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A systematic theory of the electron-phonon interaction in heavy-fermion systems is devel-
oped on the basis of the mean-Seld approximation for the Kondo lattice. The electron-phonon
interaction is introduced into the Anderson Hamiltonian by assuming that the hybridization
between f electrons and conduction electrons depends on the local lattice strain. The interac-
tion with conduction electrons is included by using a deformation-potential-type coupling. By
solving the mean-field equations in the presence of lattice displacements, quasiparticle interac-
tions described by Kondo bosons are included in the present theory. Using a random-phase-type
approximation for the Kondo-boson propagators, the phonon self-energy and the elastic con-
stants are calculated. The quasiparticle interaction mediated by phonons is derived, and its
competition with the quasiparticle interaction by Kondo bosons is studied. The results of the
present theory are compared with an effective static electron-phonon interaction. It is found
that this is a reasonable approximation for interaction processes with large momentum transfer
and small frequencies.

I. INTRODUCTION

In many heavy-fermion systems like CeAls, CeCus,
CeRuzSiz, and UPts, anomalous effects in the tem-
perature dependence of the elastic constantsi and the
magneto-acoustic propertiesz have been observed. These
are attributed to the coupling between lattice vibrations
and the heavy electrons. The physical origin of this cou-

pling is probably the volume dependence of the hybridiza-
tion between f electrons and conduction electrons. This
leads to a strong dependence of the Kondo temperature
T~ on the lattice strain e~, which can be characterized by
a large Griineisen parameter il = —d ln(TIt )/den. This
type of electron-phonon interaction is of special interest
as a possible source of a pairing interact;ion in heavy-
fermion superconductors like CeCu2Siz.

In this paper we want to develop a theory for
the electron-phonon interaction that is based on a
slave-boson mean-field approximation for the Anderson
Hamiltonian. Starting from the microscopic Anderson
Hamiltonian we assume that the hybridization between
conduction electrons and f electrons depends on lattice
displacements. Here we consider only its dependence on
a local lattice strain, i.e. , we consider only the coupling to
longitudinal phonons and neglect directional efl'ects due
to the anisotropy of the f-electron wave functions. We
consider also the interaction between phonons and con-
duction electrons in the most simple form by introduc-
ing a volume-dependent shift of the conduction electron
energies. Though this interaction is not essentially influ-

enced by the Kondo effect, it is necessary for obtaining
the correct total electronic compressibility.

By solving the mean-field equations in the presence
of spatial and time-dependent perturbations induced by
the lattice displacements we automatically include quasi-
particle interactions described by the so-called Kondo
bosonss7 s in a random-phase approximation. With
help of this approach we derive systematically the phonon
self-energy and the quasiparticle interaction mediated by
phonons. This allows us to check the validity of an effec-
tive electron-phonon interaction for quasiparticles, which
we have introduced earlier. 4 s The theory presented here
is also an extension of other microscopic calculationsio
based on the mean-field approximation for the Anderson
H amiltonian.

Unfortunately the mean-field approximation is only
good for T (& T~. Therefore many interesting properties
that are related to the temperature dependence of the
elastic properties and the ultrasonic attenuation cannot
be studied accurately with this theory. To study these ef-
fects a more refined theory for the electronic properties of
the Kondo lattice such as the perturbational approach
would be a better starting point. We also do not discuss
here the hydrodynamic modes where density fluctuations
mix with heat relaxation, but instead concentrate on
the lattice modes at larger frequencies.

In the following section we extend the well-known
mean-field theory for heavy-fermion systems to sys-
tems with external perturbations. Here the Kondo-boson
propagator enters in a natural way as response of the
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mean-field parameters on the external perturbation. The
results are used in Sec. III to derive the electron-phonon
interaction from which we calculate the phonon self-

energy and the elastic properties in Sec. IV. Here we

also present some numerical results for the phonon self-

energy. Finally, in Sec. V we derive the interaction be-
tween quasiparticles mediated by phonons and study
their interplay with the quasiparticle interaction medi-
ated by Kondo bosons. Some details of the calculations
are given in the Appendix.

In the following we neglect for simplicity the depen-
dence of V on the electron spin n and the momentum
k. This means that we treat the f electrons like s elec-
trons with two spin directions. We also consider only one
band of conduction electrons. In this case the relation be-
tween momentum representation and site representation
is given by ck —(I/~N) P,. c; exp( —ik x;), where N
is the number of lattice sites.

For later use we also introduce external perturbations
that couple to the electronic densities H,„=P„H,„"

with

II. MEAN-FIELD THEORY FOR HF SYSTEMS
WITH EXTERNAL PERTURBATIONS H~„'& = ) bV, (b;ft c; + bract f, ), (2)

The starting point for the theoretical investigation of
heavy-fermion systems is the Anderson Hamiltonian.
In the case of Ce compounds it contains a mixing inter-
action V between conduction electrons and f electrons
(with energy sg far below the Fermi energy), and a large
local Coulomb interaction U between f electrons, which

suppresses a double occupancy of f states In .the limit
U -+ oo the Anderson Harniltonian can be written in the
slave-boson representation as

Hp = ) skck~ck& + sg ) fi~ fiat

ka ca

+) V(b;ft c; +btcJ~f; ) . (1)
ia

Here the large Coulomb interaction is eliminated formally
by restricting the Hilbert space to empty and single oc-
cupied f states In th. is restricted Hilbert space the op-
erators for f electrons no longer fulfill the fermion com-
mutation rules. This can be avoided by introducing ad-
ditional (slave) boson operators b; for each lattice site
and replacing f; by bt f; and ft by b;ft in the mix-
ing interaction. The resulting Hamiltonian (1) is equiva-
lent to the original Anderson Hamiltonian for states with

Q;=Q f,t f; +btb, =l.

H~„i = ) bZ f~ f;

ia

Here bV; can be considered as a local change of the hy-

bridization, bZ; a shift of the energy of the f level, and
bS'; a shift of the local potential for the conduction elec-

trons.
In the mean-field approximation the boson opera-

tors are replaced by (real) expectations values r, . The
condition Q, = 1 is replaced by the weaker condition

(Q;) = 1. Technically this is achieved by adding a term

Q, A, (Q; —1) to the Hamiltonian with an adjustable

Lagrange parameter A;. Then the tot*1 Hamiltonian is

given by

H = Hp+ H,„+) A;(Q, —1) .

The resulting mean-field Hamiltonian (including the ex-

ternal perturbations) reads

HMF —) ~kc„c ck~+ ) bW, c;~c;~+ ) (sy+ bZ;)f~o, fi~
$a

+) (V+bV;)r, (ft c; +c; f, )+) A, ) f; f, +r; —I +) A;(b; —r, )(b; —r;) .
sa

It has the property (H —HMF)MF = 0. The last term

is added to enforce (b; )=(b;) = r;. The parameters r;
and A; are determined by the condition (Q;)MF = 1 and
the minimum principle for the free energy, which in the
present case leads to (DHMF/Dr;)MF = 0. From these
two relations the following self-consistency equations for
the mean-field parameters are obtained:

where

A;=) f, c; +c, f.;.
and

uf ) ft f (10)

V;(A;) + 2A;r; = 0,

(n~) + r,' =1, .

These equations have to be fulfilled in the presence of
perturbations. Note that only the perturbation in the
hybridization, V; = V+ bV;, enters directly. The other



1880 J. KELLER, R. BULLA, TH. HOHN, AND K. W. BECKER 41

perturbations are contained indirectly in the deviations
b(A, ) and b(n, ) of these quantities from equilibrium.

In the absence of perturbations (7) and (8) are easily
solved, and one obtains in leading order in the Kondo
temperature T~

A = (A )p = 2—r A/V,

we may write these equations as

Here

Vb, A bVI~-'(q)
I

'
i
= —

I

' I+11(q)0)
I bW)

(19)

(12)
Ii '(q) = I&p '(q) —II(q), (20)

where

= 1 —(n, )p ——T~/2N(0)V (13) where

i( ) ~(
2A/V '2r/V 'l~

2r/V 0 (21)

T~ ——y, exp[—A/2N(0)V ] . (14)

AbV; + Vb(A;) + 2rbA, + 2Abr; = 0,

2rbr;+b(nI) =0. (16)

The deviations b(A;) and b(nI) depend on the exter-
nal perturbations be, bZi, bWi (at the same and different
lattice sites), and also on the values of the mean-field pa-
rameters r~ and At. We obtain for small perturbations
approximately

b(A;) = ) [II (i, l)boi+ IIi2'(i, l)(bAi + bZi)

+ IIis(i, l)bWi ] (17)

b(nI) = ) [ 112i(i, &)boi+ 1122(i, &)(bAi+ bZi)
l

(18)yIIzs(i, l)bWi ] .

Here bo'~ ——Vbr~+ rbVj. The diA'erent response functions
in (17) and (18):

Hii(i, I) = ((A;, Ai))p,

Here iu is the chemical potential and N(0) the density
of states of the conduction electrons at the Fermi en-

ergy (in the absence of hybridization with f electrons).
The mean-field Hamiltonian then describes hybridization
of conduction electrons and f electrons with energy sI
slightly above the Fermi energy and a reduced mixing
interaction V = r V

In order to take into account the external perturba-
tions we expand in (7) and (8) all quantities around their
mean values:

and 1I(q) is the 2 x 2 matrix,

( )
& II„(q) II„(q)1
|, Ilzi(q) Ilzz(q))

(22)

The matrix II(q) in (19) is a 2 x 3 matrix of the form

( IIii(q) IIiz(q) IIis(q) l
i Ilzi (q) 1122(q) 1123(q)) (23)

(24)

In I&(q) one can recognize the so-called Kondo-boson
propagator, which is introduced in the functional-integral
approach to describe amplitude and phase-fluctuations
of the Kondo bosons. The form given by (19) cor-
responds to the random-phase approximation (RPA) for
the Kondo-boson propagator. Within the present treat-
ment I&(q) appears as response of the mean-field parame-
ters on a perturbation that couples to the mean-field vari-
ables. More precisely, if we add to the mean-field Hamil-
tonian an (artificial) perturbation of the form P,. o', bg,
+A;bg; and solve the corresponding self-consistency
equations in the same manner, the result for the induced
fluctuations of her~ and bA~ are given by

From (19) we obtain as a response of the mean-field pa-
rameters on a perturbation coupling to the electronic
densities,

( rbv~

i
= —Ic'(q)

i

'
i +I~(q)II(q) bZ

IIi2(i, 1) = ((A;, n))ji, p

II is(i, I) = ((A;, n& ))p,

etc. , have to be calculated in equilibrium, and are listed
in the Appendix.

Using (17) and (18) in (15) and (16), and going over
to Fourier-transformed quantities,

( b ) ( bV~'l

~

= I~(q)M(q) ~
bZ

( bAq+ bZq) ( bW~ )
where M(q) is the 2 x 3 matrix

(26)

The result of (24) can also be written in a more com-
pact form, which will be useful later:

bV~ = 1 N bVexp —iq. x; t 4Am/V 2r/—V II is(q—) 1

2r2/V 0 II2—s(q) ) (27)
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Later we will use (26) also for frequency-dependent per-
turbations, assuming that the self-consistency equations
[(15) and (16)] also hold for time-dependent perturba-
tions. This assumption is equivalent to the saddle-point
approximation in the functional-integral approach.

i.A is not relevant for the electron-phonon interaction).
Phonon coordinates can be introduced in all three in-

teractions by using the following relation between the
local volume strain and the field of lattice displacements
u(i):

III. ELECTRON-P HONON INTERACTION
~ri(i) = 7' u(i) .

The latter are expressed by phonon operators:

(32)

If we star t from the Anderson Hamiltonian there are
three possibilities where the coupling between lattice vi-
brations and electrons enters: (1) the influence on the hy-
bridization between conduction electrons and f electrons,
(2) the influence on the (unrenormalized) f-electron en-

ergy, and (3) the coupling to conduction electrons. The
latter is present in all metals and can be described in
the most simple and unspecific way by a deformation-
potential coupling. The first eft'ect is specific for interme-
diate valence and heavy-fermion systems. In the former
it has been discussed already for many years. ' Little is
known about the influence of lattice vibrations on the
unrenormalized f-electron energy. We include it here for
completeness of the theory.

The most simple form of an electron-phonon interac-
tion is obtained if we assume that these three quantities
depend only on the local volume strain re(i) = bQ;/0„
where 0, is the volume of a lattice cell. In that case
the electron-phonon interaction is obtained from (2)—(4)
by replacing the external perturbations by perturbations
caused by the lattice strain: bV; = ep(i)OV/cled, etc.
Then we find

(33)

~ (') = ) .7(q)e
N

(34)

with

and

7(q) = i(2~qM) '~ q e(q)

4'q =
iraq + n-q . (36)

Finally we may summarize all three types of interactions

Here we have assumed, for simplicity, a monoatomic lat-
t, ice with ionic masses M and have suppressed the po-
larization indices. The quantities e(q) are the phonon
eigen- vectors. From (32) we then obtain

+iai = ) -~&(')»(bifi~acia+ bi clafia)
5Q'

5a

H i = ) Eri(l)gSC Cia

(28)

(29)

(30)

with

&.i = ) .&(q)g.B ",4,

) e 'q "'(i A; + Abc.;) = rAq + Aha,
5

(3?)

(38)

where gi ——BV/BEri, g2 = l9sg/BEri, and gs —B~//Btri.
As an order of magnitude estimate we may assume

gi/V = —(1—5), gs/s+ 1, gz is unknown.

Let us first discuss H;„, . In the mean-field approxj-

mation the boson operators b;, bt in (28) are replaced by

(real) expectation values (b;) = (b, )= r; = r + br;. In

the case of small deviations from equilibrium we may
linearize the electronic operators and we obtain [with

bA; = A; —A and A; given by (9)]

0,„', = ) crt(i)gi(rA+ rbA; + Abr;) .

q ~) fiafia ~ ) fkafk+qa
5a ka

(s) 1 . 1-5qx, t8 e 'c c;5Q g Cke Ck+q
ka

IV. CALCULATION OF THE PHONON
SELF-ENERC V

(39)

(4o)

In the further treatment of H,.~„~ it is essential to con-
sider not only the f-electron and conduction-electron ex-

citations contained in A, but also the local deviations

br; of the mean-field values r; from equilibrium. They
are not quantum-mechanical operators, but nevertheless

play the role of dynamical variables (the constant value

Let us define the phonon Green's function by

D(q ~) = -P 4.(~)&-.)
and its Fourier transform (u, = 27rsT) as

P

D(q, i~, ) = drD(q, v.)e' "
0

(41)

(42)
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D '(q, z) = Do '(q, z) —Z(q, z),
where

(43)

Do '(q, z) = (z —~ )/2~~ (44)

is the phonon Green's function in the absence of electron-
phonon interaction. In lowest order in the electron-
phonon interaction we obtain for the (irreducible) phonon
self-energy

~(q «) = ), Iv(q)I'g. ~. ((B,'"'IB'-",')).
vv'

(45)

Here the electronic Green's functions on the right-hand
side (rhs) of (45) have to be calculated with the full elec-
tronic interaction but further electron-phonon interac-
tion can be neglected.

The most interesting contribution to the phonon
self-ener gy comes from the hybridization interaction

H;„, . Here we have to calculate the Green s func-(l) 7

tion ((Bt &IB )), of the variable Btil given by (38),
I

Then the phonon self-energy may be defined by the
Dyson equation

which contains both electronic particle-hole excitations
and fiuctuations in the mean-field parameter r Within
the mean-field approach this Green's function can be
-valuated with help of the following considerations (for
the moment let us neglect the frequency dependence):
we may regard ((B~i~IB~ l)) as the response of the vari-

able B~~~ on a perturbation coupling to B~ ~, which in
this case is the field bV~. Hence we have to calculate
6(B&il) in the presence of a perturbation bV~, and this
can be done with help of the methods developed in Sec.
II. From b(B& l) = r b(A~) + Abr~, and using the results
(17) and (24) we obtain

((B&'&IB~'l)) = r'(11(q) It(q) 11(q))„+r'(II(q))„

(II(q)K(q) + K(q)II(q))„

+I —
I (~(q))„ (46)

Note that this result, which will be discussed further
below, can also be obtained in a more direct way with
help of the Kondo-boson formalism in the functional-
integral approachs by evaluating

((r&A~+ A~r~lr~A-q+ A»-~)) = r'((t A~l&A-. )) +»(((~A. l~r-. )) + ((».I~A-.))) + A'((». I» —.))

The different terms in (47) correspond to the terms ap-
pearing in (46) in the order. In particular, in the ex-
pression ((bA~I6A ~)) = (II+ III~II)ii the second term
IIKII contains the quasiparticle interaction mediated by
the Kondo-boson propagator.

The result of (47) can be simplified further by using
(20) as II(q) = Ko (q) —I& i(q) and A = 2rA/V2- '

Then all the "bare" correlation functions II(q) can be
eliminated in favor of the Kondo-boson propagator. The
result can be written as

((B~'lIB )) = (M (q)I&(q)M(q))„y 6, (48)

where the 2 x 3 matrix M(q) is defined in (27). Note
that in (48) only the first column of the matrix M enters,
which is independent of q. Therefore, this contribution
to the phonon self-energy can be expressed completely
by the Kondo-boson propagator.

So far we have considered only static perturbations.
If we assume that the mean-field equations [(7) and (8)]
also hold in the presence of time-dependent perturba-
tions, then we arrive at

((B&'&IB~ l)) = (M {q,z)I~(q, z)M(q, z))„+6

(40)

((B~'lIB~'l)) = -~'T /V'+3~T /V', (50)

where g = A/N(0)V . Using the explicit dependence
of the Kondo temperature T~ on the hybridization V
given by (14) the rhs of (50) can also be written as

(0 T&/BV ) p—lus terms of O(T&~). Note that the quan-
tity j is related to the electronic Griineisen parameter
'g = (BTrc/86ri)—/T~ by g = g(DV/Beri)/V. T—his will
be used later, when we discuss the elastic properties.

In a similar manner also the other electronic Green's
functions entering the phonon self-energy can be evalu-
ated. For the Green's function of the conduction electron
density (( B~ &IB~ )) = ((n'In' )) we obtain

where in the Kondo-boson propagator (20) and in the ma-

trix M defined in (27) the electronic particle-hole prop-
agators are replaced by the corresponding frequency de-

pendent quantities. In the static limit (z = 0) and for

q = 0 the largest contribution comes from the compo-
nent I&(0,0)ii ——[8N(0)] (see the Appendix). From

(47) we then obtain

((B~s&
I
B~ l)) = Ilas(q, z) + (II(q, z)I&(q, z)II(q, z))aa

= 11as(q, z) + (M (q, z)I&(q, z)M(q, z))a& —2N(0)[1+ O(Tz/p)]
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for q = 0, z = 0. This is the other important con-
tribution to the phonon self-energy and the electronic
compressibility. The other contributions are

((8 [8 )), = (M (q, z)K(q, z)M(q, z))»
= —TIr/[2N(0)V ]

((8(i&
~

8( )), = (M (q, z) E&(q, z) M (q, z)),2

qT~—/[2N(0) V ],

As Z'(q, ~q) is proportional to q for small q, this leads to
a renormalization of the (longitudinal) sound velocity v,
and the (longitudinal) elastic constant c. With uq = v, q,
~~ = v, q and using the relation c = v~p, where p is the
mass density, one obtains

(v, ) c
I

—'
I

= (-) = ~+s'(q, o)/(~. ~)(v, j c
(57)

for q ~ 0. In a similar way the attenuation coefficient of
longitudinal ultrasound is determined by the imaginary
part of the phonon self-energy as

n(~) = E"(q,~)/(2v, ) . (58)
((8& &[8 ))), = (M (q, z)I&(q, z)M(q, z))is

= 6T~/(V~) (54)

((8(z&~8( )), = (M (q, z)K(q, z)M(q, z))zs

= Tlr/[2N(0)V p] . (55)

If we consider only the effect of the elastic strain on
the hybridization we obtain from (50) and (57) in the
present model:

g TK g TK
Mv~ cO,

These results for the phonon self-energy can be ex-
pressed graphically by the diagrams shown in Fig. 1.
Here a wavy and a double wavy line represent the un-

renormalized and renormalized phonon propagator. The
dashed and double dashed lines denote the bare quasi-
particle interaction I&0 and the Kondo-boson propagator
I&(q, z). The bubbles are electronic particle-hole prop-
agators II(q, z). The dots denote the electron-phonon
interactions g„. Note that the Kondo bosons couple to
the phonons directly only for the coupling g~.

A. Elastic constants

In the following we want to discuss in more detail the
influence of the electron-phonon interaction on the elastic
properties and the phonon damping. For small electron-
phonon interaction one obtains for the renormalized (lon-
gitudinal) phonon frequency

4)q 4)q + E'(q, ~q)

( Q )

+ W== + ==M +

FIG. 1. Diagrammatic representation of (a) the pho»u
propagator (double wavy line), (b) the phonou self-energy E,
and (c) the Kondo-boson propagator (double dashed 1ine).
The solid lines denote electronic quasiparticle Green's func-
tions.

where

(BT~/—Bert) = A[N(0) Vs—] 'BV/B~ri

is the electronic Griineisen parameter and 0, the volume
of a lattice cell.

Ac/c has been estimated for several heavy-fermion sys-
tems from the temperature dependence of the elastic con-
stants below TIr . Here in fact a depression of some of the
elastic constants of a few percent has been observed. '
In the analysis of the experimental data it is assumed
that at high. temperatures (T )) TIr) the influence of
tbe Kondo effect on the elastic constants vanishes, while
the maximum depression is reached for T ~ 0. Here
one has to subtract in some cases first the much larger
effect of the magnetoelastic coupling between the lattice
and the quadrupolar moments of the rare-earth ions. Us-

ing the experimental data listed in Ref. 10 for b,c/c, the
Kondo temperature T~, and cQ, we obtain the following
results for the Griineisen parameter r): CeAls (il = 60),
CeCus (g = 15), and CeRu2Siz (i) = 40). These val-

ues are a factor of 3—4 smaller than those reported in
Ref. 10, and those obtained from thermodynamic rela-
tions between the elastic constants, specific heat, and
the thermal expansion. ' These relations can be derived
from scaling relations for the free energy. The origin of
this discrepancy is not quite clear. There may be several
reasons: the present one-band model may be too sim-
ple; we did not take into account the other contributions
to the phonon self-energy, and we neglected higher-order
derivatives Bg„/D'art and a k dependence of this coupling.

We also have to consider that the elastic constant cal-
culated here by the phonon self-energy corresponds to
the isothermal elastic constant at constant chemical po-
tential, while the measured quantity is more like the adi-
abatic lw. tie constant at constant particle number. Ne-

glecting the difference between adiabatic and isothermal
processes, which is not relevant at low temperatures, we
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obtain for the difference between elastic constant b,c„at
constant chemical potential and elastic constant Ac~. at
constant electron number6 N, at T = 0:

(60)

1 (O'E, )
cN, =

0 ( Ot'~ )iv
(61)

If we assume that the infiuence of lattice strain on
the conduction electrons can be approximated by gs
= BW/Ocri ——Bp/8&ri the contribution to the phonon
self ene-rgy (51) from the coupling of the phonons to the
conduction electrons just cancels the additional term in

(60). Therefore this effect cannot explain the discrepancy
in the results for the Griineisen parameters mentioned
previously.

Let us note finally that the result (59) for the elastic
constant can also be obtained directly from the defining
relation

the conduction electrons. Parameters are chosen such
that m'/m = 200 and T~/s~ —3 x 10 . In Fig. 2
for qv& &( T~, structure is seen in the self-energy at
the zero-sound frequencys 9 ur = qu&(m'/3m)iI and at
the interband transition energy 2V. For q = k~, where

qv& ) T~, the self-energy is real and constant up to
u = Tn. For u ) T~ the real part falls off gradually
to zero, while the imaginary part increases up to the
charge excitation energy A. The results for qv& &( T~
should not be taken too seriously because the finite life-
time of the quasiparticles, which is not yet taken into
account, will damp the zero-sound mode. Furthermore,
if we take into account the Coulomb interaction between
conduction electrons, we will find an additional mode at
ur = J6Trc, which corresponds to plasma oscillations in

the heavy-fermion band. 8 These efFects, which are impor-
tant primarily in the hydrodynamic limit for the ultra-
sonic attenuation, are discussed in more detail in Refs. 6,
8, 12, and 16. How the electron-phonon interaction in-

Auences the phonon spectrum in the energy range of in-

where E, is the electronic ground-state energy. Since in
our simple model the reduction of the electronic ground-
state energy due to the Kondo effect (per rare-earth ion)
is given by

(62)

we obtain immediately the result of (59) for the elec-
tronic contribution to the elastic constant depending on
the Kondo effect.

B. Numerical results for the phonon self-energy

3 Q-
CT

X

q/kF = 001

3- -1
CI

X

I -0
I

I

I

( /
( /
I/
I/
II
((
I

It
(I

2Y iA

We have also investigated the phonon self-energy at
finite q and ~. If we take into account only the contri-
bution from the strain dependence of the hybridization,
we may write for the phonon self-energy

I i I

0 001 0 01 0.1

~(q ~) n'T~ (u. V&' I'ii(q, ~)
2cf1. ( ~~ ) lI&ii(0) 0)(

(63)
0

q/k =1
0

Here we have split off the prefactor, which also appears
in the elastic constant Ac/c in (59). Let us note that
I&it(q, u) is directly proportional to the density correla-
tion function of the f electrons:

112z(q, z) = (II(q, z) + II(q, z)I&(q, z)II(q, z))zz
= [2N(0)Tlcgz/Vz]I~ii(q, z) . (64)

This means that the sound attenuation processes are
produced primarily by density fIuctuations of the heavy
fermions.

Some numerical results for the phonon self-energy are
shown in Fig. 2, where
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is plotted as function of u for two difFerent q values.
These results, which are discussed in more detail in Ref.
9, were calculated with a dispersion si, —k2/2m for

FIG. 2. Normalized Kondo-boson propagator X(q, ur)

Itii (q, u)/(Itii (0, 0)( as function of frequency ~ for two

different values of the wave vector q. The solid curve shows
the real part X'(q, u) (left scale); the dashed curve shows the
imaginary part X"(q,u) (right scale).
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elastic neutron scattering depends, of course, very much
on the coupling constant g T~/cQ, . If it is as small as
obtained from the estimates of the elastic constants, the
eKect on the phonon spectrum would be negligible except,
maybe, when one of the electronic density modes coin-
cides with one of the lattice modes. If, however, we in-
sert the values for the Griineisen parameters as measured
from the thermodynamic relations, the eH'ect should be
observable in the phonon spectrum.

V. EFFECTIVE ELECTRON-ELECTRON
INTERACTION

k

~n

k'

1,2 k+q

II

h)n+ (ds

II q, 4)~
II

II
Uk'-q

' »m-~s

(b)

I' i(q, iu, ) = Ic&~~(q, ia, ) . (65)

Here the indices p = 1, 2 refer to vertices with electronic
operators of the form f„ck+~ or c„ f„+~ (p = 1), and

f„~fk+~ (p = 2), respectively. At vertices with electronic
operators of the form c„ck+~~(p = 3) the phonon cou-

The result of Sec. II, which describes the response of
the mean-field parameters on the external perturbation,
can also be used to derive an eH'ective interaction be-
tween electrons mediated by phonons. This interaction
is of particular importance as a possible mechanism for
superconducting pairing.

Let us note first that within the mean-field approach
the external perturbations couple either directly to the
electronic densities (in the case of conduction-electron
states) or indirectly via the mean-field parameters (in the
case of f-electron states or mixed states). Consequently
the lattice vibrations, which can be considered as a spe-
cial type of external perturbation, couple either directly
to the electronic densities or indirectly via a Kondo-boson
propagator.

The different possible kinds of effective electron-
electron interactions are shown in the diagrams of Figs.
3(a)—3(e) [in Fig. 3(a) the general form of the momentum
and frequency dependence of the effective interaction is
defined]. As in Fig. 1, a double dashed line denotes a
Kondo-boson propagator, and a double wavy line denotes
a phonon propagator (which contains Kondo bosons as
self-energy corrections). The total interaction is obtained
as the sum of the contributions 3(a)—3(e).

The interaction mediated by the Kondo-boson propa-
gator that is shown in Fig. 3(a) is given by

II

II

II

3

(c)

II

II

II

1,2

(d) (e)
FIG. 3. Diagrammatic representation of the effective

electron-electron interaction mediated by phonons (double
wavy line) and Kondo bosons (double dashed line). The num-

bers at the vertices refer to a coupling to the mixed cf density

(p = 1), the f electron density (p = 2), and the conduction
electron density (p = 3).

In order to derive the indirect interaction between elec-
trons and phonons we note that as in (17) and (18) the

electronic operators c„~fk+~~ and f„~ck+~~ couple to the

combination bo~ = rbV~+ Vbr~, while f„ fk+~ couples
to bA~+ bZ~. We can therefore use the compact result
of (26) describing the response of these parameters on
external perturbations. The coupling to the phonons is

obtained if we replace the external perturbations bV~,
etc. , by the perturbations bV~ = c&(q)g&, etc. For the
interaction shown in Fig. 3(b) we then obtain (a summa-
tion over repeated indices is implied and p, p = 1, 2)

ples directly; therefore, the eH'ective interaction mediated
by a phonon shown in Fig. 3(e) is given by

ss(q i~ ) = 17(q)l'»D(q i~ )» .

Iz~ (q, iu, ) = I~~p(q, i~, )Mp„(q, i~, ) ly(q) I g„D(q, i~, )g„M„p (q, i~, )Iip ~ (q, i~, ) . (67)

Finally the interactions of the type shown in Figs. 3(c) and 3(d), where at one vertex the phonons couple directly
to conduction electron states, are given by

f3p(q, iu, ) = ly(q)l g&D(q, iu, )g„M„p(q, iu, )I&p&(q, iu, ) (68)

d»(q '" ) = ~&~p(q i~ )Mp. (q i~.)IV(q)I'g. D(q, i~, )gs (69)
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The most important contribution to the electron-
electron interaction mediated by phonons are the terms
in M that contain the large factor rt = A/N(0) V2 and re-
sult from fluctuations in the hybridization V induced by
lattice vibrations. If we consider only this interaction,
and furthermore approximate the Kondo-boson propa-
gator by its static value at q = 0, we may define an
effective electron-phonon coupling (Ii M)~iBV/crt Com. -

paring these quantities with (26) we find

qp 1 ) Eti(q)gqpdkadk+~a
qka

then we find from (70) and (?1)

(74)

This interaction is repulsive, which is due to the second
term on the rhs of (73). Note that the (—) sign in (73)
comes from the (—) sign in (72).

If we define in a similar manner an effective
quasiparticle-phonon interaction gqp by

(ICM)1lBV/BEA = D(T/BCA = DV/DCA

(I&M)ziDV/D&ri = &A/&&ri = &T~/0&n .

(70)

(71)

gqp = —2ukvkBV/BEri + ukBTK/BEG
4rA BV

( 2uk'Uk' ll + uk' 21)Vz Bcri
(75)

dlka —uk fka Vk Cka (72)

and (near the Fermi surface) has primarily f character:

u„1, v„m/m' N(0)/N'(0) « 1 .

Here m' and N'(0) are the effective mass and the den-
sity of states of the quasiparticles at the Fermi energy.
The effective interaction mediated by Kondo bosons be-
tween quasiparticles at; the Fermi surface is obtained, if
we multiply I given by (65) with the appropriate weight
factors ni„vi, with k = k~. At q = 0, ~, = 0 we find,
using the results (A12) of the Appendix,

„„&gj —4u„vi, Kyg

+u„Ãzz I/[2¹(0)] T~ . (73)

Such an effective electron-phonon interaction has been
introduced in Refs. 4 and 6, There it was assumed that
the effective hybridization V and the effective position of
the f level Z = p+ T~ fluctuate under the influence of
lattice vibrations. Now we see that such a description of
the electron-phonon interaction corresponds to a special
limit of the more general theory presented here. Taking
the results shown in Fig. 2 for the Kondo-boson propa-
gator Xii(q, u) [the numerical results for I&zi(q, u) are
quite similar] we see that such an approximation of using
a constant effective electron-phonon interaction is not too
bad for large q values as long as ~ & T~. For larger fre-
quencies this approximation fails, and the phonons mix
with the dynamics of the Kondo bosons. For small q
values with qv& « TK we have to take into account
the zero-sound mode and the low-frequency plasma os-
cillation of the Kondo boson. ' In Ref. 6 the mean-
field Hamiltonian was expanded up to second order in
the lattice displacements, which was necessary to obtain
the correct value for the electronic compressibility. This
is no longer necessary in the present treatment because
here quasiparticle interactions are included within our
dynamic mean-field approach.

The electron-electron interaction can also be written
in terms of quasiparticle operators corresponding to the
two bands that are obtained if we diagonalize the mean-
field Hamiltonian (6) in equilibrium. For the lower band
crossing the Fermi surface the quasiparticle operator is
given by [see the Appendix, (A3)]

IIii/Iii I
= O(V'T~/«e), (76)

which is small. From this one might conclude that the
phonons can play only a minor role in a pairing inter-
action. This may be different if we consider multiple
bands crossing the Fermi energy and take into account
the anisotropy of the hybridization and pairing in real
space at different lattice sites. Finally we would like to
mention that a quasiparticle phonon interaction of simi-
lar nature has also been derived within the perturbation
theory for heavy-fermion systems.

VI. CONCLUSION

In this paper we have developed a systematic the-
ory for the electron-phonon interaction in heavy-fermion
systems based on the slave-boson mean-field approxi-
maiion for the Anderson lattice. We have calculated
the phonon self-energy and have derived the effective
ele;tron-electron interaction mediated by phonons. Our
theory includes quasiparticle interactions in a manner
equivalent to the random-phase approximation for the
Kondo-boson interaction in the functional-integral ap-
proach. In our treatment the Kondo-boson propagators
enter naturally as response of the mean-field parameters
on a perturbation, which can be either an external per-
turbation or a perturbation induced by lattice displace-
ments. It is interesting to note that phase fluctuations of
tne boson field, which are introduced in the functional-

IJsing the results (A12) of the Appendix, the two con-

tributions in the parentheses of (75) cancel in the lead-

ing order in T~ near the Fermi surface; therefore the
total expression (74) is only of the order of Tg. . This,
however, is an artifact of the simple model for the con-

duction electrons. If we use a quadratic dispersion for
the conduction-electron energies, me 6nd a contribution
that is proportional to Tg. The size of the effective
quasiparticle-phonon interaction therefore depends very
much on the details of the quasiparticle band structure.

If we compare the relative size of the different contri-
butions I' ' of the effective electron-electron interaction,
in particular, if we compare the effective interaction Ia
mediated by the Kondo boson and the one mediated in-

directly by a phonon I~, we find
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integral approach, never occur within the present RPA-
type treatment. Instead one obtains fluctuations of the
two real mean-field parameters r, corresponding to the
amplitude of the boson field, and the Lagrange parameter
A introduced to fulfill the condition (Q;) = 1. These fluc-
tuations do not appear as additional dynamical variables,
but are tied to the perturbations induced by phonons or
electronic density fluctuations.

We have estimated the strength of the electron-phonon
interaction from the measured depression of the elastic
constants at T « T~ compared to their values above

T~. We derived electronic Griineisen parameters that
are large, but are a factor 3—4 smaller then those ob-
tained from a thermodynamic relation between thermal
expansion and elastic constant. The reason for this dis-

crepancy is not clear; however, we have to keep in mind
that our calculations are performed with a very simple
model for the conduction electrons (one band with con-
stant density of states). We also neglected all momen-
tum and spin dependence of the hybridization, treating
the f electrons like s electrons. Furthermore, we used
the most simple form of the electron-phonon interaction:
momentum-independent shifts of the energy levels and a
change of the hybridization depending only on the vol-
ume strain.

We also calculated the effective electron-electron inter-
action mediated by Kondo bosons and by phonons. We
found that in those interaction terms that contain the
large Griineisen parameter the phonons do not couple di-
rectly to the electrons but are coupled via a Kondo-boson
propagator. This tells us that it is not possible to study
the interaction with phonons while ignoring the quasi-
particle interaction. Within the simple model we found
that the attractive interaction mediated by phonons is
weak compared to the repulsive interaction by Kondo
bosons, at least for quasiparticle states that are close
to the Fermi surface. Again this may be different if we

consider nonlocal and directional effects in the electron-
phonon interaction and consider interband transitions.
The present theory serves as a good basis for treating
such interaction processes with finite frequency and mo-
mentum transfer. It also allows us to study nonlinear
elastic effects, and, finally, may be useful for the investi-
gation of the electron-phonon interaction in high-T, su-
perconductors, if one starts from a quasiparticle descrip-
tion based on a slave-boson approximation.
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APPENDIX

teraction. Most of these results can be found in the
literature. They are presented here in a unified no-
tation. For the practical calculations in this appendix
we use a single conduction band with a constant density
of states, i.e. , we replace pk by N(0) f de. We confine
ourselves to a spin degeneracy of two for the conduction
electrons and the f electrons and neglect all spin depen-
dence and k dependence of the hybridization V.

Diagonalization of the mean-field Hamiltonian (6) in
equilibrium leads to

HMF —) El(k)dik~dlka
kl a

(Al)

One obtains two bands of quasiparticles [I = (1,2)
= (—,+)] with energies

Et(k) = ~z(zk+ ig) 6 &zWi, , (A2)

where W„= [(ck —sy) +4V ]'~, V = rV, and Zg
= zg + A = p + T~. The last relation is used as a
definition of the Kondo temperature of the lattice. We
assume that the Fermi energy is close to the top of the
lower band (I = 1).

The fermion operators of f electrons and conduction
electrons can be expressed by the quasiparticle operators

fka —ukdlka + vkdzku

&ka — &k~lka + &kd2ka

where

(A3)

T~ = p exp( —A/[2N(0) V ]) (A5)

and the results (ll)—(13). Furthermore, in this model
the quasiparticle density of states at the Fermi energy¹(0)(for one spin direction) that determines the elec-
tronic specific heat and defines the effective mass rn'/m
= N'(0)/N(0) of the heavy fermions is obtained as

N'(0) = N(0)/[dEi(k)/dsk])k = N(0)/vk

N(0)+ ~$1/T~ —1/[2N(0)V ]+1/p) . (A6)

For the calculation of the correlation functions we need
the single-particle Green s functions. Using the notation

V

k

Using the simple model for the conduction electrons men-
tioned earlier one obtains

In this appendix we want to summarize some results
obtained in the mean-field theory that are needed to cal-
culate the phonon self-energy and the quasiparticle in-

((A~B)); .= — d7. e' "'(TA(7.)B),
0

we find, with i~„~z,

(A7)
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Gf f (k, Z) = ((f~~lfko)). = uk/[z —El(k)l
v„/[z —E2(k)],

G«(k z) = ((c~ lc'.)). = ~'/[z —&1(k)],
+&'/Iz —&2(k)],

(A8)

With help of the simple model for the conduction elec-
trons with a constant density of states these functions
are easily evaluated at q = 0, i~, = 0. Writing down
only the leading terms in an expansion in T~ we find

II11 - —2A/V —8N(0) V /P = —2A/V —4T~/P

G,f(k, z) = Gfc(k&z) .

II13 4N(0)/ Vf2N(0)Tfc —T~/[Vz /2'�(0)Tf&]

Vf2N—(0)Tfr/f = 4[N(0) N'(0)]'i',

We then obtain for the Green's function of the f density
11 4N(p)V/ 2+2N(p)T

1123(q, i~, )

$4)

= 2[N(0)/N'(0)]'f'/I,
(A11)

2 -1= —) —) Gff(k, t'~„)Gff(k+q, i~ +i~, ) .
N Pk oaf sa

(A9)

(A10)

Using for this expression the abbreviated notation IIgg

Gf f Gf f the different Green's functions IIppi of the f
density (p = 2), conduction-electron density (p = 3), and
mixed density (p = 1) can be written as

II = G,f G,f + Gf,Gf, + Gff G„+G„Gff,
1113 = Gf f Gcf + Gf cGf f
1113 —Gcf Gcc + GccGf c

832 ——Gf fGff,
HZ3 —Gcf Gf c

1133 = GeeGcc

IIzg —I/T~ + 1/[2N(0) V ] —I/p —2N'(0),

1133 —2N(0)V /p Tlc/p—

I&11 —1/[8N (0)],

Ktz —I/(4[N(0)¹(0)] f ),
It23 ——&g./[8N(0)p2] .

(A12)

In the same approximation the results for the matrix el-

ements of the Kondo boson propagator are
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