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An Abrikosov flux-line lattice with an equilibrium concentration of unbound dislocation loops is
considered as a way to describe the entangled flux liquid that arises in high-T, superconductors.
The long-wavelength properties of this dislocation loop gas are discussed using continuum elastic
theory. We show explicitly that edge dislocations drive the long-wavelength shear modulus to zero,
i.e., melt the lattice, analogous to what happens in two dimensions. Dislocations do not, however,
destroy the sixfold long-range orientational order of the crystal in the xy plane. The flux-line lattice
with dislocations is therefore a hexatic liquid crystal of lines rather than an isotropic liquid. The ex-
pected signature of an entangled hexatic liquid from neutron diffraction is discussed. Long-range
orientational order relaxes in the z direction with a correlation length due to flux-line entanglement

mediated by screw dislocations.

I. INTRODUCTION

Over the past year there has been much interest in the
possibility of a new regime in the intermediate state of
high-T, superconductors.' ~* Theoretical estimates based
on the Lindemann criterion for melting®> predict that
the high critical temperatures and weak interplanar cou-
plings in these materials lead to flux-line lattices which
are melted over a significant portion of the phase dia-
gram. In Ref. 1 it was shown that the flux lattice must
also melt near H,, by mapping the statistical mechanics
of thermally excited flux lines onto the physics of two-
dimensional boson superfluids (for a related mapping, see
Ref. 3). Melting occurs from this point of view because
bosons with a purely repulsive short-range potential are
always melted by zero-point motion at low density.
Much of this theoretical work was inspired by flux
decoration experiments® suggesting that YBa,Cu,0; is
melted at 77 K at low fields, and by vibrating reed experi-
ments’ indicating a melting curve in the (H-T) plane
which, for Bi,Sr,CaCu,0s, lies far below the mean-field
transition line H_,(T). A melting line which combines
the quantitative Lindemann fits to the experimental data
on Bi-Sr-Ca-Cu-O of Ref. 5 with the results of Ref. 1
sketched in Fig. 1.%°

The theoretical picture of the statistical mechanics just
sketched neglects pinning that is known to be very im-
portant in conventional superconductors. The short
coherence lengths and high critical temperatures of the
high-T, materials suggests, however, that pinning may be
relatively unimportant over much of the phase diagram.'®
At very low temperatures, where pinning cannot be
neglected, disorder disrupts the Abrikosov flux lattice,
producing a translational correlation length whose size
depends on the density and strength of the pinning
centers and on the stiffness of the lattice.!! Even in this
case, decoration experiments'? have revealed that at least
some samples possess very long translational correlation
lengths, despite the weakness of the elastic constants at
the low fields accessible to the decoration technique.

Although some materials may exist in a highly disor-
dered impurity-induced “‘vortex glass” state at low tem-
peratures (this being especially likely in the regime of
weak elastic constants near H,;), such a glass can still
“melt,” in the sense that vortex lines begin to move ap-
preciably on experimental time scales at sufficiently high
temperatures.'> Whether this “melting” is a distinct
thermodynamic phase transition* or a more gradual pro-
cess,'* as in conventional glasses, the resulting flux liquid
should be very similar to the liquid produced by the melt-
ing of an impurity-free Abrikosov flux crystal. This
liquid of lines is a new form of matter and it is of consid-
erable interest in its own right.

It is well known that flux lattice melting can occur in
conventional superconductors in two dimensions via a
dislocation-mediated mechanism. Fisher'® has proposed
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FIG. 1. Schematic phase diagram for thick single crystal
samples of Bi-Sr-Ca-Cu-O for magnetic fields H directed per-
pendicular to the CuO, planes. The Meissner, Abrikosov flux
lattice and entangled flux liquid are shown. The melting curve
H,(T) was obtained in Ref. 8 by combining the Lindemann cri-
terion calculations of Ref. 5 with a low-field estimate of the
melting transition. The curve H,,(T), which need not be a
sharp phase transition, marks the onset of the Meissner effect.
The model studied here leads to an entangled hexatic phase
separating the flux lattice from the entangled liquid.
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a phase diagram not unlike Fig. 1 for superconducting
films. Because the Kosterlitz-Thouless dislocation melt-
ing criterion estimated by Fisher is an upper bound on the
true melting temperature, his conclusion that the melting
line lies well below the mean field H ,(T) curve is correct
even if the melting transition is first order. The novelty
of high-T. superconductors lies in the fact that flux lines
can wander significantly as they traverse a bulk sample,
in contrast to the rigid vortices assumed in the traditional
treatment of the intermediate state of type-II supercon-
ductors.'® In thick enough samples this line wandering
can lead to a new entangled flux liquid regime.! This pos-
sibility arises from both the critical temperature and the
anisotropy of the high-T, oxides. As a result of the weak
interplanar coupling, the effective bending energy per
unit length €, of a flux line can be much smaller than in
conventional superconductors.? Flux lines are therefore
quite flexible and the flux liquid will always be entangled
in sufficiently thick samples. Some of the properties of
this entangled liquid of line defects were discussed recent-
ly by Nelson and Seung,? on the basis of the analogy with
superfluidity of boson world lines in 2+ 1 dimensions al-
ready mentioned.

The entanglement of the flux lines can have important
consequences for the transport properties of the oxide su-
perconductors. A heavily entangled flux liquid could ex-
hibit viscoelastic behavior analogous to that of dense po-
lymer melts.> This sluggish dynamics arises from the “in-
trinsic” randomness associated with entanglement and
should be contrasted with the “extrinsic” impurity-
induced glassy behavior discussed in Ref. 4. The idea of
dynamical constraints associated with entanglement re-
quires an appreciable barrier to flux-line crossing. Al-
though this barrier will be very low near H,,(T), where
the condensation energy vanishes, it was estimated to be
of order 50kzT at T=77 K in the high-T, materials in
Ref. 2. This strongly temperature-dependent barrier!’
could be responsible for “irreversibility lines” like those
discussed by Malozemoff et al.'®

A glassy analogue of the entangled flux liquid was sug-
gested for conventional superconductors some time ago
by Wordenweber and Kes!® and by Brandt.2®2! These
authors proposed that the strong pinning regime of im-
pure superconductors would be precisely a strongly dis-
torted ‘“‘spaghetti-like” state of entangled flux lines. In
this case entanglement is driven by quenched impurity
disorder, rather than thermal fluctuations. Brandt point-
ed out the flux-line entanglement results from screw
dislocations in the triangular Abrikosov flux lattice. He
suggested that a heavily entangled state can be described
as a lattice with a high density of screw dislocations.

Dislocations not only mediate entanglement, but when
thermally activated, could provide a mechanism for melt-
ing the Abrikosov flux lattice in three dimensions. Dislo-
cation melting theories in three dimensions usually postu-
late a free energy which depends on the dislocation line
density p according to,*

F(p)=Aplnp+Bp+Cp*+ - - - (1.1

The coefficient of the term plnp arises from the long-
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range elastic energy of the dislocations and is always pos-
itive. The linear term changes from positive to negative
with increasing temperature and is due to a competition
between the energy in the dislocation cores and the entro-
py associated with line wandering. The quadratic term
has been attributed to the short-range repulsion between
dislocations with parallel Burger’s vectors.?? A finite
density of dislocation lines appears above a first-order
melting transition when B (T) becomes sufficiently nega-
tive. Although the transition to the Abrikosov flux lat-
tice is continuous in mean-field theory,'® fluctuations
drive this transition first order in an expansion in
€=6—d,? consistent with the prediction of Eq. (1.1).
Here, we consider a flux-line lattice with an equilibri-
um concentration of unbound dislocation loops as a way
of describing the entangled flux liquid. A dislocation
loop in a flux-line lattice with H||Z is shown in Fig. 2.2
These loops are highly constrained, in the sense that they
must always lie in the plane defined by the z axis and
their Burger’s vector.”” In this paper we discuss the
long-wavelength properties of this dislocation loop gas.
We find that the long-wavelength shear modulus van-
ishes, i.e., dislocations melt the lattice. Dislocations do
not, however, destroy the long-range orientational order
and the dislocation gas resists deformations of the bond-
angle field 6(r), where 6(r) is the angle (modulo 27 /6)
with respect to some reference axis of a line joining a vor-
tex with its neighboring vortices in a constant z cross sec-
tion.”® In this sense a flux-line lattice with unbound
dislocation loops is not a liquid, but is a hexatic liquid
crystal of lines,?” analogous to the two-dimensional hex-
atic proposed some time ago by Nelson and Halperin.?

&

FIG. 2. A dislocation loop in the triangular flux-line lattice
with H|Z. The Burger’s vector is in the x direction and the loop
lies in the xz plane. Solid lines represent a plane of flux lines
close to the viewer, dashed lines represent a plane of flux lines
further away from the viewer. The aspect ratio of a typical loop
in the crystalline phase is £, /£, =~V K /u. The three triangles lie
in different constant-z planes, but have the same orientation,
suggesting that dislocation loops have only a minor effect on
bond-orientational order.
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The long-range orientational order relaxes in the z direc-
tion with a finite correlation length due to flux-line entan-
glement caused by screw dislocations. Dislocations do
not renormalize the tilt elastic constant of the lattice
since they cannot relax a tilt. If flux lines are constrained
not to cross and never split or merge inside the sample,
there are severe constraints on the type of relaxation pro-
cesses which they can mediate.

Our treatment does not address the very interesting
question of the melting transition itself. We have, in par-
ticular, no explanation of the apparently continuous
changes during melting observed in,” other than in terms
of the crossover to two-dimensional behavior discussed in
Ref. 2. We discuss the properties of a flux lattice with a
finite density of dislocation lines only as a way of describ-
ing the entangled flux liquid. Our methods are adapted
from a study of cubic bond orientational order induced by
unbound dislocations in conventional bulk crystals.?
The resulting cubic liquid crystal phase has never been
seen, possibily because icosahedral, rather than cubic
short-range order predominates in three-dimensional
liquids.!” The conditions for a bulk hexatic line liquid are
more favorable, because of the hexagonal local coordina-
tion topology of flux lines in any plane perpendicular to
the magnetic field. If the hexatic is present as an equilib-
rium phase in high-temperature superconductors, an ad-
ditional transition line separating it from an isotropic
liquid must appear, as shown in Fig. 1, just as in super-
conducting films.!3

In Sec. II we describe some of the geometrical proper-
ties of dislocation loops in the flux-line lattice and obtain
the free energy of dislocations in a continuum limit.
Some of the details of the derivation are given in the Ap-
pendix. In Sec. III we discuss the static properties of a
flux-line lattice with an equilibrium distribution of “‘un-
bound” dislocation loops, i.e., loops of arbitrarly large
size. We show that the crystal with dislocations is a hex-
atic liquid crystal of lines, since the long-wavelength
shear modulus vanishes and there remains long-range
orientational order.

II. DISLOCATION LOOPS
IN THE FLUX-LINE LATTICE

In this section we describe the behavior of a flux-line
lattice with an equilibrium density of “free” or ‘“‘un-
bound” dislocation loops. We follow closely the method
described in Ref. 28. Our starting point is a continuum
description of dislocation loops embedded in the flux-line
lattice. We assume that the external field is aligned with
the z direction. The phonon field of the line lattice in the
continuum limit is then a two-dimensional displacement
vector in the xy plane, u(r)=u(x,y,z). The long-
wavelength properties of the flux lattice are described by
an elastic free energy

2
du

Fe=1 [d’r |2pu}+Auf +K % | | 2.1)

where

ou; 4 du;

ar,  ar, (2.2)

=1
uu—z

is the symmetrized two-dimensional strain matrix, 4 and
A are Lamé coefficients, and K is a tilt elastic constant.?’
The three elastic constants in (2.1) are “bare” elastic con-
stants, unrenormalized by dislocations. It has been point-
ed out by Brandt?! that nonlocality effects are important
in the flux-line lattice and (2.1) should be replaced by a
more general free energy containing wave-vector-
dependent elastic constants. Here we neglect for simpli-
city these effects and briefly discuss their role at the con-
clusion of our analysis.

A dislocation line is characterized by the amount by
which the integral of the displacement field along a con-
tour enclosing the line fails to close,’*3!

$du,(r)=—b,(r) . (2.3)

This defines the two-dimensional Burger’s vector b of the
dislocation. The direction of integration around the con-
tour is that of a right-handed screw advancing parallel to
a unit tangent vector 7 on the line. The peculiarity of
dislocation lines in the flux-line lattice is that while the
Burger’s vector is two-dimensional and lies in the xy
plane, the tangent 7 to the line is a three dimensional vec-
tor.

Following standard treatments,*® it can easily be shown
that the Burger’s vector is constant along a line and that
(2.3) can be written in an equivalent differential form,

ow,,; (r)
ijm arj

€ =—71,b,8%(&), 2.4)

where 8%(£) is a two-dimensional & function of the ra-
dius vector £ taken from a given point on the axis of the
dislocation line in a plane perpendicular to the tangent
vector 7 and

auk(r)
or ’

wmk(r)= (2.5)

m

where m =x,y,zand k =x,y.

Dislocations in the triangular flux line lattice have been
discussed by Nabarro and Quintanilha.”> An edge dislo-
cation is obtained by removing a half-sheet of vortex
lines. Edge dislocation lines always run in the z direction
and can have any Burger’s vector in the xy plane con-
sistent with the symmetries of the triangular lattice. For
instance, an edge dislocation with Burger’s vector in the
x direction is obtained by removing by half-sheet of vor-
tex lines in the zy’ plane, with y'=({,v3/2,0). Edge
dislocation lines with tangents in the xy plane would,
however, correspond to situations where each flux line in
a row merges into two lines. These are very costly in en-
ergy and we exclude them here. Screw dislocations, on
the other hand, are always normal to the flux lines, i.e.,
they lie in the xy plane. A screw dislocation with
Burger’s vector in the x direction is shown in Fig. 3. It is
also apparent from Fig. 3 that screw dislocations lead to
entanglement of the vortex lines, as pointed out by
Brandt.?°
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FIG. 3. A screw dislocation in the triangular flux-line lattice.
The magnetic field H is in the z direction and the Burger’s
vector is in the y direction. Screw dislocations cause flux
lines to wrap around each other. A simple braiding of lines
is caused by an infinite stack of screw dislocations at
2, <2z, < " <z, < v with Burger’s vectors b,
=bgy(cosmn /3,sinmn /3).

The constraint that a flux line does not split into two
lines inside the sample imposes a restriction on the type
of dislocation loops that are allowed in the flux-line lat-
tice. To see this, consider a dislocation loop of Burger’s
vector b and let 7(r) be the tangent to the loop at r. At
all points along the loop we must have 7(r)-(ZXb)=0 be-
cause a nonvanishing component of 7 along ZXb would
correspond to an edge dislocation in the xy plane. A
dislocation loop of Burger’s vector b lies therefore in the
vertical plane spanned by H and b. As an example, a
dislocation loop with Burger’s vector in the x direction is
shown in Fig. 2. The elastic energy per unit length of an
edge dislocation is U, ~(ub?/27)In(R /b), with R a typi-
cal sample dimension, while the energy of a screw dislo-
cation is U, ~(V/uk b*/4m)In(R /b). In conventional su-
perconductors K >>u and dislocation loops in equilibri-
um are very elongated in the z direction, i.e., have a very
small screw component. In the high-T, oxides, however,
the anisotropy leads to smaller values of K than in con-
ventional materials. This makes the energies of the two
types of dislocations comparable, so that loops in equilib-
rium can have a large screw component and line entan-
glement occurs.

To study properties at wavelengths long compared to
the spacing between dislocation lines we use a continuum
description. We average (2.4) over a small volume con-
taining many dislocations, obtaining,

duw, (1)
eijmiz -a‘k(r) Iy

ar;

(2.6)

where i =x,y,z and k =x,y. The hypothesis that there is
a finite concentration of unbound dislocation loops in-
sures that many dislocation lines will enter and leave this
hydrodynamic averaging volume. The tensor a; (r) is a
density of Burger’s vector ‘“‘charge” carried by disloca-
tion lines piercing the averaging volume. It is defined so
that its integral over a surface S spanning a contour C
gives the sum of all Burger’s vectors enclosed by that
contour,

[ aynda=3 b (2.7)
S 14

Here n is a unit vector normal to the surface and the
summation over y runs over those Burger’s vectors en-
compassed by C. The density tensor a;, (r) is a measure
of the number of dislocation lines with Burger’s vector b,
crossing a unit area normal to the tangent 7,. It vanishes
for k =z, since the Burger’s vector always lies in the xy
plane. In this continuum treatment edge dislocations are
described by the components a,(r), for kK =x,y, of the
dislocation density tensor. Screw dislocations are de-
scribed by the two-dimensional tensor aj;(r), for i =x,y
and k =x,y. The constraint that dislocation loops lie in
the plane of Z and b translates in the requirement that the
two-dimensional tensor a;j; (r) be symmetric,

Eika;!'k(r):O , (2.8)

where €, is the two-dimensional antisymmetric tensor,
€, = —€,, = 1. When expressed as a 3 X3 matrix, a;/(r)
has five independent components, because a,, =a,,,

ab, 0 Qyx Ay O
k= a 0 2.9
W= g, 0 v (2.9)
Aox azy 0

There is, however, the additional constraint that disloca-
tion loops must either close or terminate at the boun-
daries. This amounts to the condition,

aa,-k(r)
ar;

1

=0. (2.10)

In the presence of dislocations the strain field can be
written as the sum of two parts, a part,

;(1)=1(3,6,+3,0,),

associated with a smoothly varying two-dimensional dis-

placement field, ¢(r), and a singular part ufji"g(r) due to
dislocations,
u, (=g, (r)+uj"r) . (2.11)

The free energy (2.1) then also breaks into two parts,

Fp=F,+Fp, (2.12)
with
2
Fo=1 [dr |2ud} + 1o}, +K %‘zﬁ (2.13)

The dislocation part is more conveniently written in
terms of the Fourier transformed charge density tensor
a;;(q) as

F =Lf_d_q_

1
—R;; +2E,5,5,,6
D 2 (277_)3 qz l_/,kl(q) eVjIYiz%%z

+2E,8,8,,+2E/5,5,

Xa;(qlay(—q), (2.14)

where q=(q,,q,) is a three-dimensional wave vector.
The kernel R,; ;,(q) depends in a complicated way on the
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elastic constants of the lattice. Its explicit expression is
given in the Appendix with some details of the deriva-
tion. To evaluate Fj, we have solved (2.6) with the condi-
tion that for a given configuration of dislocation lines the
strain tensor w;, (r) minimizes the free energy (2.12). We
have also inserted in (2.14) terms containing the edge and
screw dislocation core energies per unit length, E,, E,
and E;. Although E;/=0 for a single dislocation line, we
expect that a nonzero E, is required to describe short
range interactions in the hydrodynamic limit. In making
estimates we shall take E; ~ E, for simplicity.

To study the properties of the flux-line lattice with
dislocations we now need to calculate statistical-
mechanical averages weighted with e "E”8T This in-
volves integrating over the smoothly varying field ¢,;(r)
and summing over all distinct configurations of disloca-
tion loops carrying allowed Burger’s vectors. As dis-
cussed in Ref. 28, this second step is quite formidable if
the discrete nature of the Burger’s vectors is taken into
account. On the other hand, in the long-wavelength limit
we can disregard the discreteness of the Burger’s vectors
and treat a,;(r) as a continuous tensor field, subject only
to the constraint (2.10). The presence of ‘“‘unbound”
dislocation loops of arbitrary size insures that @;;(q) can
be regarded as a continuous tensor field in this hydro-
dynamic limit.?® The statistical-mechanical averages can
then be calculated by integrating over a;;(r), with the
constraint (2.10) that flux lines cannot start or stop inside
the medium. In this sense dislocation lines are similar to
magnetic field lines, which also are required to either
close or terminate at the boundaries by the constraint of
no magnetic monopoles.

III. PROPERTIES OF THE HEXATIC LIQUID
CRYSTAL PHASE

In this section we evaluate the renormalization of the
elastic constants of the flux-line lattice due to dislocations
and the correlations in the bond-angle field. We show
that while dislocations drive the long-wavelength shear
modulus to zero, i.e., melt the lattice, they do not destroy
the long-range bond-orientational order of the crystal. A
flux-line lattice with an equilibrium concentration of
dislocation loops is therefore not a isotropic liquid, but a
hexatic liquid crystal of lines in three dimension.

A. Renormalization of elastic constants

The renormalized Lamé coefficients are defined in
terms of the components of the Fourier transform of the
correlation function of the two-dimensional strain tensor,
w,i-(r)=a,~uj, with i =x,y and j=x,y,

Giju(q1,9,)=Cwj(@Quwy(—q)) , (3.1
by
2ug(q,)+Arg(q,)

and

=G;kk(q1,9,=0), (3.2)
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PR =Giyik(9,,9,=0)—Gj; 1k (q,,9,=0), (3.3)

where we shall ultimately be interested in the limit
g, —0. In the absence of dislocations the strain tensor
correlation function is simply related to the correlation

function of the smoothly varying part of the displacement
field ¢(r),

Giix(q1,9.)=9,,9.x$0;(q)b;,(—q)) , (3.4
where
L P:
=kpT ZQ” 5 s (3.5)
ugitKq; (2utA)gi+Kg;

In Eq. (3.5) all indices run over the values x and y. The
tensors Q,j and P,#- are two-dimensional projection opera-
tors,

919y

q}

Q =8, , (3.6)

L_ q9,1i9,;
i 4t
The Lamé coefficients defined in (3.2) and (3.3) are then
independent of g, and simply equal their bare values.
The renormalized tilt modulus is similarly related to

the Fourier transform of the correlation function of the
fluctuations in the tangent field, t(r)=09,u(r), given by

(3.7

T;(q,,9.)=(w,(qw,;(—q)) . (3.8)

The renormalized tilt modulus is then
—kiT—-=T,-,-(ql=0,qz) , (3.9)
2Ky (q,)

where we are interested here in the limit g,—0. The
smoothly varying part of the tangent correlation function
is simply,

T(q1,9.)=4;{6,(qQ)¢;(—q)) ,

and in the absence of dislocations Kz(q,) as defined by
(3.9) is independent of g, and equals its bare value.

We now evaluate how the wave-vector-dependent elas-
tic moduli defined by (3.2), (3.3), and (3.9) are renormal-
ized by dislocations. The dislocation contribution to the
correlation functions defined in (3.1) and (3.8) is deter-
mined by the singular part of the unsymmetrized strain
tensor w;;(r), given in the Appendix in terms of the
charge density tensor a;;(r), Eq. (A9). The dislocation
part of the strain and tangent correlation functions are
then given in terms of the correlations of the charge-
density tensor.

The calculation of the charge-density correlation func-
tions is tedious, but straightforward. The constraint
(2.10) is conveniently handled by adding a term

(3.10)

1

d
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to the free energy (2.14) and taking the limit M — c at
the end of the calculation. The resulting correlation
functions are given in the Appendix. After some algebra
one finds that the renormalized bulk and shear moduli
defined by (3.2) and (3.3) are given by

1
2ug(q)tAg(q,)

L 1+ 2
U+ A 2(u+1)+2u+ME,.q}

’
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While the renormalized bulk modulus is finite in the long
wavelength limit, the renormalized shear modulus van-
ishes as g, —0, limquOyR (g,)=0. In other words, dislo-

cations destroy the long-range translational order in the
xy plane and melt the lattice. It can be seen from Eq.
(3.13) that edge dislocations are responsible for driving
the shear modulus to zero as g, —0. The screw disloca-
tion energies appear when the relevant correlation func-
tions are evaluated for g¢,70. The compressional
modulus (3.12) decreases to a finite value, as we would ex-
pect upon melting a solid.

(3.12) The tangent correlation function splits into a longitudi-
nal and a transverse part,
and
! L, 1 A Ty(q1,9.)=T L+ T, P}
=—++ 5 5 - i41,9.)=T,(q,,4,)Q;; +T)(q,,9,)Pj , (3.14)
prq) p  E,.q® 2ulp+A)+Q2u+rE.qi
(3.13)  with
|
kgT 2uqiE(q)
Tt(ql’qz)z 2 1_— ’ 2 - 2 (3.15)
K Ku[(4E,+2E))q;+E.q7]1+2E(q)D,(q)

and

- - kT 2up+A)g+2u+r)gl(E,q2 +2E!q?) 3.16
109:0= g 2u(p+1)g? +2uKq?+(E,q? +E!q})D,(q) ‘
[

where Consider now a dislocation loop in the zx plane, i.e., with
2 2 Burger’s vector b=5b%X. The force on the loop from a uni-
D,(q)=Kgq;+puq7 , G17 " form  external shear stress, 05 =8,,8;,00, is
D,(q)=Kq}+Qu+A)q? , (3.18) ffhe‘”zey,-,rlfé, with f§ =agx b. For a circular loop this
d is a constant force directed radially outwards at each
an point on the loop. Its effect is to expand the dislocation
E(Q)=E,(E,+E!)q*+E!2E,+E})q? . (3.19)  loop out to the crystal boundaries. Dislocation loops are

One can see immediately from using (3.9) that the tilt
modulus for g, =0 is unchanged by dislocations, i.e.,

Kp(g,)=K . (3.20)

This is because dislocation loops of the kind considered
here cannot relax a uniform tilt, as we show in the follow-
ing.

The renormalization of the elastic constants by disloca-
tions has its physical origin in the fact that dislocations
can relax an applied stress by moving through the sample
at the expense of plastic deformations of the crystal.*® To
gain some physical understanding of how dislocations
change the elastic constants of the flux-line lattice it is
useful to consider the force on a dislocation due to a uni-
form elastic stress matrix, 0. This is the so-called
Peach-Kohler force and can easily be evaluated. The
only difference from standard treatments®® is that the
stress tensor of the flux-line lattice is not symmetric, as
seen from Egs. (A2) and (A3). The Peach-Kohler force is
then found to be

fia(r)=0jk(r)bk6j,~l7'1(r) . (3.21)

therefore very effective in relaxing shear and it is easy to
understand how they can drive the shear modulus to
zero.

We now consider the force on a loop with b=5bX re-
sulting from applying a constant tilt to the lattice in the
plane of the loop, ie., 0, =8,8;,0%. The resulting
Peach-Kohler force is fil'=e,,7,f! with fi=0%0b.
This force is always normal to the plane of the loop and
there is no force on any segment of the loop that is paral-
lel to the z axis. For a rectangular loop the force in
nonzero only along the two segments parallel to the x
axis. For 7=%, we find f''=—f and for
r=—%,f=+f19. The Peach-Kdhler force acts as a
couple and tries to rotate the loop to bring it in the xy
plane. Such a rotation is, however, not allowed by the
geometrical restriction that dislocation loops must lie in
the plane of b and H. Such motions are possible only if
we allow flux-line cutting. As a consequence, dislocation
loops cannot relax a tilt and the tilt modulus K is un-
changed by dislocations.

As mentioned, we have neglected the nonlocality
effects arising in the elastic properties of the flux line lat-
tice from the long-range character of the interaction be-
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tween flux lines. As discussed by Brandt,?! this gives rise
to a wave vector dependence of the elastic constants that
is negligible only at wavelengths longer than the effective
London penetration length, A;, which represents the
range of the interaction and is usually much larger than
the typical intervortex spacing d~ng!/2.  Here
no=B /¢, is the two-dimensional density of vortices,
with ¢,=27fic /2e the flux quantum. Within an isotropic
approximation that neglects the angular dependence of
the nonlocality (and neglecting as well the anisotropy of
the critical masses in the high-T, superconductors), one
finds?' that the shear modulus y is independent of wave
vector, while the compressional modulus 2u+A and the
tilt modulus K are only functions of the magnitude
g¢=|q|. The compressional modulus exhibits a strong
nonlocality and decreases considerably at large wave vec-
tors. At g =0, 2u+A>>u, while for wavelengths of the
order of the intervortex spacing d, one finds 2u+A~pu.
Nonlocality becomes important for ¢ >A; '<<d ~! and
can be accounted for by replacing u, A, and K by their
wave-vector-dependent counterparts.”” Our main con-
clusion that dislocations melt the flux-line lattice by driv-
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ing that dislocations leave intact the long-range orienta-
tional order of the lattice will be unaffected by including
nonlocality effects in the elasticity theory as well.

B. Fluctuations in the bond-angle field

We are also interested in fluctuations in the bond-angle
field,?

0(r)=1e, w,(r), (3.22)

which gives the total twist in the material about the z
axis. In the absence of dislocations the bond-angle field is
slaved to the displacement field and equal to
+(9,u, —9,u,). Inserting (A9) into Eq. (3.22) we can ex-
press the bond-angle field more generally in terms of fluc-
tuations in the smoothly varying part of the stress tensor
and of the dislocation density tensor a;;(r). We can then
immediately evaluate the Fourier transform of the bond-
angle correlation function,

. O(q,,q9,)=(0(q)0(— , (3.23
ing the long-wavelength shear modulus to zero will (91,4:)=(6(a)0(—q)) )
remain unchanged. The finding discussed in the follow-  with the result
_
ol - kT 2+2KpD,(q>+EeK2q3qf/4+2(2ES+E;)u2q‘1 (3.24)
10977 4D (@) |*' " Kul(4E, +2E.)q2+ E,q2 1+ 2E(q)D,(q) '

where D(q) and E(q) are given in (3.17) and (3.19), respectively. The first term in large parentheses on the right-hand
side of (3.24) is the contribution from the smoothly varying part of the displacement field, the second term is the contri-
bution from dislocations. In order to display the limiting behavior of the bond-angle correlation function at long wave-

length, it is instructive to rewrite (3.24) as

6(q,,9,)=

kpT Ku+u(2E,+E!)q*+KE,q?/2+E!D,(q)+E(q)q> (3.25)
4(2E,+E/)q?+2E,q7  Ku+2D,(qQ)E(q)q>/[2(2E,+E/!)q?+E,q’] '
I
The bond-angle correlation function ©(q,,q,) is a singu- Cylr,z)=(HAN—60)
lar function of q. At small wave vectors it diverges as —exp[—18([86(r)]2)] , (3.26)

1/gq%, regardless of the direction along which the point
q=0 is approached in the (q,,q,) plane. This signifies
that the broken orientational symmetry of the crystal in
the xy plane remains broken even in the presence of a
finite density of unbound dislocation loops. The loops
destroy the long-range translational order and drive the
shear modulus to zero, but they leave the sixfold orienta-
tional symmetry of the triangular lattice in the xp plane
intact. The flux-line lattice with an equilibrium concen-
tration of dislocation loops is therefore not a isotropic
liquid, but a hexatic liquid crystal of lines, with a solid-
like resistance to torsion in the xy plane. It differs, how-
ever, from a two-dimensional hexatic in that the bond-
orientational order is truly long ranged, as expected in
three dimensions. This can be seen by considering the
correlations of the bond-orientational order parameter,
Ye(r)=e®%" The corresponding angular correlation
function is

where 86(r)=6(r)—6(0) and r=(r;,z). The correlation
function of the bond-angle field fluctuations in real space
is

([86(r)]*) =23 [1—cos(q-1)10(q,,q,) .
q

(3.27)

At large distances, i.e., as 7, — o and z— o, ([866(r)]*)
goes to a cutoff-dependent constant,

kzTA,

([86(r)]*) — 4 )
[26(r)] 4m[2E,(2E,+E})]'"?

(3.28)

where A, =1/4mn, is a circular cutoff in the (4x,9,)
plane and A is a constant of order unity. This is the sig-
nature of long-range order in the parameter yg(r).
Long-range orientational order is plausible because the
orientation of the triangles connecting nearest-neighbor
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flux lines in Fig. 2 are essentially unaffected by the pres-
ence of the dislocation loop. The correlation function
Ce(r,z) decays algebraically to its asymptotic constant
value. Evaluating the inverse Fourier transform on the
right-hand side of (3.27) for large distances, one finds,

kyTA,
47[2E,(2E,+E})]'?
Ok T 1
27V'E, \/(4E, +2E)r’ +E 2*

Celr,z)=exp |— 184

(3.29)

For points separated primarily along the z direction there
is a 1/z approach to the constant value,

Co(r,,z) 184 kTA,
r,z) =~ exp |—
6rLe) TP 4m(2E,(2E, +E)]'/
% 1+% : (3.30)

where the orientational correlation length &%,
. 9T
§6= 2mE, ’

(3.31)

is the scale over which the orientational order parameter
of the flux lattice relaxes to its equilibrium value along
the z direction. Similarly one finds a 1/r, algebraic de-
cay for large separations in the xy plane,

kgTA,|
Celr,z) = exp|—184 A
ry—® 47T[2Ee(2ES+ES)]
1
X 1+£6— , (3.32)
r,
with a correlation length,
9k,T
. — (3.33)
27V 2E,(2E, +E;)

To evaluate the core energies per unit length that deter-
mine the correlation lengths £ and £; one needs a micro-
scopic model of the dislocations. An upper bound for
these energies can, however, be estimated by assuming
that the strains in the dislocation core of cross section
~b? are of order unity.’! One finds then E, ~ub? and
E,~E;~V Kub?, so that

172 1/4

K

7

S _

€6

2(2E,+E!)

E (3.34)

~
=

e

It should be possible to see the hexatic phase by prob-
ing correlations between the flux lines by neutron scatter-
ing. In an isotropic flux liquid of rigid flux lines the
scattering would give diffuse rings in the (g,,q,) plane,
but would be sharp along gq,. In a disentangled hexatic
phase of rigid lines, the diffuse rings in the (q,,g,) plane
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will be modulated by the sixfold orientational order, but
still be sharp in the g, direction.’® In the entangled state
of both the liquid and the hexatic the rings will be diffuse
along g, because of the short-range correlations in the z
direction induced by entanglement.! In the thermo-
dynamic limit considered here the flux line hexatic is al-
ways entangled. In systems of a finite size in the z direc-
tion both an entangled and a disentangled hexatic re-
gimes could exist. For fixed system size, the (possibly
smooth) transition from disentangled to entangled state
will take place as the density of flux lines is increased by
increasing the external magnetic field.

In a phenomenological Landau-type description the
long-range order in the bond-angle field can be incor-
porated by saying that there is an extra term in the long-
wavelength free energy which resists deformations in
0(r), namely,

8Fy == [ drlK,|V,07+K,(3,07] . (3.35)

The stiffness parameters K| and K, are analogous to the
Frank constants in a nematic liquid crystal. The free en-
ergy (3.35) is consistent with (2.14) at long wavelengths,
provided

K,=2E,, K,=8E,+2E/ . (3.36)

The long-range orientational order will be destroyed at
still higher temperatures by the proliferation of unbound
disclinations. The flux-line lattice with an equilibrium
concentration of both unbound dislocation loops and un-
bound disclinations will presumably be the entangled iso-
tropic liquid of lines studied in Ref. 2.

In a perfect flux-line lattice without dislocations the
deviation &n(r)=n(r)—n, of the two-dimensional densi-
ty of vortex lines, n(r), from its equilibrium value, n,, is
related to the displacement u(r) by dn(r)=—n,V, -u(r).
When there are no dislocations in the lattice and u(r) is
smoothly varying the tangent fluctuations t(r) satisfy a
sort of continuity equation in the timelike variable z,

azsn(r):_novl't(r) N (337)

since

0,[V,-u(r)]=V, t(r) .

Equation (3.37) still applies in the presence of dislocations
as long as the constraint (2.8) holds, i.e., provided there
are no half lines or ‘““vacancies” in the lattice. The longi-
tudinal part of the correlation function of tangent fluc-
tuations (3.16) is therefore directly related to the correla-
tion function of fluctuations in the flux-line density.

When screw dislocations are present, the transverse
part of t(r) is an independent physical variable that
characterizes entanglement. It is useful to introduce a
“vorticity” field m(r) which describes the braiding of the
flux lines along the z axis, namely,

m(r)=1Z:[V Xt(r)] . (3.38)
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In the absence of dislocations we have simply,

m(r)=9,0(r) . (3.39)

When screw dislocations are present (3.39) is, however,
replaced by

9,0(r)+Llaj(r) . (3.40)

Equation (3.40) arises because both screw dislocations
and explicit twisting of the bond-angle field contribute to
the ‘“‘vorticity.” The physics contained in (3.37) and
(3.40) is important for constructing a theory of the dy-
namics of the entangled hexatic of flux lines.**

Note added in proof. After this paper was accepted for
publication, we received a report preprint from T. K.
Worthington, F. H. Holtzberg, and C. A. Field (IBM re-
port, that presents evidence from resistivity data for two
liquid regimes above the melting line in Y-Ba-Cu-O, one
of which is identified with the entangled hexatic line
liquid discussed here.

m(r)=
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APPENDIX: THE FREE ENERGY OF DISLOCATIONS

In this appendix we obtain the dislocation free energy
(2.14). For clarity in this section we will use roman
letters i,j,k, - -+ to denote indices that only run over the
values x and y and greek letters, a,3,y - - - to denote in-
dices that run over x,y,z. We need to find the singular
part of the strain tensor, wpg(r), due to an equilibrium
distribution of dislocation loops characterized by the den-
sity tensor ag(r). This is given by the solution of (2.6)
which also minimizes the elastic free energy, i.e., satisfies
the condition

where o ;(r) is the stress tensor,
04i(r)=Cgjwp;(r) , (A2)
with C,,g; the elastic tensor
Cip =B85 84,85,)8;; +8;04]
+ 218,85 +K5,,848;; (A3)

It is convenient to work in Fourier space. Equation (2.6)
becomes then

€y yiq,Wyi(Q)=apg(q) , (A4)
which has solution,
wa,(q)= —TEaBquayi(q)+iQa¢i(q) . (AS)

The two unknown functions ¥,(q), for i =x,y are deter-
mined by requiring that (AS5) satisfies (A1), i.e., the distri-
bution of dislocations is an equilibrium one. One finds

1 _
lp,(q):;{(A ])quacajﬁkeﬁ‘ynqyank(q) ’ (A6)
where A is a 2 X2 matrix defined by
Aiquaqﬁcalﬁj
=D (@), +(utA)g,q,, (A7)
The inverse matrix is given by
_ 1 +A
( )lj D](q) 1] Dz(q)qllqu (AS)

The functions D,(
(3.17) and (3.18).
solution is

q) and D,(q) have been defined in
Substituting (A6) in (AS5), the desired

i
We(q)=— :]’z‘[faﬁyqa’sij
_qa( A4 : )iquCkajepnyqnayj(q)] .

(A9)
Finally, substituting (A9) in the elastic free energy we ob-

9,0 4i(r)=0 (A tain,
J
dgq |1 :
Z%I(T:F — Ry, (Q)+2E,5,84,8,, +2E, 845, +2E!(85,—8,5,,)8,; |ag(@)a,;(—q) (A10)
with
RBi,yj(q CBa[ Calyj alnkqn(A —l)quvcvlpj]cyy ) (A11)

and Cag=eaﬁyqy /q. The explicit expression of the dislocation free energy (A 10) is

— l

[G qla,(qla;(—

+2Ee8ijazi(q)azj( _-q)+

Q)+ G (@) (@a;(—q)+ay

(2E38,k511+2E;8,15k1)ai,(q)a}](‘q) ’

—'q)aij(q)]+G,i,«f,j(q)ai,(q)ab( —q)}

(A12)

(A13)
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and
9.9, uKq? MK —2u)q1 MK —p)gi
(q)= —uQtglk —uCie;; — ———P} ——— QL+ —— Q¢ , Al4
Gl,kj(q) qz MQ.J@ 14 keu Dl(q) ualk Dz(q) szq J Dl(q) Q]k 1 ( )
and
2 2 2.2
q; q1 (K—p)gqy
Giitj(@)=— +K—— D.(q Q501 + Qi Py +peye,
z 1
2 2 2,2
q1 (K—p)gy (K—2u)q{
+ |p+K—— — POt
124 K 22 2,“- D (Q) Dz(q) qul

2
pKq; pl | WK —u)g;
D,(q) U°H D,(q)

(3,iCj'e; +q, ;Ciey) (A15)

Here we have defined a unit vector of components §,;,=gq,,/q,, for i =x, y, and Cil:e,j q.;/9..

All physical quantities of interest here can be expressed in terms of the smoothly varying part of the displacement
field ¢(r) and the dislocation density tensor ag(r). The correlation function of the strain tensor can therefore be writ-
ten as a “‘regular” part, given in (3.4) and a part due to dislocations which is expressed in terms of the correlation func-
tion of the dislocation density tensor. The latter is easily evaluated within the continuum approximation described in
Sec. II where the statistical average over the dislocation density is performed by regarding ag(r) as a continuum tensor
field. The calculation 1s lengthy, but straightforward. To perform the integrations over the three independent com-
ponents of the tensor a (q), we decompose this symmetric 2 X 2 tensor as

a;(Q)=Q5a,(q,,q,)+q, ;h;(Q)+q, jhi(q), (A16)
where h(q) is an arbitrary two-component vector, i.e.,
h(q)=7q,,a,(q,,q,)+Cias(q,,q,) , (A17)

with a,(q,,q,), for n =1,2,3, arbitrary scalar functions of g, and g,. The constraint (2.8) is then automatically incor-
porated in the calculation. The components of the correlation function of the dislocation density tensor are given by,

q’ [Ku+2(E,+E))D,]q?
. (— =k +
<a21(q)az]( q)> E sz R q) Pu l(q) ’ (Alg)
and
(Ku—2E.D)q,q [Ku+2(E,+E{)D]q,q P.q
I :__k T 1 ) z s z + z
(a,(q)ay,(—q)) 8T | Q4. R +Puq,, R,(q) +(Qiq ., +0ix4.)) R, |’
(A19)
and
[Kp+2(E,+E))D, g}
(ajj(qlag(—q))=kpT |(Q; Q4 +P;Py)
R ,(q)
eqlD (K“—ZEle)qzz
+0i0u— ~ H QPPN ————
Q]ka R.(q) QijPutP;Q R,(qQ)
q?
QJIPk+Q1 Pik+Q]kP +Q1k l (A20)
R,(q)
where
R,(qQ)=Ku[4(2E,+E)q?+2E,q*1+4E(q)D,(q) , (A21)
Aqt+Kq}
Ry(q=2p |1+ 272 +2E,q] +4E/q? , (A22)
D,(q)

and E(q) has been defined in (3.19).
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