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There is experimental evidence in long Josephson junctions of rf-induced dynamical states that
are not observed in small junctions. Such states consist of groups of current steps, asymmetrical
with respect to the McCumber curve, having amplitudes much larger than the expected rf-induced
(Shapiro) steps. Numerical solutions of the model equation (the perturbed sine-Gordon equation)
obtained from the multimode expansion are in good agreement (at least qualitatively) with the ex-
perimental data. The basic dynamic configuration consists of multifluxon bunches phase locked to

the rf signal.

I. INTRODUCTION

Recent experimental work has shown that rf-driven
long Josephson junctions (LJJ’s), when the external mi-
crowave frequency approaches the fundamental geome-
trical frequency of resonance of the junction, exhibit a
number of phenomena that are not observed in small
junctions."? The most evident of such phenomena in the
current-voltage (I-¥) characteristic can be summarized as
follows. First, irradiating the junction with small rf sig-
nals, the profile of the zero-field steps (ZFS’s) is
straightened, producing a constant-voltage current step
whose amplitude grows linearly with the power of the
driving signal. This phenomenon has been attributed to
the phase locking of single-fluxon oscillations (for the first
ZFS) to the external signal. It has been investigated
theoretically both by solving the perturbed sine-Gordon
equation (PSGE) numerically** and by studying the
properties of maps derived from a simplified model of the
interaction of a particlelike fluxon with a periodic drive.’
Secondly, it was observed that irradiating the junction
with large rf signals, the usual induced current steps
(Shapiro steps®) are dominated by current steps, called
anomalous current steps (ACS’s) in Ref. 7, much larger
than what could be expected from existing theories, hys-
teretic, and strongly asymmetric with respect to the
McCumber curve. It was suggested’ that these steps
could be ascribed to the phase locking of multifluxon os-
cillations to the external rf drive.

To check this hypothesis we have integrated numeri-
cally a mathematical model of the LJJ’s driven by large rf
signals. Our approach uses a multimode expansion,? in
which the phase is expanded in spatial Fourier com-
ponents (modes) in order to approximate the PSGE (with
its boundary conditions) by a finite set of ordinary
differential equations (ODE’s). We have solved numeri-
cally the ODE system in order to obtain plots of the I-V
characteristic and detailed information about the dynam-
ical properties of the phase. We point out that the avail-
able literature on the subject of rf-driven LJJ’s is con-
cerned mainly with single-fluxon dynamics in the small-
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rf-field regime, while our main goal is to study the
response to large rf fields in order to understand the dy-
namics of the states corresponding to the ACS’s reported
from experiments. However, we have also applied our
model to the small-field regime to check the consistency
of our results with the literature, and also to solve some
modeling problems.

The most important of such problems is concerned
with the choice of the boundary conditions, i.e., whether
it is more realistic to model the interaction of the LJJ’s
with microwaves by introducing time-dependent bound-
ary conditions representing the rf magnetic field or by
adding an rf current term to the PSGE. The former is
appropriate to describe a physical situation in which the
rf field does not penetrate the junction, so that energy ex-
change with the rf drive occurs only at the edges, while
the latter would correspond to a physical situation in
which the energy is exchanged all over the junction. In
this work we will follow the first alternative, i.e., we mod-
el the rf drive as a boundary magnetic field; we will refer
to this approach as the “M model.” As a variant of the
M model, we have considered a somewhat different model
in which the rf drive is introduced as an rf current local-
ized at the junction ends to simulate the effect of weak
penetration of the external field into the junction; this ap-
proach, which can be useful to deal with a nonuniform
field distribution within the multimode approach, will be
denoted the “E model” in the following.

We have also carried out numerical calculations fol-
lowing the second alternative, i.e., adding either a spatial-
ly uniform or a spatially sinusoidal rf current to the dc-
current LJJ bias. As in Ref. 4, we found that with small
rf current the phase-locking range is quite small. Increas-
ing the amplitude of the rf current up to several times the
critical dc current, we have observed in the I-V charac-
teristic only current steps having small amplitudes, sym-
metric around the McCumber curve, nonhysteretic, and
mixed with chaotic states. Therefore we will not report
explicitly these cases.

The solution of the multimode equations allows the
reconstruction of the solution of the PSGE with good ap-
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proximation and a detailed analysis of the dynamics of
the phase in the LJJ’s. In particular, we have examined
the relation between the phase of the rf drive and the
phase of the oscillatory states, and the spatial
configuration of the junction phase and its evolution in
time to clarify the interior dynamics and its solitonic as-
pects.

The paper is organized as follows. In Sec. Il we give a
short description of the multimode approach and de-
scribe the numerical techniques adopted to solve the
ODE system and to obtain the I-V curves. Section III is
concerned with the M model and the I-V characteristics
derived from it. Section IV deals with the E model and
the results obtained from it. In Sec. V we show in some
detail examples of the space and time behavior of the
phase, reconstructed from the spatial modes, and in Sec.
VI we conclude with some remarks about this work and
its possible developments.

II. MULTIMODE APPROACH TO THE PSGE

A detailed description of the multimode approach can
be found in Ref. 9; here we will consider its extension to
the case of time-dependent boundary conditions. There-
fore in the following we will outline the procedure that
allows one to establish the set of ODE’s in the form re-
quired by our model. The discussion will be restricted to
unidimensional junctions having overlap geometry (i.e.,
junctions for which the dimension parallel to the dc bias
current is much smaller than the Josephson length A ).

To introduce the multimode approach we start from
the PSGE, which describes the dynamics for the phase in
a unidimensional LJJ.° In normalized units

d’tt _¢xx +Sin¢:7/dc_a¢t +B¢xxt ’ (1)

where ¢(x,t) is the phase difference between the super-
conductive electrodes, v 4 is the constant dc bias current,
assumed uniform throughout the junction, a is related to
the losses in the tunneling barrier and 3 to the losses on
the electrode surfaces, and subscripts denote partial
derivatives. In Eq. (1) lengths are normalized with
respect to A, currents are normalized with respect to the
junction critical current I, and time is normalized with
respect to the inverse of the plasma frequency w;.

The boundary conditions are assigned by the equa-
tions'®

6.(0,0)+Bd.,(0,0=6 (0 +Bd (L,)=n(t), (@)

where 7)(?) is the magnetic field at the junction ends nor-
malized with respect to ®/pyA;d, with @, the flux quan-
tum and d the effective junction barrier thickness (cf. Ref.
9), and [ is the normalized junction length.

Next we introduce the multimode expansion of the
phase

mmx

/

N
o(x,t)=g(t)x+ 3 6,(t)cos s (3)

=0

where the term g(¢)x takes into account the boundary
conditions with

1
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and the series is truncated so to provide the required de-
gree of approximation. The choice of the form g(z)x is
suggested by consideration of the computational simplici-
ty, as discussed by Costabile et al.!!

Substituting the expansion (3) into Eq. (1) the following
set of ODE’s is obtained:

g()=—e /8 [ Py(r)ar @
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m

0, m even (Sb)

where w,, =mm/l, u,, =a+Ppo?,and m=1,2,...,N.

With our most frequent choice of the dissipation pa-
rameters (i.e., «a=0.025 or 0.05, 3=0.01 or 0.02), for
practical purposes it was sufficient to retain a number of
modes equal to twice the normalized length of the junc-
tion; the consistency of this assumption was checked in
some selected cases by increasing the number of modes.
Whenever we set =0 (in order to compare our results
with the literature) we increased the number of modes to
four times the normalized length. In fact, B enters the
dissipation parameter multiplied by w2, [Eq. (5b)], which
yields a rapidly growing damping of the higher modes;
therefore the elimination of the B term requires more
modes to approximate the phase satisfactorily.

For each run y 4, was first monotonically increased and
then monotonically decreased in the chosen interval to
detect the expected hysteretic behavior. To move along
the I-V curve the bias current was varied in steps of
about 0.0005 per unit of time (corresponding to one plas-
ma period) to prevent long transients caused by abrupt
changes.

We note that in the multimode approach the average
normalized voltage is

VdC=<¢l>T:<éO>T) (6)

where { ), indicates the time average. Equation (6) al-
lows one to plot I-V curves by applying simple averaging
algorithms to the numerical solution for 6, We have
adopted the most straightforward, calculating V. from
v, — Oo(t,)—0,(2,) , -
1~
where the time interval ¢, —1, is to be small with respect
to the time interval of the total variation of the bias
current, but large with respect to the fundamental period
2m/w;=2l. A good compromise in our case turned out
to be from ~30 to ~ 100 units of time, in order to have
an averaging time sufficiently long with respect to the
fundamental period and sufficiently short to obtain a
number of points to plot the I-V curves. With this
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choice, the plots that are shown in this paper consist, on
the average, of ~60 points. They are readily obtained
after the evaluation of ¥V, since y 4., for which we take
the value at the midpoint of the interval ¢, —t,, is only a
known, time-dependent parameter in our equations. We
note that the current steps displayed in our plots of I-V
characteristics often exhibit small voltage undulations.
These undulations are both a consequence of the relative-
ly large integration step size (generally of the order of
T,/40, where T,=2m/w,) of the ODE system, that
sometimes can miss a maximum (or a minimum) of the
solution and an artifact of the simple averaging pro-
cedure used. These undulations might be reduced by us-
ing more sophisticated techniques; however, we con-
sidered it to be superfluous to reduce the step size of the
integration algorithm or to resort to more refined averag-
ing procedures as such procedures would not substantial-
ly augment the information already contained in our
plots.

To solve the system of Eqs. (5) we used the Bulirsch-
Stoer algorithm with adaptive step size.!? Essentially, at
every timestep the integration is performed by building
up a series whose terms are the value of the integral ob-
tained dividing the step into progressively smaller sub-
steps; the convergence of the series, evaluated by rational
function extrapolation, is assumed to provide the true
value. The estimate of the extrapolation error controls
the number of substeps needed to obtain the required pre-
cision for the actual step size; if this number is larger or
smaller than that needed for the last step, the magnitude
of the next step size is, respectively, decreased or in-
creased. In this way, relatively large integration step size
can be reached without introducing instabilities or diver-
gences. In fact, this algorithm was proved able to in-
tegrate the system (5) with step size even larger than
T, /40, producing the same results but for the loss of
some detail. To evaluate at every step the integrals in
Eqgs. (5) we used a dedicated discrete-Fourier-transform
(DFT) routine that evaluates only the required com-
ponents. The code was written in FORTRAN and the pro-
gram run both on a VAX(8200-11/780), with a CPU time
of ~10 h and a Cray-XMP48, with a CPU time of ~200
sec for each of the runs needed to build I-¥ curves like
those shown in the figures.

II1. M MODEL

In this section we model the external rf drive by impos-
ing in Egs. (2)

() =mnsinQt , (8)

where () is chosen close to 7 /I, the frequency of reso-
nance of the junction. In this way the junction is rf
driven by an external magnetic field that acts on the junc-
tion only through symmetrical boundary conditions.
This assumption reflects the idea of an LJJ immersed in a
spatially uniform rf field but not penetrated by the field.
Regarding the hypothesis of uniformity, we note that in
real experiments the rf wavelength is generally much
larger than the physical length of the junction because
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the velocity of electromagnetic waves in the surrounding
medium is always much larger than their maximum ve-
locity in the junction.

It can be proved by direct substitution that Eqs. (2) are
satisfied if we assume

= M
(1+B292)1/2

The amplitude and the phase of this expression for the
parameter values used differ so slightly from Eq. (8) that,
from a practical point of view, one can safely replace g ()
by 7(t) in the numerical calculations. We emphasize that
for a fast convergence of the phase expansion it is con-
venient to save the simple ansatz on the functional form
of the g term in Eq. (3); this implies that the method
would be unsuitable to describe a configuration relative to
a nonsymmetrical distribution of the rf field.

Here we report some of the results obtained with this
approach. We have solved numerically the ODE system
(5) for values of dissipation parameters commonly adopt-
ed in the literature and values of 7, from 0.2 to 1.0. Fig-
ure 1(a) shows the behavior of 6, as a function of time ob-
tained in the case of a=0.025, B=0.01, and ! =4; we

g (1) sin[ Q¢ —arctan(BQ)] . 9)

k'llllll[]JLlllllJlilLll

1000 2000 3000 4000 5000

FIG. 1. Solution of Egs. (5): (a) §, and (b) 6, as functions of
the dc bias, which is increased uniformly in time. Parameters:
70=0.5, «=0.025, and $=0.01. In this and in all the following
figures, / =4 and 2=0.775.



41 NUMERICAL SIMULATIONS OF LONG JOSEPHSON . .. 1961

note that as the dc-bias current is increased uniformly
with the time, the average of this oscillation pattern
tracks the shape of the I-V curve. The oscillations keep a
constant average in the intervals corresponding to the
phase-locked states. In Fig. 1(b) we report 6,, the ampli-
tude of the first mode, for the same time interval; we ob-
serve that the amplitude varies as the junction goes from
one phase-locked state to the next, while the average is
always zero, as expected from the equations. The higher
modes show generally the same behavior, but their ampli-
tudes become progressively smaller as m is increased. We
point out that the information in Figs. 1(a) and 1(b) is
provided by the envelope of the pattern; the different den-
sity of the grey shade has no physical significance, being
nothing more than a numerical artifact caused by both
the variation of the time-step size and the amplitude of
the time interval chosen to sample the data.

Inasmuch as little theoretical or numerical information
concerning the large rf-drive regime exists in the litera-
ture, we prefer to start from the analysis of the small-
drive regime, in order to compare our results with those
obtained by other authors. The most straightforward test
is to calculate the modification induced on the I-V
characteristic of the first zero-field step (ZFS1) in this
limit. A typical result is reported in Fig. 2. We see clear-
ly a straightening (the full curve) of the unperturbed
ZFS1 (the dotted curve) where single-fluxon oscillations
are phase locked to the external signal. For phase lock-
ing at the fundamental frequency, the voltage of the rf-
induced step is given by ¥V =2(), where (Q is the drive fre-
quency. Accordingly, the step in Fig. 2 appears at
V =1.55. For comparison, the asymptotic limiting volt-
age for the unperturbed ZFS1 is given by V,=27/I,
which for Fig. 2, gives V,=m/2. A simple analysis says
that the height in current of the step should be
Ay 4.=41,/1; the step height in Fig. 2 is consistent with
this estimate. A noteworthy feature of Fig. 2 is the ex-
istence of frequency pulling outside of the phase-locking
region, i.e., for bias current below the rf-induced step the
profile of the ZFS is pulled to higher voltages. This
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FIG. 2. Phase locking on ZFS1 with the M model. The dot-
ted line is the I-V characteristic when no tf field is applied. Pa-
rameters: 1,=0.2, a=0.025, and $=0.01.

phenomenon seems to be enhanced by the presence of a
nonzero f3-loss term.

An independent way to identify the phase-locked states
is to analyze the relation between the spatial
configuration of our numerical solutions with the phase
of the external fields. To this end we have plotted the
voltage of one junction end versus the phase of the rf
field. Inspection of this kind of plot signals the phase
locking by the fact that the junction-end voltage peak
caused by reflection of fluxons takes and maintains a con-
stant phase difference with respect to the external signal.
Figure 3 refers to the phase-locking zone on ZFS1 as
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FIG. 3. Voltage at one end of the junction vs the phase (8) of
the rf drive when the junction is biased on the points indicated
by capital letters in Fig. 2. The family of curves in each state is
obtained tracking the voltage continuously in time.
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shown in Fig. 2. Figure 3(a) shows the reflection peak
through successive reflections at the end of the junction
in the point marked ( 4) in Fig. 2, i.e., in a current region
below the phase-locking region. The peak is shifted after
each period; from this we infer that the phase delay is not
constant and that we do not have phase locking. Figure
3(b) shows the reflection peaks at three successive points
in the phase-locking region marked by (B), (C), and (D)
in Fig. 2. We see that in these cases the phase delay is
constant, i.e., the peak overlaps itself after each period.
We note that the reflections are approximately coincident
with the maximum of the rf signal at the bottom (positive
maximum) and at the top (negative maximum) of the
step, and near the zero of the rf signal in the middle of
the step, in qualitative agreement with the results report-
ed in Refs. 4 and 5. Figure 3(c) shows the reflection peak
at the point (E) in Fig. 2, where we have a situation simi-
lar to that of Fig. 3(a): the peak is shifted and we do not
have phase locking. As noted by Davidson and Peder-
sen,* this analysis is equivalent to some extent to a Poin-
caré map; it therefore allows the identification of states
that can be strictly defined phase-locked states, whereas
the information provided by Fig. 2 should be considered
as indicative of frequency-locked states because it is rela-
tive to time averages over several periods.

The position of the reflection peak with respect to the
phase of the rf-signal is indicative of the amount of ener-
gy that the external field has to supply to the junction to
keep the fluxons in the phase-locked state. In fact when
the frequency of the rf signal is closer to the frequency of
the free oscillation [cf. Fig. 3(b), points (C) and (D)] the
phase is closer to zero, while it grows [Fig. 3(b), point
(B)] when the frequency of the free state is further off.
Figure 3(a) shows that the rf field in that case cannot
phase lock the fluxon, not even by transferring the max-
imum amount of energy available.

As a further test we have set =0 in order to check the
consistency of our approach with the results obtained by
other procedures. We show in Fig. 4 a run with
a=0.025 and =0 to make a qualitative comparison
with map simulations of the type reported by Salerno
et al.’ Figure 4 shows, with the remaining parameters
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FIG. 4. Plot of ZFS1. The parameters are the same as in Fig.
2, but for f=0.
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FIG. 5. Same as in Fig. 4, reported from map simulation.

equal to those used in Fig. 2, the I-V characteristics of
ZFS1 calculated using the multimode equations, to be
compared with Fig. 5, which shows the results obtained
for the same parameters with the map approach. We
note that the shape of ZFS1 and the height of field-
induced straightening is very similar in both cases.

We think that the instability observed in the upper part
of the current step in Fig. 4 is related to the vanishing of
the B-term: the stability is decreased because the dissipa-
tion affecting the spatial modes is reduced. The obvious
remedy would be to increase the number of modes used,
at the price of an increased CPU time, but this would
render inconvenient the multimode approach: as indicat-
ed earlier, this approach is convenient when the series in
Eq. (3) converges rapidly, which requires that B8 be not
too small. This fact does not constitute a real drawback
inasmuch as real junctions always exhibit non-negligible
surface losses. If we restore the B term in our equations,
the instability disappears and the characteristic returns to
that shown in Fig. 2.
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FIG. 6. I-V characteristic calculated from the M model with
179=0.7, a=0.05, and $=0.02. The upper (lower) curve is ob-
tained by increasing (decreasing) the dc bias monotonically.
The dotted line is the I-V characteristic of the undriven junc-
tion.



41 NUMERICAL SIMULATIONS OF LONG JOSEPHSON . .. 1963

0.9 T T T T T T T T T T T T T T T

T
P

e

_—
f ~

il!lll

0.8

\Y‘]lTI
\\\\

07 (— —

| s

08/ — ]

g ) i
{/

05— -

\
\_\
T

1

04

®
-
o
-
N
-
»
-
-]
-
sl

FIG. 7. Same as Fig. 6, but for ,=1.0.

Now we analyze the case of large rf-drive signals. The
distinction between the two types of regimes will be more
clear when we analyze the internal dynamics of the junc-
tion; however, in general we speak of large signal when
we observe rf-induced current steps in the I-V charac-
teristic at voltages higher than that of ZFS1. In Fig. 6
we show a typical result obtained in the large-signal
simulations: the junction exhibits current steps up to a
normalized voltage of 140, as compared with ¥ =20 for
ZFS1. We note that the upper branch of the steps, ob-
tained by integrating Eqs. (5) with increasing current
bias, is detached from the lower branch, obtained by de-
creasing the current bias. However, this is only a compu-
tational artifact, attributable to the fact that the current
bias has been varied monotonically; in fact, starting from
the lower branch and increasing the dc current, it is al-
ways possible to track the whole step with continuity. In
Fig. 7 we show the result with a larger value of 7, which
moves the leading steps to higher voltages; this behavior
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FIG. 8. Experimental plot of ACS’s from Monaco et al.
(Ref. 7).
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FIG. 9. I-V characteristic as in Fig. 6, but for 3=0.01.

should be compared with the experimental results report-
ed by Monaco et al.,” reproduced in Fig. 8. The plot of
Fig. 9 has been made with the same parameters of Fig. 6,
but with lower dissipation. We observe that the behavior
is qualitatively the same; the phase-locked states are
again only shifted higher on the I-V curve.

All of our plots show some common features: (a) the
steps are asymmetric with respect to the McCumber
curve; (b) even-order steps are much larger than odd-
order steps; (c) the step staircase moves higher on the
McCumber curve when 7 is increased; and (d) the stair-
case is hysteretic. We remark that all these common
features are observed in the actual experiment as can be
seen in Fig. 8.

The last question is what happens in the large-signal
regime to the phase relation with the external field? To
answer this question we have analyzed a number of cases,
from which we show in some detail the one relative to the
I-V characteristic of Fig. 10. Thus, we have in Fig. 11(a)
the reflection peak corresponding to the point marked
(A4) in Fig. 10; again we observe that we have an un-
locked situation. Figure 11(b) represents the situation
corresponding to the three points (B), (C), and (D) in
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FIG. 10. I-V characteristic obtained using the M model. Pa-
rameters: 1,=0.5, a=0.025, and 8=0.01.
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Fig. 10. Since the lower step is at ¥ =2(}, the phase rela-
tion can be compared with that of Figs. 2 and 3. The
main difference with respect to locking on ZFSI is
exemplified by comparing the behavior for y,4 ~0.2
[point (D) in Fig. 10 and point (B) in Fig. 2]: the phase
of the external signal is reduced by a factor of about 2.
This can be again interpreted in terms of the energy that
must be provided by the rf signal to lock the fluxon:
when 7, is larger, the phase must adjust itself to a lower
value to transfer the same amount of energy. At the bot-
tom of the step, point (B), where the bias current in the
free state would correspond to a voltage much lower than
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FIG. 11. Voltage at one end of the junction as a function of
the phase (8) of the rf drive when the junction is biased at the
points indicated by capital letters in Fig. 10. Note that point
( A) is slightly shifted toward the left of the step.
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the step voltage, the reflection again occurs near the rf
maximum because more energy is required to phase lock
the fluxon. Figure 11(c) shows the situation relative to
the successive phase-locked states corresponding to
points (E), (F), and (G) in Fig. 10. The same behavior
seen in Fig. 11(b) is approximately repeated here; the
spread of the voltage peak is caused by the presence of
more fluxons, as we will demonstrate in Sec. V.

IV. EMODEL

On the basis of physical intuition, the effect on an LJJ
of the rf signal modeled by the boundary conditions (2)
can be thought equivalent to the application of suitable
currents at the junction edges. In the case of a static or
quasistatic magnetic field, one can calculate an appropri-
ate current profile by following the analysis of Owen and
Scalapino.'® In the high-frequency limit there is some de-
gree of uncertainty in the choice for the shape of the
function that has to model the rf field. One can reason-
ably guess that any function decaying in the junction over
a typical length of the order of A; could serve to model
the rf current at the edges, causing phase-lock effects not
far from those obtained with the M model. Therefore, we
have made the following choice: the boundary conditions
are simplified to the trivial form

¢,(0,6)+Bd,,(0,t)=¢, (L,t)+Bd ., (1,6)=0, (10)
while a current term having the form
Vacl X, 1) =7yole ¥/ W—e U =¥/ W)5inQt (11)

is added to the right-hand side of Eq. (1). As a conse-
quence, in Egs. (5) the Fourier coefficients of g (#)x must
be replaced by the Fourier coefficients of y,.(x,?). Equa-
tion (11) contains two parameters: w, the penetration
depth, and y,, the normalized current amplitude. While
w can be safely assumed comparable to A, v is essential-
ly arbitrary; in practice, it has been taken as an adjustable
parameter.

We have performed numerical calculations both with
symmetric and asymmetric rf drives [the latter was simu-
lated simply by eliminating one of the exponential terms
in Eq. (11)]. We will not report plots relative to these cal-
culations, as they do not add qualitatively new informa-
tion. In fact, using the same parameters that had been
adopted for the M model, we obtained I-V characteristics
that showed essentially the same features of those report-
ed in Figs. 4, 6, 7, and 9: asymmetric steps, mostly at
even-order voltages, moving higher on the characteristic
as the amplitude of the rf drive is increased.

We stress that the whole procedure in our treatment of
the E model is clearly ad hoc and, we emphasize, is based
mostly on physical intuition; nevertheless, we think it is
worth pursuing because its good qualitative agreement
with the results of the M model provides a convenient
tool to manipulate rf fields that are spatially nonuniform.
In particular, it can prove useful to study the system
comprised of two junctions coupled to each other by the
radiation received and emitted at one of the edges, which
evidently involves an asymmetric drive.
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V. ANALYSIS OF THE PSGE SOLUTION

As already mentioned, the approximate solution ¢(x,?)
to the PSGE must be reconstructed by summing up all
modes in Eq. (3). A series of plots representing the phase
along the junction is shown in Fig. 12; they are relative to
the phase-locked state marked with a filled square on the
14th step of Fig. 6. The plots are pictures of ¢ taken at
successive times, separated by intervals of about T, /40;
therefore the entire figure spans a complete period. We
see that the maximum elongation (difference of phase be-
tween the two ends of the junction) measured from the
figure after a semiperiod [curve (A4)] is approximately
Adpum~36.7 (where with Ad, ., we indicate the elonga-
tion measured directly from the numerical data), which is
close to 127; hence, the spatial configuration of the phase
at that instant can be visualized as consisting of a bunch
of approximately six kinks. From this state the situation
evolves toward a progressive annihilation of the bunch
because of the reflection occurring at the left end of the
junction; the half-point of the reflection is characterized
by a minimum in the elongation, which drops to ~0
[curve (B)]. Then the bunch of kinks emerges again and
propagates toward the right end [curve (C)], until the
process is repeated [curve (D)] with a reflection at the
right end. Therefore, at a first glance the dynamics ap-
pears to involve multifluxon (MF) oscillations. For such
objects we can give a precise relation between the number
of fluxons involved and the voltage.

With reference to Fig. 6, if the voltage of the marked
state should be ascribed only to MF oscillations, then
there should be a bunch of seven kinks in the junction: in
fact we obtain

V=_¢,)=0¢y/T =20, 2m(Q/27)= 140 .

The corresponding elongation of the phase, for a semi-
period, would be A¢,=(1)287~43.9. But the max-
imum elongation in Fig. 12 is never that large and, hence,
cannot account alone for the average voltage. The

1' T T ] T T ]

\ 4

L \ ]

0.8 —\- \ \ \ —

Lo A\ 4

[ \\\\\\\ ]

08 NS —

I WO 4

< - \\\\\\ \ \\ \ -

5 L O \‘\

A \\ \ 7

04 VAN NN\

: \ \ \ \ \\\\\ 7

i AN ]

0.2 \ \\\\\\\_

o L | Lr lg RN { | ‘h L 1\ l\ \ \1\ l

19080 19100 19120 19140 19160 19180

FIG. 12. The phase ¢ along the junction at equally spaced
time intervals during a period of the rf signal. The state is indi-
cated by the square dot on the highest step in Fig. 6.
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discrepancy can be resolved by taking into account the
spatially uniform rotation of the phase, which contributes
significantly to the total voltage. The picture that
emerges from these considerations is one of kink oscilla-
tions superimposed upon an overall rotation of the phase.
We found that this result is quite typical: in the states be-
longing to the current steps the phase is “twisted” so as
to originate a bunch of kinks in oscillatory motion; how-
ever, though we found that the number of kinks becomes
larger as the current is increased toward the top of the
step, in general for high-order steps it turns out to be
smaller than what would correspond to the step voltage.
Therefore one can argue that the phase along the junc-
tion must undergo an overall rotation that adds to the
kink oscillations and offsets the (@, ) up to the proper
value. As we have found in the cases we examined that
this argument holds true, we suggest that the dynamics of
the phase can be considered in general as consisting of
the periodic oscillation of bunched kinks “surfing” over a
rotating background.

We have found that there are also states consisting of
pure MF dynamics; they are mostly located in the lower
part of the I-V characteristic. An example, relative to the
state corresponding to the point marked in Fig. 6 on the
eighth step (whose voltage is four times larger than that
of ZFS1), is shown in Fig. 13. The series of plots appears
qualitatively very similar to the one of Fig. 12, and again
we observe the same MF dynamics; however, here the
MF oscillation can account by itself for the voltage of the
eighth step. In fact, the maximum elongation in this case
is Ad,,m~27.2 and is roughly equal to 1167, which is the
elongation required to reproduce the step voltage.

For large signals we can relate the observed number of
kinks in the junction to the value of the external field 7,
by the following simple argument. Considering that the
number of kinks when the elongation takes its maximum
value is essentially dominated by the amplitude of the
first mode, which is much larger than the higher-order
modes, we can write with good approximation A¢~20,.
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FIG. 13. Same as Fig. 12 for the state identified by the filled
square on the lowest step in Fig. 6.
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On the other hand, we know that the amplitude of the
first mode is the solution of the first equation of the ODE
system [Eq. (5b)]. Looking at the system we can observe
that strong fields will tend to linearize the equations for
the spatial modes, since the Fourier coefficients grow
linearly with the field via 7,, while the magnitude of the
parametric terms (the integrals) is limited by the sing
term. On this basis we can linearize the first mode equa-
tion by dropping the parametric term, obtaining in this
way a simple oscillatory equation whose solution will be a
linear function of n,. The validity of this approximation
can be checked from Fig. 14, where we compare the max-
imum and minimum values of the peak-to-peak ampli-
tude of the first mode (for the values of 7, used in our nu-
merical simulations) with the linear approximation: the
difference between the maximum and minimum is less
than 27 when 7,> 0.7, which means that evaluating the
number of kinks with the linear approximation for these
values of 7, we have substantially the correct prediction.
We note that the shrinking of the variation of the first
mode for growing 7, implies that the number of fluxons
that determines an I-V characteristic for large rf signals
is almost constant; the order of the steps is determined
mostly by the uniform rotation.

If we plot the voltage range in which the steps occur as
a function of 7y and compare it with the average number
of kinks provided by the linear approximation, we can get
some useful indication of the relative weight of the two
mechanisms, MF and rotation, that are responsible for
the total voltage. First, we have to rescale the elongation
in units of the characteristic voltage ¥ ~ A¢ /Q; using the
linear approximation we obtain ¥ ~2p7,/Q, where

p=[(0i—Q* +ui0?]" '
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FIG. 14. Maximum and minimum of peak-to-peak amplitude
of 6, for some values of the amplitude of the rf field. The solid
line is the linear approximation. Parameters: a=0.05 and
B=0.02.
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FIG. 15. Voltage of the steps whose amplitude differs
significantly from zero, plotted as in the last figure, using the
same parameters. The solid line is the linear approximation.
Even-order steps are marked by triangles, and odd-order steps
by crosses.

is the resonance amplitude for the linearized first mode
equation. This voltage yields the position at which steps
on the I-V characteristic are not affected by any addition-
al rotation; in fact, for a step at this value of voltage we
have

Ve~V =02dy/Q~2p1,/Q~ A, /Q . (12)

In Fig. 15 we show for five values of 7, the voltage
range covered by the most significant steps on the I-V
characteristic (for the sake of completeness we also in-
clude the case 7,=0.5, for which the linear approxima-
tion is, indeed, quite poor). We note that the leading
steps start approximately at ¥, and therefore the first step
is generally a pure MF step, while higher-order steps
show a growing content of rotation. Also, the dc-bias
current and the ac external field play different roles: in
the higher region of the I-V characteristics the rotation is
determined by the dc bias, while the number of kinks is
determined by the amplitude of external field.

We show in Fig. 16 some plots of ¢, (instantaneous
voltage) and ¢, (instantaneous longitudinal current) in
the junction for a cycle of the rf. The shape of the
current distribution looks similar to that of a linear cavi-
ty at resonance, except in the reflection zones, where dis-
tinct curvature appears because of the packing of fluxons
entering or emerging from the edge in the bunch. This
observation is helpful to better understand to which ex-
tent the linear approximation can be assumed to hold.

Finally, we remark that the transition between steps is
a quite abrupt phenomenon that lasts about one plasma
period; such a switching time is orders of magnitude fas-
ter than the transients that we usually observed in our
simulations.
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VI. CONCLUSIONS proach can describe the dynamics of phase-locked states

that, in the case of small rf signals, are coincident with

The numerical simulations carried out in this paper those investigated by other theoretical models, and, for
show that with a simple hypothesis on the interaction of  larger rf signals, exhibit the essential features of the states
the junction with the external fields the multimode ap- observed in actual experiments. Moreover, the mode
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FIG. 16. Series of plots of ¢, and ¢, along the junction at successive times, equally spaced, during a period of the rf signal.
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analysis provides a quite intuitive picture of the dynamics
for large rf field, since it helps to clarify to which extent
the solitonic aspect is important for the generation of the
current steps in the I-¥ characteristic. The progressive
linearization of the problem is made evident in Fig. 14,
and can be taken as a starting point to develop an ap-
proximate analysis for large rf fields that can be useful for
the purpose of applications. As an example, let us con-
sider Eq. (5a) in the linear approximation, i.e., when the
integral representing the parametric interaction with the
higher modes is negligible with respect to the external
drive (both dc and rf); in the I-V characteristic this would
correspond to a high-order current step. Dropping the
integral, Eq. (5a) turns into the equation for a linear,
driven and damped rotator which, we remark, cannot be
phase locked inasmuch as the right member only adds en-
ergy to the system, rather than adding or subtracting ac-
cording to the value of the bias current, as is required for
phase locking. In other words, neglecting the term ag
since it is much smaller than g, the inequality

Ye— ~E>0 (13)

2

gives an upper bound to the maximum current at which
phase-locked states can occur. With trivial calculations,
taking into account that near the resonance () ~ /I, one
gets

"'70”2

(ch)max: T

The linear approximation then allows us to write Eq. (14)
explicitly in terms of voltage

2
o™
Vmang > (15)

(14)

in order to make a comparison with the results obtained
integrating Eqgs. (5). Taking for this comparison the data
of Fig. 15, we find that for the three largest values of 7,
in growing order, the maximum step voltage is, respec-
tively, 67%, 71%, and 74% of the upper bound predicted
by Eq. (15). This fact is consistent with the hypothesis
that the higher we move on the I-V characteristic, the
more the linear approximation is justified. The upper
bound for the step voltage can be an important condition
for devices using rf-driven LJJ’s, but there are also two
other consequences of Eq. (15) that are worth pointing
out. The first is that for a fixed value of the voltage (i.e.,
of the step order), 7, is directly proportional to I: the
longer the junction, the larger the rf drive must be to
phase lock the junction on the highest step. The second
is that near the resonance the frequency does not play
any role: the height of the staircase is virtually frequency
independent.

We aim to extend this study to the mutual coupling of
Long Josephson junctions and their phase locking to
external rf fields in order to obtain information that could
be interesting both for nonlinear dynamics and for appli-
cations.”
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