,~~]=5;, 1 —
—,
' g(d, d; +P; P; )

When a hole is added to a ferromagnetic background
formed by the copper spins, the basis states can be de-
scribed by

(20)

It is straightforward to show that the transfer integral be-
tween neighboring triplet and singlet states for t, =0 and
tz&0 does not vanish:

(21)

In this limit the result in Eq. (21) implies that H', s con-
tains both singlet-to-triplet and triplet-to-singlet hopping
terms and thus cannot be mapped exactly to a single-
band model. However, when t, WO and t~ =0, it is readi-
ly seen that t+ =0, and H', z' does not consists of any
hopping term between the singlet and triplet states.
Therefore, only in the limit of t~%0 and tz=O (or
Uz~ ~ ) the mapping between these two models can be
exact. This result corresponds to the same fixed point for
both models mentioned previously by Anderson. Al-
though the preceding conclusion is consistent with our
result shown in Eq. (14), it is contrary to the result of
Zhang6 in which the exact mapping occurs at t, =0 and
tzWO. The cause for this discrepancy is due to the com-
mutation relation [f;,f + ] listed in Eq. (19) being miss-
ing in Ref. 6. Finally, we wish to point out that the exact
mapping of the two-band to single-band model should
also hold at t, AO and tz =0 even in an antiferromagnetic
background. This is because t+ is expected to vanish
according to Eq. (18) in this limit.
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