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Using spin-wave and random-phase-approximation expressions for the dynamic spin susceptibili-

ty of a two-dimensional Cu02 lattice, we have calculated the NMR Knight shifts K and spin-

relaxation rates T& at various nuclear sites for the insulating and metallic phases. Our results sug-

gest that the observed differences in the NMR data taken on different sites are qualitatively con-
sistent with a model that has strongly hybridized Cu(3d)-O(2pa) orbitals. Within this picture, local
antiferromagnetic correlations produced by on-site Coulomb interactions enhance the large-
momentum part of the spin susceptibility. These correlations are then spatially filtered by the
hyperfine form factors leading to different local-site behavior.

I. INTRODUCTION

NMR measurements of the Knight shifts E and the
nuclear spin-relaxation rates T, provide important in-

sight into the character of the low-energy spin fluctua-
tions in the layered cuprates. ' With doping, which
moves the planar copper away from a forrnal chemical
valence of Cu +, these materials can be changed from in-
sulating to metallic and superconducting. Thus one can
explore the spin fluctuations of these materials over a re-
markably wide range of correlated electronic behavior.
Furthermore, by studying the temperature dependence
and anisotropy of E and T, ' on different sites (Cu, 0,
rare earth), one obtains local information. These materi-
als are quasi-two-dimensional, and much of the attention
has focused on the CuOz sheets which are a common
feature. In the insulating state the Cu + spins in the
Cu02 layers are coupled antiferromagnetically by a su-
perexchange interaction mediated by the intervening O.
The exchange coupling between the layers is weak, and
the neutron scattering data above the 3D Neel ordering
temperature have been well described in terms of a 2D
spin- —,

' Heisenberg antiferromagnet. ' '" In this case, the
NMR relaxation at the Cu site reflects the strong antifer-
romagnetic fluctuations and their exponential growth (for
a 2D system) as the temperature decreases (above T~). In
contrast, the oxygen nuclei, coupled via a transferred
hyperfine interaction to adjacent Cu spins, have a form
factor that suppresses the antiferromagnetic fluctuations,
and the 0 relaxation rate would be expected to decrease
as T is lowered. ' The long-range antiferromagnetic
correlations are observed to be rapidly suppressed by
doping with additional holes, and at a relatively small
concentration of excess holes the system exhibits a metal-
lic phase that becomes superconducting at suSciently
low temperatures. Above the superconducting transition
temperature, the response at the planar Cu sites reflects'

remanent 2D antiferromagnetic fluctuations, while the
response at the planar 0 sites, and at the interplanar Y
sites ' (in YBaCuO) appears free-electron-like in charac-
ter. The fact that below T, the relaxation rate T&

' ex-
hibits a dramatic decrease, associated with pairing, on
both the Cu and 0 sites, as well as data on the electronic
field gradient and Knight shift tensors, suggest that the
doped holes are formed from the strongly hybridized
Cu(3d ) 0(2p—tr ) orbitals. Within this picture the doped
metallic state can be viewed as a strongly interacting
quantum liquid, with a dynamic spin susceptibility that
reflects the local correlations produced by the Coulomb
interactions. The contrasting NMR behavior seen on the
Cu, 0, and Y sites is then found to arise from the
difFerent hyperfine form factors that act to spatially filter
the spin susceptibility.

Motivated by this rich variety of phenomena and the
increasing amount of high-quality experimental data, we
felt it would be useful to carry out detailed calculations of
K and T, using simple approximations for the dynamic
spin susceptibility and various hyperfine form factors.
The first approximation, based on a strong-coupling pic-
ture, uses the results of a spin-wave-like approximation to
a Heisenberg exchange model' ' for the dynamic struc-
ture factor of the Cu spins. In this model, as in Ref. 12,
the extra doped holes are assumed to act only to limit the
spin-spin correlation length and the Cu moments remain
the source of the hyperfine coupling. Our second ap-
proach involves a weak coupling RPA calculation of the
spin susceptibility y(q, co) for a 2D Hubbard model and
for a 2D Cu02 lattice. In the latter, three-band Hubbard,
model the susceptibility has Cu and 0 site indices as well
as (q, co) dependence. We examine various hyperfine
form factors involving coupling both to the Cu and to the
0 spins: (1) for the Cu nuclei, (a) an on site isotropic
hyperfine coupling and (b) a combined anisotropic on site
and an isotropic nearest-neighbor Cu transferred
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II. THE STRONG-COUPLING REGIME

As a model for the two-dimensional insulating system,
we take a spin- —, Heisenberg Hamiltonian with the
nearest-neighbor exchange

H=J$S; SJ.
(ij )

(2.1)

hyperfine interaction; (2) for 0 nuclei, (a) nearest-
neighbor isotropic transferred hyperfine coupling to Cu
spins and (b) nearest-neighbor isotropic transferred
hyperfine coupling to 0 spins; and (3) for Y nuclei,
nearest-neighbor isotropic transferred hyperfine coupling
to 0 spins. '

In Sec. II, we begin with the Heisenberg model. This is
clearly appropriate in the insulating limit that has been
treated by several authors, ' ' and we discuss the rela-
tionship of our results to theirs. In Sec. III, RPA calcula-
tions of E and T, ' are presented for the 2D Hubbard
model, and in Sec. IV similar results are presented for a
three-band Cu02 lattice model. Our goal is to under-
stand what these simple approximate models for y(q, co)

imply for the NMR response, and how the various form
factors act to filter y(q, co). In Sec. V we conclude with
some comparisons of the results obtained from these
different models.

(e~ —I )/(2e~ ) =Pc@/2

to the dynamic structure factor S(q, co):

S(q, coo)= —,
' J dt e '(Sq (t)Sq (0)), (2.4)

is independent of v=x, y, or z.
Several approximations have been proposed ' for11,13—15

the dynamic structure factor S(q, co) of this system at the
low temperatures of interest ( T ((J ). We make use here
of the form given by both a mean-field Schwinger boson
theory' and by a constrained spin-wave theory

n„(n„+1)
S(q, o)= 7 k+q

p9 Vk
Vk

taken at the electronic Zeeman frequency, cop. This is far
smaller than the characteristic frequency J of the spin dy-
namics, and in most cases can be taken as zero, but we
will invoke it where necessary as a low-frequency cutoff.
The time dependence of the spin operators is now
governed only by the isotropic Heisenberg Hamiltonian,
and the exact result for S(q, co} is therefore independent
of the Cartesian component of the spin operators used to
define it:

(s"(t)s (o)) =-,'(s'(t)s-(0))

Here J & 0 is the exchange strength and the sum is over
all nearest-neighbor pairs of spins on a square lattice.
This model has been shown to give excellent agreement
with the neutron scattering data. " In the following we
will set A'=kz =1. The spin relaxation rate for a nucleus
at site n (either the location of an electronic spin, or any
other atomic site in the lattice) is then given' ' by

X 5(cog+ q cog)

where the excitation energies are given by

co =A, (1—g y )'

y z
=

—,
'

( cosk„+cosk ) .

(2.5)

(2.6)

7 Imp„„(q, coo )=—gA (q)
1 qp COp

g A', (q)s(q, ~o),
q, v

(2.2)

where the relaxation mechanism is taken to be the
hyperfine interaction

H„= g W „"~S„"S,' . (2.3)

The sum on v in Eq. (2.2) is over components of the diag-
onal hyperfine tensor perpendicular to the applied mag-
netic field (assumed to be along a principal axis of that
tensor), and A (q) is the Fourier transform of the tensor
3 "J defined in Eq. (2.3). We note that the sum on q is
over the Brillouin zone of the full lattice. The suscepti-
bility y is by symmetry independent of the Cartesian in-
dex v, and is therefore just half of g+, defined as the
response to a rotating magnetic field, which will be used
in the calculations of later sections: 2y =y+ . The
imaginary part of the susceptibility, Imp (q, coo) is re-
lated [as indicated in Eq. (2.2)] by a factor

The factor k sets the excitation energy scale, or the spin-
wave velocity; at low temperatures it is approximately 2J.
The coeScient g, which determines the energy gap, is ex-
ponentially close to unity at low temperatures. In terms
of the static spin correlation length g it is given as

1 —g= I/(16( )=0.37(T/J) e ", (2.7)

where Z, =0.23 renormalizes the correlation length ex-
ponent. The Bose occupation numbers are defined as
usual: n &

= [exp(Pco&) —1] '. The expression (2.5)
reflects the contribution of Raman processes: a "spin
wave" is scattered from k to k+q with the same energy
(actually differing by the electronic Zeeman energy %coo).
%'e note that the second sum in the expressions for
S(q, co) given in Refs. 13 and 15, according to the
creation or destruction of two bosons in the nuclear
spin-relaxation process, vanishes at frequencies less than
twice the excitation gap, so we have not included that
sum here.

The preceding explicit calculation of T1 ' proceeds
most readily by first carrying out the integration over q,
which can be written in the form

2

d p 601

, ~'(p —k} &(yt, +y~)+ ~ &(yt, y~)—
(Ag} yq (2m)~

(2.8)
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The prefactor here is ~dcoz/dy&~ '; it arises from chang-
ing the argument of the 5-function in going from Eq. (2.5)
to (2.8}. In the Cu02 planes with which we are con-
cerned, the hyperfine components, for either the copper
or oxygen sites, are ' of the general form

g A~(q)=AD+A, y +A~y

tion rate (which, with suitable interpretation of the con-
stant A, is appropriate to the Cu nuclei), it is allowable
to replace yk by unity in all terms of the integrand in Eq.
(2.10) except for the rapidly varying denominator co&.

For the more general case,

A (q)=A0+A, yq+Aqyq,

we must replace A (I+cod/A, ) in Eq. (2.10) by

—k 7kV

4yi „~1+y2i,y2 +cosk„cosk cosp„cosp» .
(2.9)

Since the delta functions within the integral in Eq. (2.8)
exhibit the full fourfold rotational symmetry of the re-
ciprocal lattice, we can replace A (p —k) there by its
average over the four rotationally equivalent values of p,
which allows for the factorizations within the integrand:

and

(Ao —A, + A2)+( Ao+ A, + A2)(a)g/A, ),

E[(1—
yi, )'i ]=K(0)=n./2;

E[(1—
yi, )' ]=E(0)=m'/2

3m'' 2m- '

@[(1—y&)' ] coi,
X 1+ (2.10)

Since the integrand depends on k only through the com-
bination of yk, we can use the transformation

d k 8I(.'[(1—
yi, )' ]dyl, ,

and integrate over —1&yk~1. The logarithmic singu-
larity from yk near zero is cut off by the finite resonance
frequency. The contribution to T, from this region of
the integral is of order

(A /J)exp( J/T)ln (J/mo)—,

which is small compared to the contributions from the re-
gion yk near unity. Here the excitation energy is small
compared to the temperature, and the Bose factor
exp(Pcoi, ) —1 can be replaced by Pcs'. Moreover, the final
factor ( ]+co&/A, ) in Eq. (2.10) can be replaced by unity.
The corresponding dominant contribution to T, ' takes
the form

1 8A TK (0) 1& dy 8A Tg
3' J (1—il y ) 3mJ

(2.1 1}

where we have used Eq. (2.7) to write the answer in terms
of the spin-correlation length g.

In calculating this dominant contribution to the relaxa-

Then if we use the standard integral representation of the
delta function,

2m 5(x ) = f ds exp(ixs ),
the two-dimensional integration over p gives the sum of
products of two Bessel functions of integral order and ar-
gument s/2. The reinaining integration over s is a
Fourier transform of these functions, which is readily ex-
pressed in terms of complete elliptic integrals.

For example, with the simplest, constant, form factor
A (q)= A, we find

(see Appendix A). This simply leads to the replacement
of A in Eq. (2.11) by Ao —A, + A2 (so long as this does
not vanish, as it does by symmetry at the oxygen site; see
the following). The temperature dependence T g( T ) is to
be compared with similar results of other approxima-
tions: Using the spherical approximation for the static
electron spin correlations and an estimate of the relevant
dynamics from the second frequency moment of the dy-
namic susceptibility, a method equivalent to the Onsager
reaction field approach, Shastry' finds T, ' —Tg with
(=8e . Chakravarty and Orbach' use the dynamic
structure factor generated earlier' by a combination of
hydrodynamic, scaling, and renormalization analysis plus
a fit to a classical rotor inodel, to obtain T, ' —T ~

g
[with pc=0. 5e (1+Tla'J) ' and a'=0. 94]. This is

the result based on the nonlinear 0 model calculation of
Chakravarty, Halperin, and Nelson taken to two-loop
order. Thus the results for the nuclear relaxation rate of
the spherical model and the theory described in this sec-
tion differ from the more sophisticated scaling approach
only by slightly different numerical coefficients in the ex-
ponent and powers of T in the prefactor. The preceding
results also suggest that, at temperatures sufficiently high,
(J/T) e ln (J/mo) of order unity, we should expect
to see a field dependence of the nuclear relaxation rate
arising from spin fluctuations with energies roi,-J (where

yk=o and the joint density of states for Raman processes
of vanishing energy transfer is high because of "nested"
equal energy surfaces of the "spin waves"). Of course,
this specific form of the result holds only if the tempera-
ture necessary to see the behavior is still sufficiently small
for the low-temperature from of S(q, co) which we have
already used to remain valid.

For the oxygen nuclei, the hyperfine form factor due to
neighboring Cu atoms is

g A„(q}=A (1+yq),

which explicitly exhibits the vanishing of the hyperfine
field due to fluctuations at the antiferromagnetic wave
vector, as obviously must be the case by symmetry. It is
these fluctuations which determine the dominant behav-
ior of T, ' in Eq. (2.11). The extra factor of
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1+y ~1+yj,y, when inserted in the integrand of Eq.
(2.8), leads to the result

0.8— CU

1 8A 2T2K 2(0} 1+y2+~ —2 g 2T3

T 3~3J3 1 T2&sJ2 ( 1 2)2y2)1/2 2m J4

(2.12)

Hhr= g A I; S; + Q BI, S;+s .
a 5

(2.13)

The lower limit here has been set by the requirement
/3lco„~ 1, where the Bose factor exp(/3coI, ) —1 =/3coI, ', contri-
butions from smaller y& are reduced effectively by factors
of order e coming from the occupation number fac-
tor nk which requires the presence of a spin wave of the
corresponding energy for the Raman scattering process
to take place. Just as for the Cu nuclei, there is also a

field-dependent contribution from the region yk=0, of
the same functional form as predicted above. Also as be-
fore, the behavior of Eq. (2.12) can be compared with the
corresponding result in Ref. 12, where Shastry finds

T, '-T.
Returning to the Cu site, we examine the Mila-Rice '

hyperfine Hamiltonian for Cu. In order to explain the
anisotropies observed in the Knight shift tensor and the
relaxation rate for Cu in YBa2Cu307, Mila and Rice pro-
posed the following Hamiltonian:
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FIG. 1. Nuclear relaxation rate T~ ', scaled by its value at
T/J=0. 6, for the Cu and 0 sites in the insulating state.

features of the experimentally observed T, ' Cu relaxa-
tion. However, the 0 relaxation continues to vary as T .
In addition, the experimental cut-off length l seems to be
only a few lattice spacings, which is much smaller than
the value we used.

The Knight shifts at both the Cu and 0 nuclei are also
readily given within the theoretical framework being used
here. By definition we have

'2

F,b(q) = 4by +—1 —a" 1+a
2

(2.14a)

Here 3 is an anisotropic on-site hyperfine coupling and
B is an anisotropic transferred hyperfine coupling to
nearest-neighbor Cu + spins. Normalizing with respect
to the largest coupling

~
A "~, the hyperftne form factors

for fields in the a-b plane and parallel to the c axis are

1 7 E.'

A, (q=O)y„(q=O),
Vn

(2.16)

in units of y, /y„, where y, and y„are the electronic and

appropriate (y„=y„; depends on the nucleus but we will

drop the i) nuclear gyromagnetic ratios, respectively, and
the subscript i refers to either the Cu or the 0 nuclei,

F,(q)=(a""+4by )2, (2.14b)

with a""=A" /~ A "~, b =B/~ A "~, and yq= —,'(cosq„
+cosq~ ). With the values of a""=0.02 and b =0.18 pro-
posed by Mila and Rice for the Cu02 lattice we find the
ratio (T, ),b/(TI '), to be approximately 3.5 at low
temperatures.

Figure 1 shows numerical results for T&
' for the insu-

lating case. Here the solid curve is for an on-site Cu form
factor A (q) = 1 and the dashed line is for an 0 nearest-
neighbor Cu form factor A (1+y ). If the effect of addi-
tional doped holes were simply to cut off the low-
temperature divergence of g at some length /, one could
write
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Using (,Ir in Eq. (2.7) to determine g, results for T, with
l = 100 are shown in Fig. 2. In the region around
T-0.25, the solid line exhibits some of the qualitative

FIG. 2. Nuclear relaxation rate T, ', scaled by its value at
T/J=0. 6, for the Cu and 0 sites in the strong-coupling regime
vvith a finite cut off (I = 100) for the correlation length.
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with their individual hyperfine coupling factors
A;(q=0). The low temperature limit of the susceptibil-

ity is given' ' within spin-wave calculations as
g„(q=O) -C/12J, with C-0.5.

III. THE 2D HUBBARD MODEL

In order to treat doped systems with metallic behavior,
we now consider the 2D Hubbard model on a square lat-
tice,

H= t g—(c; c, +c, c, )+Up n;&n, &
.

(ij &a l

(3.1)

Here t is the one-electron nearest-neighbor overlap ma-
trix element, corresponding to a bandwidth S'=St; and
U is the on-site Coulomb interaction. In the following,
we measure energies in units of t (or, when specified, in
units of the bandwidth W) and continue to set fi=ks =1.

The dynamic susceptibility y(q, co) which determines K
and T, ', can be calculated from the finite-temperature
Green's function

zero for a half-filled band. Thus, for U=0 we have

K =— AP f de N(e)f(e)[1 —f(e)]
2 y co

(3.8)

FIG. 3. Density of states N(c) for the noninteracting 2D
Hubbard model.

y(q, v') = ( T,[M (r)M (0)]),
where

1
Mq ~ Q c p+qtcpN

(3.2)
and

(3.3)
=m. A f deN (e)f(e)[1—f(e)],

oo
(3.9)

and T, is the usual v-ordering operator. Analytic con-
tinuation of the Matsubara Fourier transform
y(q, im ~co+iO+) yields y(q, co). For a local contact
hyperfine coupling A I; S;, the Knight shift K is given by

1 yeK =— A y(q~ 0, co =0)2. y .

and T, ' is given by

? I gqco0
1 N co0

(3.4)

(3.5)

N(E) =—g 5(E—E„)= K[(1—(e/4) )' ],1 1

2m-'
(3.6)

with K the complete elliptic integral. N(e) is plotted in
Fig. 3, and shows the well-known logarithmic Van Hove
singularity at v=0. For a noninteracting system with
U =0, the magnetic susceptibility takes the form

f(ep+q) —f(Ep)
x0(q, ~)=—& (3.7)

with

f(e~) =1/(e ' +1)
the Fermi function and p the chemical potential, which is

As before, co0 is the electronic Zeeman frequency, which
can be set to zero on the scale of the energies of interest.

On a 2D square lattice the band energy is

ei, = —2(cosk„+cosk» ),
and the single-particle density of states is

with N(e) given by Eq. (3.6). At low temperatures

K =
—,'(y, /y„) AN(ju)

and

T, '=n A N (p)T,
so that(? i?K ) ', meas~r~d in ~~~ts of 4~y„/y
ty:

(T, TK ) '=1 . (3.10)

This is the well-known Korringa relation for a free elec-
tron gas where T, ' varies linearly with temperature. At
higher temperatures the full integrals in Eqs. (3.8) and
(3.9) give the temperature dependence for K, T, ', and

(T, TK )
' as shown by the dashed curves in Fig.

4(a) —(c) for a hole filling of n», =1.135 per site. The Van
Hove singularity in N(e) at e=O causes (T, T) ' and K
to exhibit finite-temperature peaks for fillings away from
n~ =1.

For the interacting system, we approximate g(q, co) us-

ing the RPA expression,

x0(q, ~)
x(q ~)=

1 —Ug0(q, co)
(3.11)

This approximation is known to give an unphysical phase
transition for the 2D Hubbard model when
Uy0(q', 0)= 1. In Fig. 5, we show the phase diagram ob-
tained within the RPA (Ref. 26) for U/&=0. 25. We as-
sume above a hole filling of n&=1. 135. This choice
places the model in a paramagnetic metallic regime with
significant antiferromagnetic Auctuations for T~0.
Note that our treatment is necessarily phenomenological:
An RPA analysis is not suScient to reproduce the de-



BULUT, HONE, SCALAPINO, AND BICKERS 41

tailed functional dependences of K and T, ' on U and the
band filling. However, if U and nh are chosen appropri-
ately, such an analysis does incorporate the essential
features of large-q spin fluctuations.

Substituting the RPA expression (3.11) for y(q, co) in

Eqs. (3.4) and (3.5), we have evaluated K and T, ' for an
on-site contact hyperfine coupling. The results for
K, T, ', and ( T, TK )

' are shown as the solid curves in

Figs. 4(a) —4(c). For the parameters chosen, the RPA
Knight shift is enhanced by approximately a Stoner fac-
tor of 2 over the result for U=O. Because of the impor-
tant influence of strong antiferromagnetic fluctuations on

T, ', the latter is enhanced much more —over a factor of
10—at low temperatures. While at low temperatures
T, ' eventually tends to zero linearly (since the RPA
ground state is paramagnetic), it deviates from linear be-
havior at higher temperatures, becoming nearly flat.
Note that the Korringa ratio is also enhanced by the
large-q fluctuations in y(q, co), which enter T, ', but not

As we have seen, for an on-site hyperfine coupling,
large-momentum spin fluctuations enhance T, '. More
generally, for a nonlocal hyperfine interaction, a form
factor enters the calculation of T, ' and filters the spin

I

U/W=0. 25
~h=1.135

I———Cu U=O
Cu RPA

1.0 I

U/W=0. 25
~h=1. 135

(b)

0.8

0.6

———Cu U=O
Cu RPA

KW

0.4

(a)

0.2

0 I

0.000 0.005 0.010 0.015 0.020 0.025
T W

0.0
0.000 0.005 0.010 0.015 0.020

T/W

0.025

10
U/W=0. 25
nh=1. 135

8

———Cu U=O
Cu RPA

(T,TK~)-&

2

0
0.000 0.005 0.010 0.015 0.020

T/W

0.025

FIG. 4. Cu NMR for isotropic on-site hyperfine coupling in the Hubbard model. (a) Knight shift K, in units of z(y, /y„)A. (b)

Nuclear relaxation rate T& ', in units of md . (c) Korringa ratio (Tl TE') ', in units of 4my'„/y', . Energies are measured in units of
the bandwidth 8'=St. The hole filling is chosen to place the system on the paramagnetic edge of the RPA instability for T~O. Re-
sults are shown for the noninteracting system and for U/8'=0. 25 within RPA.
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0.25

0.15—
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(T] TK ) /(T) TK )

increases sharply with decreasing temperature on the Cu
sites, while remaining nearly temperature-independent on
the 0 sites. An even larger enhancement for the Cu sites
could be obtained by positioning nz closer to the RPA
magnetic phase boundary; as mentioned previously, this
sensitivity to filling is a largely unphysical consequence of
the RPA, and a more precise estimate of the Korringa
enhancement is not possible within the current analysis.
There have also been attempts to fit T, ' experimental
data for doped YBazCu307 to a T' curve, following the
work of Moriya and Ueda in 3D. However, in 2D the

FIG. 5. The phase diagram of the 2D Hubbard model within

RPA (Ref. 26) for U/W=0. 25. The three phases are as fol-

lows: P= paramagnetic, C=commensurate, and IC= incom-

mensurate spin-density wave.

1.0 I

U/W=0. 25
nh=1. 135

fluctuations sampled by nuclei at different sites. For ex-

ample, as discussed in Sec. II, if the planar 0 nuclear spin
has an isotropic hyperfine coupling to the two nearest-
neighbor Cu spins

T) 'W

0.8

0.6

———0 U=O
0 RPA

H =HI (S+S )

then the relaxation rate for 0 nuclei is

(3.12)
0.4

T, TAzl. 1 F ( )
Imp(q, co)

F2(q)=4cos (q /2) .
(3.13)

Here a =x or y according to whether the 0 nuclei are on
Cu—Cu bonds with x or y orientation. By symmetry,
both choices give the same relaxation rate.

In this case the antiferromagnetic q'=(n, m) fluctua-
tions of the Cu moment cancel at the 0 site. The results
for T, ' and (T, TK )

' are plotted in Figs. 6(a)—6(b).
Note the much smaller enhancement of the oxygen relax-
ation compared to that of Cu. While the temperature
dependence of T, ' on the 0 site is clearly not completely
Korringa-like, it is nearly linear with an enhanced slope
over a wide temperature range. In Sec. IV, we will exam-
ine the scenario in which the oxygen form factor arises
from coupling to nearest-neighbor 0 (rather than Cu)
sites; in this case, the 0 relaxation clearly follows a Kor-
ringa behavior over the relevant temperature region.

In order to contrast the results for Cu and 0 NMR, it
is useful to replot the relaxation rate and Korringa ratio
in scaled forms. In Fig. 7(a), the Cu and 0 relaxation
rates are scaled by their respective values at
T/8'=0. 025. On this plot, it is possible to find a tem-
perature window (which might span the experimental
range from T, up to room temperature) within which the
0 relaxation is essentially Korringa-like, while the Cu re-
laxation is nonlinear. Within this window, as seen in Fig.
7(b), the dirnensionless enhancement of the Korringa ra-
tio

0.2

0.0
0.000 0.005 0.010 0.015 0.020

T W

0.025

I

U/W=0. 25
nh=1. 135

'

(b)

2.0

1.5

(T,TK2)-~

———0 U=O
0 RPA

1.0

05~ M

a.o
0.000 0.005 0.010 0.015

T/W

0.020 0.025

FIG. 6. 0 NMR for an isotropic transferred hyperfine cou-

pling to nearest-neighbor Cu spins in the Hubbard model. (a)
Nuclear relaxation rate T, ', in units of m A . (b) Korringa ratio
(T, TK ) ', in units of 4m.y„/y, .
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phase space for antiferromagnetic fluctuations is reduced,
giving a temperature dependence of T

~

' = T( T T—z )

near T=T~, rather than the Moriya-Ueda
T( T T—

N )
' form. Thus for T~ ~0, the low-

temperature limit of the 2D result for T, ' approaches a
constant rather than varying as T'

We conclude this section by considering the Mila-Rice
transferred hyperfine coupling in the Hubbard model.
Using the form factors given in Eq. (2.13), (T, ' ),b and

(T, ), for Cu sites are plotted in Fig. 8. Both functions
resemble the result for an isotropic hyperfine coupling in
Fig. 4. The anisotropy ratio (T, ),b/(T, ), is nearly
temperature independent and approximately equal to 3.8
throughout the range shown.

T) 'W

1.0

0.8

0.4

0,2

I

U/W=0. 25
nh=1. 1 35

I I I

Cu RPA (H [[ ab)
———Cu RPA (H ii c)

1.2
U/W=O. 25
ng=1. 135

(a)

0.0
0.000 0.005 0.010 0.015 0.020

T/W

0.025

Ti '(0.025)

1.0

0.8

0.6

FIG. 8. Cu NMR for the anisotropic Mila-Rice relaxation

mechanism in the Hubbard model. Nuclear relaxation rate
T l

', in units of n.( A ") . The assumed values of
a""=A""/~ A*'~ and b =B/~ A*'~ are 4.7/222. 7=0.02 and

40.7/227. 7 =0.18, respectively.

0.4 IV. THE 2D CuO& LATTICE

0.2

0.0
0.000 0.005 0.010 0.01 5 0.020 0.025

T W

In this section, we consider a more detailed model for
the CuOz layers in YBazCu307, . We assume that holes
occupy strongly hybridized

Cu(3d ~ &)
—O(2po )

10

8

U/W=0. 25
nh=1. 135

orbitals and that the Coulomb repulsion between 3d holes
is the dominant many-body effect. The unit cell (Fig. 9)
has a three-orbital basis. The resulting Hamiltonian
takes the form

0—pXh =H„„+Hh, +Hc,„)
—p

(T~TK~) '

(T)TK')p '

6

Cu———0

Hh, = t g [d;—(a; +a; „)+H.c. ]

t g [d; (b; +—b; „)+H.c.], (4.1)

2 Hc,„,= U g n;dtn;d),

0.000 0.005 0.010 0.015 0.020 0.025
T/W

FIG. 7. Comparisons with Korringa behavior for NMR in
the Hubbard model. (a) Nuclear relaxation rate T, ', scaled by
its value at T/W=0. 025. For strict Korringa behavior over
this temperature interval, the plot would be a straight line. (b)
Enhancement of the Korringa ratio (Tl TK ) l(Tl TK )o

'

within RPA.

Nb = y(n;d +N;, +n;b ),

where d; creates a Cu(3d) hole; a; and b; create
O(2po ) holes; and n;~d, b~ are the corresponding number
operators. Energies are measured relative to the Cu(3d)
level cd =O. For simplicity, the orbital phases are chosen
to give all hopping integrals the same sign.

Writing

1 ik R,
d; =,—pe 'd„
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FIG. 9. Schematic three-site unit cell for the Cu02 lattice.

M';d =n;d$ —
n;d$ (4.5b)

and y„and y, are the nuclear and electronic gyromag-
netic ratios. Summing the right-hand side of Eq. (4.5a)
on i and dividing by the number of unit cells gives a sim-
p1e expression in terms of partial susceptibilities:

K„=—,'(y, /y„) Ag, (q —+O, co=0),

-'(M' )id

J

= ((y /y„) A f T g [Mjq(r)+M [ (7)
0

+M(~(r(]M,*~(0(), (4.5a(

where

with N the number of unit cells, and likewise for the oxy-
gen orbitals, we find that the Hamiltonian reduces to a
form convenient for calculations:

g(q ice ) = g g„,(q ice ),
r=d, a, b

y„„(q,i~ ) =f dr e™~
—,
' ( T„[Mq„(~)M' „(0)]),

0

(4.6)

I h ~site +Hhop +HCoul I Nh

H„„=E g (& g~ct g~ +b g~bg~ )

ka

Hh, = —g t„(k)(d& az +h. c. )

ko.

—pe(k)(dq bq +h. c. ),
ka.

where

t =2t cos(k„/2),

tE =2t cos(Ic /2) .

(4.2a)

(4.2b)

Mq„(r) = —g e 'M;„(r) .
N

In the absence of interactions ( U=0), the partial suscep-
tibilities g„„may be calculated exactly by transforming
to the energy-band basis:

y„„(q,ia) ) =— g a„"„(k+q)a„"„(k)
k; vv'=0, +

f(Eg+q) —f(Eg )
X , . (4.7)—(Eq+q Ek )

The transformation factors a"„„(k)are written out explic-
itly in Appendix A. Note that y, „contains both intra-
band and interband contributions. Note also that since

In the absence of Coulomb interactions, the spectrum
consists of bonding and antibonding Cu(3d) —O(2pcr)
bands

a„"„.(k) =a„",(k),
it follows immediately that

(4.8a)

E„+=—,(e+[(—,(e) +—t„(k)+t (k) j' (4.3a)
g„„(q,ice )=g„(q,ice ) . (4.8b)

and a nonbonding oxygen band

Ek=& (4.3b)

The hyperfine Hamiltonian which determines the
Knight shift measured at a particular nuclear site takes
the general form

In the presence of interactions, the Knight shifts are
modified by the replacement y„„~y,.„. Within the
random-phase approximation, the partial susceptibilities
assume a particularly simple form when only an on-site
Cu interaction is present. The neglect of on-site 0 and
intersite Cu-0 interactions may be called questionable,
but it provides a plausible starting point for the descrip-
tion of magnetic phenomena. In this case,

Hht = AI; QS;+s „, .

5
(4.4) —X ++0 X'U" —

Xdd
(4.9)

where A is a hyperfine coupling constant, I,' is the nu-
clear spin, and the S,+&, are electronic spins at nearby
sites of type r (r =d, a, b). In the simplest case, the cou-
pling is on-site, i.e., 5=0. The Knight shift is propor-
tional to the electronic spin induced on site r by a mag-
netic field H. For example, for on-site coupling to the
Cu(3d ) spin,

The arguments of all functions are understood to be
(q, i~ ).

The nuclear spin-relaxation rates for the Cu02 lattice
are formally similar to those for the 2D Hubbard lattice.
Assuming an isotropic on-site hyperfine coupling A be-
tween the electronic and nuclear spins of Cu, the Cu re-
laxation rate is just
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(T, ')c„=TA lim—
~-o X

Imydd(q, ca)
(4.10)

TA l. ~ ™X
im „q

q
CO

Imp, b(q, ca)
+F.b(q) (4.1 1)

To reach this form, we have combined contributions pro-
portional to g&& and g&, with the first and second terms
using symmetry considerations.

Assuming that 0 relaxation occurs by an isotropic
transferred hyperfine coupling to the four neighboring 0
sites [e.g. , through O(2s ) admixture in the ground state]
and neglecting on-site terms [see Fig. 10(a)], we find

2

qx +~y
2

0x qy +cosF„(q)=4 cos

(4.12a)
F,b(q) =0 .

Finally, for relaxation of Y nuclei by neighboring 0 spins
[four each in the layers above and below —see Fig. 10(b)],

F„(q)=(2)8 cos (q„/2),

F,&(q) =(2)8 cos(q„/2)cos(q /2) .
(4.12b)

The partial susceptibility gdd replaces the Hubbard sus-

ceptibility in Eq. (3.5). Likewise ydd replaces y in Eq.
(3.13), which applies (with different form factors Fdd) for
(a) 0 nuclear relaxation by neighboring Cu spins; and (b)
Cu nuclear relaxation by on-site and neighboring Cu
spins (the Mila-Rice scenario).

Relaxation mechanisms based on 0 electronic spins
may also be studied. In this case, a general expression for
T&, assuming an isotropic coupling, is

~ 0 ~

FIG. 10. Lattice sites involved in (a) transferred hyperfine

coupling of 0 nuclei to nearest-neighbor 0 sites and (b)
transferred hyperfine coupling of Y nuclei to nearest-neighbor
0 sites. Note that in the second case the relevant 0 sites lie in

layers above and below the Y.

In this last case, it is assumed that spins in adjacent Cu02
layers fluctuate independently, leading to the multiplica-
tive factor of 2 in Eq. (4.12b).

The various form factor choices for relaxation by Cu
and 0 spins are summarized in Table I. Note that if both
types of relaxation are considered simultaneously, addi-
tional terms proportional to gd, and gd& enter the expres-
sions for T, ' already given.

Results for the Cu Knight shift, relaxation rate, and
Korringa ratio (T, TK ) ', assuming an isotropic on-site
relaxation process, are plotted in Figs. 11(a)—11(c). The
assumed parameters are c.=0, n&

= 1.165, and
U/W=O. 7. As for the Hubbard model, the hole filling is
chosen to place the system marginally on the paramag-
netic side of the RPA phase boundary. Phenomenologi-
cally, this introduces strong antiferromagnetic fluctua-
tions, while eliminating the finite-temperature phase tran-
sition predicted within RPA for fillings closer to unity. In
order to emphasize similarities with the Hubbard results,
it is convenient to measure energies (and temperatures) in

TABLE I. Form factors for hyperfine coupling Hamiltonians in the Cu02 lattice. The first column
lists the Nuclei where relaxation is to be measured; the second lists the source of relaxation (NN =
nearest-neighbor); the third lists the symmetry of the hyperfine Hamiltonian under spin rotations; and
the fourth lists the nonzero form factors.

Nucleus

CU

Coupled to

on-site Cu(3d)
on-site Cu(3d)

Spin symmetry

isotropic
Mila-Rice

Hilda-b

Hiic

Form factor

Fdd =1

Fdd =[—(1 a"") 4byq] + —(1+a"")
F„„=( +4by )

0 NN CU(3d) isotropic Fdd =4cos (q„/2)

NN O(2p) isotropic F„=4 cos
qx qy +cos

qx +qy
2

NN O(2p) isotropic
F„cos'(q„ /2 )

F,&
= 16cos(q~ /2)cos( qy /2)
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units of the bandwidth W=2v'2t of the lowest Cu-0
band (note that for equal values of t, the Hubbard band-
width is larger by a factor of 2&2). As before, K and
T, ' may be expressed in dimensionless units by scaling
with 8'.

For the parameters chosen, the Knight shift exhibits
an RPA enhancement of approximately 2 at low tempera-
tures. As in the case of the Hubbard model, antiferro-
magnetic fluctuations enhance T

&

'
by more than an or-

der of magnitude in the same temperature range. Fur-
ther, T&

' deviates strongly from Korringa behavior at

intermediate temperatures, becoming nearly flat over a
significant temperature range. The presence of large-q
fluctuations is also evident in the Korringa ratio, which is
of order 3—4 at low temperatures. Note that due to band
structure effects, the Korringa ratio of the noninteracting
system is actually smaller than unity.

In Figs. 12(a) and 12(b), corresponding results are plot-
ted for the oxygen relaxation rate and the Korringa ratio,
assuming isotropic relaxation due to coupling with
nearest-neighbor Cu spins. In this case, the form factor
which enters T, ' has two important effects: (a) while the

4

z/W=O
U/W=0. 7
nh=1. 165

———Cu U=O
Cu RPA

0.5

0.4

8/W=O
U/W=0. 7
nh=1. 165

———Cu U=O
Cu RPA

KW T) 'W

0.3

2 0.2

0.1

0
0.000 0.005 0.010 0.015 0.020 0.025

W

0.0
0.000 0.005 0.010 0.015

T W

0.020 0.025

c/W=O
U/W=0. 7
nh=1. 165

(TTK) '

0
0.000 0.005 0.010 0.015

T W

0.020 0.025

FIG. 11. Cu NMR for isotropic on-site hyperfine coupling in the CuO& model. (a) Knight shift K, in units of —,'(y, /y„) A. (b) Nu-

clear relaxation rate T, ', in units of m. A '. (c) Korringa ratio ( T, TK ) ', in units of 4my„/y, . Energies are measured in units of the
width m =2&2t of the lower (Ez ) Cu-0 band. The Cu(3d) and O(2pa) orbitals are assumed degenerate. The hole filling is chosen
to place the system on the paramagnetic edge of the RPA instability for T~O. Results are shown for the noninteracting system and
for U/8'=0. 7 within RPA.
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Knight shift enhancement is the same as for Cu, T
&

is
—1only enhanced about half as much as before; and (b) T,

remains Korringa-like over a significantly larger tempera-
ture range.

As for the Hubbard model, it is useful to compare the
temperature dependences of the Cu and 0 results direct-
ly. In Fig. 13(a), the RPA relaxation rates are replotted
after scaling by their values at T/W= 0.02 5 (which cor-
responds to room temperature for a bandwidth of 1 eV).
As before, it is possible to 6nd a window, corresponding
to the range of experimentally accessible temperatures,
throughout which the 0 relaxation is essentially
Korringa-like, while the Cu relaxation exhibits strong de-
viations from linearity. Finally, the RPA enhancement

of the Korringa ratio

(TiTK ) '/(TiTK )0 ',
which serves as a dimensionless measure of the strength
of large-q fluctuations, is plotted in Fig. 13(b). This
enhancement is of order 1.5 for the 0 sites, but more
than twice as large for the Cu.

Results for T&
' within the more complex Mila-Rice

scenario are shown in Fig. 14. The parameters assumed
for this plot are as in Figs. 11-13. The coupling constant
ratios a' and b are as in Fig. 8. As before, the ratio
(T& ),b'/(T, ), ' is weakly temperature dependent and of
order 4.2 throughout the range shown.
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'
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T/W

0.025

FIG. 12. 0 NMR for isotropic transferred hyper5ne cou-
pling to nearest-neighbor Cu spins in the CuO~ model. (a) Nu-
clear relaxation rate T, ', in units of n. A . (b) Korringa ratio
(T, TK') ', in units of 4my„/y', .

0
0.000 0.005 0.010 0.015 0.020 0.025

T w

FIG. 13. Comparisons with Korringa behavior for NMR in
the CuO& model. (a) Nuclear relaxation rate T& ', scaled by its
value at T/8'=0. 025. For strict Korringa behavior, the plot
would be a straight line. (b) RPA enhancement of the Korringa
ratio (Tl TK ) l(T~ TK )p, assuming an isotropic Cu(3d) re-
laxation mechanism for both Cu and 0 sites, as in Figs. 11 and
12.
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FIG. 14. Cu NMR for the anisotropic Mila-Rice relaxation

mechanism. Nuclear relaxation rate T, ', in units of ~(A )'.
The assumed values of a""=A'"/~A "~ and b=8 ~/A "~ are

4.7/227. 7 =0.02 and 40.7/227. 7=0.18 respectively.
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FIG. 15. 0 NMR for isotropic transferred hyperfine cou-

pling to nearest-neighbor 0 spins in the Cu02 model. Nuclear

relaxation rate T, ', in units of m. A .

In the discussion up to this point, we have assumed

hyperfine couplings to Cu(3d) holes. If the dominant

coupling at 0 or Y is nuclei is instead to O(2pcr) holes,
the RPA enhancements of T&

' which follow within our

model are much less pronounced. In Fig. 15 the oxygen
relaxation rate is plotted, assuming an isotropic coupling
to 2p holes on nearest-neighbor 0 sites. In this case, K
and T, ' are enhanced by roughly equal factors at low

temperatures, and the resulting Korringa ratio is less

than unity; further, the relaxation rate remains

FIG. 16. Y NMR for isotropic transferred hyperfine cou-

pling to nearest-neighbor 0 spins in the CuO& model. Nuclear

relaxation rate T, ', in units of m A '.

Korringa-like over a larger temperature range. Similar
behavior is exhibited for Y NMR (Fig. 16} if the dom-

inant coupling is to the eight nearest-neighbor 0 sites.

V. CONCLUSIONS

The nature of the hole fluid in the layered cuprates
remains an important open question. Here we have ana-
lyzed two limiting approximations, both based upon a hy-
bridized Cu(31)-O(2po } band with on-site Cu Coulomb
interactions. The first proceeds from the insulating state
in which the spin dynamics is described by a spin- —,

Heisenberg model. Such a state is known to arise as an
SDW or Mott-insulator limit of a half-filled Hubbard
model, or possibly as a charge-transfer-insulator limit of
the Cu02 model. The e8'ect of additional hole doping
was modeled by cutting o6' the spin-spin correlation
length' at a finite value I at low temperatures.

Using the expression for the dynamic spin structure
factor obtained from a Schwinger boson (or a constrained
spin-wave) approximation, we evaluated T, ' and K. As-

suming an on-site hyperfine coupling, we found for the
Cu sites that T, ' =T (, where g=(J/T)e" . For ox-

ygen sites, we used a form factor that filters the large-q
antiferromagnetic spin fluctuations and obtained a tern-

perature dependence T, ' = T . From the dependence of
T) ' on the electronic Zeeman frequency, which enters
into our calculations as a cut off, we predicted that at
high temperatures one will observe a magnetic field

dependence for the relaxation rates. When holes are add-
ed and g is cut off by I, the relaxation rate at the Cu site
can exhibit a weak maximum at lower temperatures,
while the relaxation rate of the 0 site continues to fall as
T . However, this requires a large value for l. Clearly
the addition of doped holes does more to the spin dynam-
ics than simply providing a limiting value for g. As sug-

gested by various calculations, ' ' one expects that the
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added holes will lead to some type of quasi-particle spec-
tral weight. Presumably the spin susceptibility associated
with this part of the spectral weight gives rise to the
Korringa-like behavior of T, observed on the 0 site and
also modifies T

&

' on the Cu sites.
The second approach we have discussed uses the RPA

to model the dynamic spin susceptibility of a 2D Hub-
bard model and a 2D CuOz lattice. Again, the hyperfine
form factors act to suppress the antiferromagnetic spin
fluctuations at 0 sites, while leaving them at Cu sites. In
addition, in the Cu02 model the possibility of hyperfine

couplings involving spins on the 0 sites was considered.
The form factors lead to an enhancement of T, ' on

the Cu sites relative to the 0 sites. However, the 0 form
factor which couples to the Cu sites in the analysis based
on a 2D Hubbard model gives rise to a significant non-
linear T dependence of T& on the 0 site, which is not
observed. This could simply be a consequence of the
RPA, which leads to a spin fluctuation peak in y(q)
significantly displaced frotn (m, n) Alt.er.natively, in the
Cu02 model with an on-site Cu Coulomb interaction, we

find that if the 0 hyperfine coupling involves the four
nearest-neighbor oxygens, a linear T dependence is ob-
tained for T, . Similar results are found for the Y site.
In both these models, the enhancement over the simple
Korringa value of T, ' for Cu, at temperatures
T-0.018', is of order what is observed.

Thus the qualitative picture in which antiferromagnet-
ic fluctuations enhance the relaxation on the Cu site but
are suppressed by the hyperfine form factors on the 0
and Y sites is clearly seen in both the limiting approxima-
tions we have studied. However, neither one provides a
quantitative description of the doped materials.

Further insight is needed to describe the metallic sys-
tems. Among various features which remain to be
resolved is the observed tracking of the T, ' rates of the
Cu and 0 sites, which appears to set in at a characteristic
temperature above the superconducting transition and
continue through T, to low temperatures. Can this arise
if the Cu hyperfine form factor supports the q'=(n, m).
Cu antiferromagnetic fluctuations while the 0 form fac-
tor suppresses the q'=(m, m ) antiferromagnetic contribu-
tions? In particular, will the ratio of these two rates
remain fixed through T, and down to low temperatures?
Finally, it is clearly important to understand the behavior
in the superconducting state, particularly as it provides
direct information on the symmetry of the superconduct-
ing order parameter.

Recently we received a preprint from F. Mila and T.
M. Rice, in which they have explored some of these
physical ideas within the context of an anisotropic
Heisenberg model.
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APPENDIX A

I, (k)= —ye[1 —(coq/A, ) ]K[(1—yq)' ],
I2(k)=[1+(coq/1, ) ][D,(k)IC[(1 —yg)' ]

—D2(k)&[(1—yf )'"l
l

with

(A2)

D, (k) =
—,'[1+y2q(1+4yq) —2 cosk„cosk ],

D~(k) =y2„—cosk„cosky .
(A3)

Here K and E are the complete elliptic integrals of the
first and second kinds.

APPENDIX B

The transformation factors for computing partial sus-
ceptibilities of the noninteracting Cu02 lattice [Eq. (4.6)]
follow from a Green's function analysis. It is convenient
to define the quantities

t„(k)=2t cos(k„/2),

t (k)=2t cos(k /2),

R (k) = [(—,'s)'+ t,'(k)+ t,'(k)]

(B1)

The diagonal factors e„„are squares of overlap matrix
elements and may be interpreted as occupation probabili-
ties; i.e., a"„„(k) is the probability that an electron with
wave vector k and site index r lies in the v-th band. This
implies that

For the more general form factor A (q) = AQ+ A &y

+ A 2y& the nuclear relaxation rate T, ' within the
Heisenberg model is given by

n~(nq+1)
T, ' = g [AQI0(k)+ A, I, (k)

3~g'x „~glycol
+ AqI~(k)], (Al)

where

I0(k) = [1+(cog/l) ]K[(1—y~)' ],

We want especially to thank D. J. Durand, P. C. Ham-
mel, C. P. Slichter, M. Takigawa, R. E. Walstedt, and
W. W. Warren for discussions of their data and ideas.
We also want to acknowledge helpful discussions with F.

g a„"„(k)= 1 .

For the Cu sites,

(B2)
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add(k)= —,'[1+-—,'eR (k)],
add=0 .0

(B3)

=a =a =0
da ad db bd (B5)

band has no overlap with Cu orbitals, it follows immedi-
ately that

(There is clearly no probability for a Cu hole to be in the
nonbonding oxygen band. ) For the type-a oxygen sites, It may be verified that

t2(k)R (k)
a,—,(k) =+—,

'

E——ck

a„(k)= l —[a,+,(k )+a,,(k) ] .
(B4)

ad, (k) =a,—d(k) = + t (k)R (k) . (B6)

As before, expressions for ad& and a&d follow from (B6)
by letting a ~b and x ~y. Finally, the off-diagonal fac-
tors involving oxygen orbitals are

For the type-b oxygen sites, the expressions are the same
as in Eq. (B4), but with the replacements a~i and
x —+y.

The off-diagonal factors a„„are products of distinct
overlap matrix elements. Since the nonbonding oxygen

t„(k)t, (k)R (k)
a,—„(k)=as, (k) =+—,

'

6

a,b(k)=ab, (k)= —[a b(k)+a, g(k)] .
(B7)
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