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The origin of the dramatic shifts observed in the temperature dependence of positron-annihilation
characteristics (particularly lifetime and Doppler-broadening line shape) near T, in the cuprates is
not presently clear. Both intrinsic and extrinsic (i.e., defect-related) mechanisms have been pro-
posed. To help clarify whether Cooper pairing is responsible for these shifts, we present an approxi-
mate formulation of the positron characteristics in a BCS superconductor. Relations are derived
for the zeroth- and first-order terms in the ladder summation for the two-photon momentum densi-

ty, with electron propagators represented in the Nambu-Gorkov form. The momentum densities in
the normal and superconducting states differ appreciably only within the pairing shell centered at
pF. Numerical calculations are performed for two- and three-dimensional models. The differences
increase with increasing 5/p but are relatively small in the first-order calculation. We also estimate
an upper bound to the effect of BCS pairing on the positron characteristics, including terms to all

orders in the electron-positron interaction. Based on comparisons of our model calculations with

experiment, it seems unlikely that BCS pairing is responsible for the measured shifts in positron
properties near T, .

I. INTRODUCTION

Positron-annihilation spectroscopy (PAS) is sensitive to
the electronic charge and momentum densities in materi-
als. ' Since both types of density distributions vary with
the phase of a given material, PAS can, in principle, serve
as a probe of solid-state phase transitions. Although
structural phase transitions and charge-density waves
(CDW's) have been studied extensively' with PAS, the
onset of superconductivity (at least in conventional ma-
terials ' ) has shown no measurable effect. This insensi-
tivity is actually not surprising, since the positron in-
teracts with the entire electron sea, which is only slightly
perturbed by superconductivity in systems where the gap
parameter 5 is orders of magnitude smaller that the Fer-
mi energy p. Measurements on the cuprate superconduc-
tors, however, have shown significant shifts near T, .
These new results raise the question of whether supercon-
ductive pairing in high-T, materials, which have relative-
ly large values of b, /p, would give rise to measurable
changes in positron-annihilation characteristics. At the
present time, the experimental picture requires further
clarification, and the possible role of thermal detrapping
as a source of lifetime temperature dependence cannot be
discounted. ' " The lifetime observations of Refs. 3—5,
however, have attracted considerable attention, since
they appear to manifest a direct probe of the bulk super-
conductivity.

Jean et al. ' (and Harshman et a!. ) report positron
lifetimes in the superconducting state that increase
linearly with decreasing temperature for T128a2CaCuz08

and YBazCu306 9 and are 5 —15 % larger at 0 K than the
extrapolated normal-state values. If we assume that this
behavior is intrinsic, i.e, related to annihilation from a
delocalized positron state, there are still a number of
mechanisms that may be responsible: (i) a shift in the
electronic charge density n (r) in the superconductor, '

(ii) a structural phase transition or a shift in the phonon
spectrum, and (iii) a shift in electron-positron correla-
tions because of superconductive pairing. Although (i)
and (ii) cannot be entirely dismissed at this time, the third
possibility has generated the most interest, since positron
measurements might then enable discrimination between
alternative models of superconductivity. The remainder
of this paper will focus on the effect of electron-positron
correlations on positron characteristics.

Little detailed theory exists regarding PAS in super-
conductors. In recent work, the lifetime of extended pos-
itron states in Cu02 planes has been studied by Chakra-
borty employing a real-space pairing model, ' and by
McMullen based on the (paired-boson) resonating-
valence-bond (RVB) picture. ' The only theory of PAS in

superconductors preceding high T, was that of Tripathy
and Bhuyan, ' who derived a first-order perturbation
treatment of the lifetime based on the BCS theory but
performed only a limited numerical analysis.

In this paper we present a first-order treatment of the
two-photon momentum density in a BCS superconduc-
tor. ' Before any judgment is made regarding exotic
mechanisms, ' ' it is important to explore first the conse-
quences of the conventional model. The momentum den-
sity enables predictions of the lifetime as well as angular
correlation and Doppler broadening. Although the life-
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time has manifested the most dramatic temperature
dependences, it seems unwise to focus entirely on this

property, which in itself conveys very limited informa-
tion. It is well known that a first-order treatment consid-
erably underestimates absolute enhancement factors. '

however we will see that it does provide considerable in-

sight and, in particular, suggests a way to estimate an

upper bound on the effect of BCS pairing on the positron
characteristics.

II. FORMULATION OF TWO-PHOTON
MOMENTUM DENSITY

R(~, x,y)=—(T,A (x, r)A(y, 0)) . (2.2)

Here A(x)—:gt(x) P&(x) destroys an electron-positron
pair (with opposite spins), 0(r)—=e' 0(0)e ', for
imaginary-time Heisenberg operator 0, and the angular
brackets in Eq. (2.2) denote a (two-component plasma)
grand-canonical-ensemble average.

The (unnormalized) two-photon momentum density
can be expressed as

R (p)=R (r=O, p) . (2.3)

Since R(p) is proportional to the number of positrons
N, we apply a normalization factor

We investigate the effect of superconductivity on the
partial-annihilation rate, or two-photon momentum den-

sity. Projections of the two-photon momentum density
are measured in angular correlation or Doppler-
broadening experiments, ' and the positron lifetime is in-

versely proportional to the integral of the momentum
density over all momenta. As mentioned earlier, we treat
superconductivity within the BCS framework.

The two-photon momentum density can be expressed'
in terms of the imaginary-time correlation function
(atomic units are used throughout)

R(r, p)=A, /0 f d x d ye '~'" "'R(r, x, y), (2.1}

where A, is a constant, Q is the specimen volume, and

r(p) —= r(r =0,p)—:R (r=0,p) /N~, (2.5)

where R(r=O, p) and N are taken in the dilute limit,
i.e., p ~ —oo. In this limit, both R (r=O, p) and N~ are
proportional to exp(p~ /T).

III. ZEROTH- AND FIRST-ORDER TERMS

We evaluate the zeroth- and first-order terms (Feyn-
man diagrams) in the ladder expansion for R (r, p), treat-
ing the normal and the superconducting states to the
same level of approximation. The significance of higher-
order terms will be considered in Sec. VI. Relations for
the Nambu Green's functions ' employed in the deriva-
tions are collected in Appendix A.

A. Zeroth order

The zeroth-order term can be expressed as

R (r, p) =AD 'QG, (r, k)G&(~, p —k),
k

(3.1)

where G, (r, k) is the projected spin-up component of the
electron Green's function, i.e.,

G, (r,k):t „G,(r, k)—t, ,

where t& is the spinor

where

y, (x) =—n-'" y e'" "y«,
k

nF(x) =(e~"+1)
is the Fermi function, and gz =—gz

—
p~ is the positron en-

ergy (gz=—k /2m ) relative to its chemical potential p;
m is the effective mass of the positron. [In Eq. (2.4) we

have for convenience taken the positron to be spin down;
the results for a spin-up positron would, of course, be the
same in paramagnetic medium. ] Thus, the normalized
two-photon momentum density is given by

N = fd'x(P&(x)P&(x))

=X & Ok((t kl &
= XnF(nk)

k k

(2.4)

O

and C, is the 2X2 Nambu Green's-function matrix. '

We obtain

R (p)=R (r=O, p)=A(2m) f d k[uznF(E&)+vznF( E„)]n(Fg~ z} .—

The positron density, Eq. (2.4), is given by

N =(2m. ) f d3k nF(g„)=(m T/2') ~ exp(Pp~), p~~ —~,
and the normalized momentum density, according to Eq. (2.5), is then

r (p)—=R(r=O, p}/N =AQ '(2am T) f d k[uznF(E&)+v&nF( Ez)]exp( —
Pgz z) . —

(3.2)

(3.3)

(3.4)

A number of limiting cases can be obtained directly from Eq. (3.4). For example, in the zero-temperature, zero-gap
limit, we have

r (p)=6( —
g ) (b, =O, T=O), (3.5)

where 8 is the unit-step function, and g =p /2m, —p,, ; the normalization factor A,Q is omitted. In the zero-
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temperature limit we have the electron-momentum distribution for a BCS superconductor

r (p)=vp, (T=O) .

The zero-gap limit (b, =0) at finite temperature is given by

r (p)=(2am T) f d k nF((~)exp( —
Pg& &) (6=0) .

A low-temperature expansion of r (p) is presented in Appendix B.

(3.6)

(3.7)

B. First-order term

Assuming a static electron-positron interaction V(q}, discussed in Sec. IV, the first-order contribution to R (r, p) can
be expressed (in the spectral representation) as

R'(r, p)=AT Q 'g e ' ' g g t &C, (iv&, k2)r3C, (iv&, k, )t& V(~k2 —k&~)G (i(to —v2), p —k2)G (i(tv —
v&), p —k&),

IN klk2 I v&t v2

where i tv = 2n n T, iv, 2
——(2n +1)~T, and ~3 is the Pauli matrix

(3.8)

1 0
0 —1

After extensive manipulation, we obtain

r'(p) =r'(r=O, p) = A(2—m ) f d k
&

d k2

X I [u (k2)u (k, )+u(k, )u(k2)v(k, )v(k2)]D++(p, k„k2)
+[vz(k, )v'(k, )+u(k, )u(k, )v(k, )v(k, )]D (p, k, ,k, )

+[u (k~)v (k2) —u(k&)u(k2)v(k&)v(k2)]D+ (p, k&k2)

+ [u 2(kz)v2(k, )
—u(k, )u(k2)v(k, )v(k2)]D + (p, k„kz)]

X2V(~k2 —k, ~)(2m/m~T)' 'exp(pg~ z, ),
(3.9)

where

nF( o 2Eg )np(& /Eg

(3.10)

2 2u kUp upUpukUk
r '(p) = —iXQ

(2~)3 g ~+E~+E

X2V(~k —p~) (T=O} . (3.11}

The combination of coherence factors in the numerator

The numerator of D represents the phase space avail-
1 2

able for an electron to scatter from initial state k& to final
state k2 (while the positron scatters from p —k, to p —k2)
and the denominator represents the energy difference for
the process. The ( —,+ ) sign of o corresponds to states
(inside, outside) the ( T =0) electron Fermi surface.

In the limit T~O, only the term involving D + sur-
vives. When a dynamical interaction V(q, tv) is con-
sidered, the D + term gives rise to a weak tail in r (p)
that extends beyond the Fermi edge (p )pF), ' which is
not relevant to the present discussion. The validity of the
static-interaction approximation is discussed by Carbotte
and Kahana. ' The zero-temperature limit of Eq. (3.9) is

of Eq. (3.11}also occurs, for example, in the formulation
of the optical conductivity. The energy denominator in
Eq. (3.11) is reminiscent of the random-phase approxima-
tion (RPA) susceptibility, but with a singularity at p~
rather than at (the spanning wave vector) 2pF. Numeri-
cal calculations based on Eq. (3.11) will be presented
later.

For the normal state, Eq. (3.11) reduces to

e(gg)8( —
g )r'(p)= —XQ

(2~)' 0,-~+4—0,
X2V(~k —p)~ (b, =O, T=O), (3.12)

which is identical to Eq. (2.3) of Carbotte and Kahana. '

IV. ELECTRON-POSITRON INTERACTION

The electron-positron interaction will be represented in
numerical calculations of r'(p) by Thomas-Fermi poten-
tials appropriate to two- and three-dimensional systems.
In the three-dimensional (3D) case, we have

V(q)= 4m/(q +q, ) (3D—), (4.1)

where q, is the screening wave vector. q, is related to the
irreducible polarization part, whose form for a BCS su-
perconductor was derived by Prange. McMullen' has
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recently obtained the relation

(q,'), =(q,')„[1+f (&/p)], (4.2)

for small b, /p where (q, )„=4kF/nc.orresponds to the
normal state, and

TABLE I. Numerical results for zeroth, first, and second mo-
ments of the two-photon momentum density for superconduct-
ing (s) and normal (n) states, in three-dimensional (3D) and
two-dimensional (2D) models. Parameters for models ( A, B,C):
p=(1.5,0.3,0.3) eV, m, =(1,5, 1), m~ =1, b, =30 meV, coo=100
rneV.

f (x)—(x /8)(lnx —0.332) . (4.3) Model

For realistic values of x (see the following), however, the
correction term f is negligible.

A two-dimensional (2D) analog to Eq. (4.1) was derived
by Stern, based on an evaluation of the Lindhard polari-
zability for a planar system:

V(q) = 2n/—[q +. 2g (q)] (2D),

where

g(q)=1 —[1 (2kF/—q) ]'~ e(q 2kF) —.

(4.4)

The screening is independent of electron density in this
treatment. Since the Stern model is derived for a slab
geometry, one may question its applicability to the cu-
prates, which have three-dimensional character. Never-
theless, it does model in some fashion the strongly aniso-
tropic character of such systems, and has the advantage
of analytical tractability.

Although more precise forms than Eqs. (4.1) and (4.4),
i.e., including electron-electron correlations, are avail-
able, the trends in the numerical results described later
are relatively insensitive to the potential. Some analytical
results for r'(p) based on Eqs. (4.1) and (4.4) are present-
ed in Appendix C.

V. NUMERICAL CALCULATIONS

M. = f r(p)p~dp

of the momentum density (apart from instrumental reso-
lution, which we neglect). For example, the lifetime r for
a three-dimensional system is proportional to the recipro-
cal of M2 and the Doppler-broadening line-shape param-
eter S is proportional to M, /M2. Since the effect of su-
perconductivity is to shift the first few moments in the
same sense (i.e., negatively, as shown in Table I), the rela-
tive change in v. is expected to be greater than that in S in
going from the normal to the superconducting state.

As noted previously, the dominant contributions to
r'(p) in Eq. (3.9) is the term involving D +, the zero-
temperature limit of which is given by Eq. (3.11). Nu-
merical evaluations were performed for two-dimensional
as well as three-dimensional models (2D and 3D). [In the
two-dimensional model d k /(2n ) is replaced by
d k/(2m) in Eq. (3.13).]

The calculations require specification of five input pa-
rameters: the electron Fermi energy p, the gap parame-
ter 6, the pairing-shell width coo [cf. Eq. (A6)], and the
effective electron and positron masses m, and m . Calcu-
lations were performed for the three sets of parameters
described in Sec. V A.

Measured positron-annihilation characteristics can be
expressed in terms of moments

A, 3D, n

A, 3D, s
A, 2D, n

A, 2D, s
B, 3D, n

B, 3D, s
B, 2D, n

B, 2D, s
C, 3D, n

C, 3D, s
C, 2D, n

C, 2D, s

1.0740 X 10'
1.0731
1.0151
1.0144
0.9950
0.9913
1.5019
1.4847
0.7021
0.6976
0.5619
0.5568

1.8064 X 10-'
1.8039
1.7183
1.7166
1.6593
1.6436
2.5787
2.5315
0.5263
0.5221
0.4239
0.4184

4.0302 X 10-'
4.0230
3.8516
3.8470
3.6817
3.6835
5.8330
5.7113
0.5239
0.5209
0.4240
0.4184

A. Model parameters

Calculations were performed for three models ( A, B,C)
designed to roughly mimic the cuprates and also to illus-
trate the effect of bandwidth narrowing, due either to
effective-mass renormalization or to a reduced effective
number of carriers. The same sets of parameters were
used for both the 2D and 3D cases. Model A is based on
the parameter set p=1.5 eV, pF=0. 332 a.u. , 6 =30
meV, coo=100 meV, and m, =m =1. The number of
electrons enclosed in a Fermi circle with the pF value just
given corresponds to that in a half-filled Cu02 square-
plane band with lattice parameter a =4.0 A. The chosen
gap parameter 6 is comparable to the largest values ex-
tracted from either tunneling or infrared reAectivity mea-
surements on YBa2Cu3069. In general, coo is expected
to be somewhat larger than b. The selected value of
coo=100 meV, which is consistent with the hierarchy
p &&coo)&b, is at the upper limit of the range compatible
with a (conventional BCS-Eliashberg) phonon mecha-
nism, and at the lower end of that compatible with an
electronic-pairing mechanism. The assumption of a
larger value of coo, however, would not affect any of our
conclusions. Local-density-approximation electronic-
structure calculations ' ' have shown an in-plane posi-
tron band mass close to the free-fermion value, and m
was therefore taken to be unity.

In model B, an electron effective mass m, =5 is em-
ployed, with the Fermi energy p'=p/m, =0.3 eV re-
duced correspondingly. The electron density, pairing-
shell thickness coo, gap parameter, and Fermi wave vector
are the same as in model A. This model roughly
represents a tight-binding valence band, in contrast to the
free-electron-like band of model A. Since no correction
is made for the fact that the electronic spectrum becomes
free electron like at sufficiently high energies [e.g., as Ek
becomes large in Eq. (3.13)], model 8 somewhat overesti-
mates the effect of electron-mass renorma1ization.

In model C, we use the same Fermi energy, p=0. 3 eV,
as in model B, but with m, =1.0. This choice corre-
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sponds to a smaller density of carriers, specifically a 10%%uo

filled band. The other parameters are the same as in
models A and 8.

The models just described refer only to the valence
electrons. In the case of YBazCu306 9, for example, there
are 34 bands in the Cu(d)O(p) manifold, of which two
Cu02 plane bands and two chain bands cross the Fermi
level. Therefore, at the independent-particle model lev-

el, even neglecting the low positron affinity for the
planes, ' the background signal resulting from filled
bands is about an order of magnitude larger than that of
the valence bands. Since the mean enhancement factor
(per electron) for the valence band is probably less than a
factor of 2 greater than that of the filled bands, the sen-
sitivity of positron characteristics to the valence electrons
is expected to be reduced by close to an order of magni-
tude because of the filled-band background.

B. Results

MOD

I-
M 4
X
LLI

3
DI-
X
Ul
X0 normal

sUp8fcond

0
0.0 0.2

I

0.4 0.6
I

0.8 1.0 1.2
REDUCED MOMENTUM

FIG. 1. Momentum density r(p)=r (p)+r'(p) vs reduced
momentum p/pF calculated for model 8 (cf. Table I). The
curves with discontinuities at p/pF=1 correspond to the nor-
mal state and the dotted curves represent the superconductor.
The small discontinuities that occur in the superconducting case
at p =0.815 and p+ =1.16 result from the abrupt cuto8'of the

gap function at coo, as given in Eq. (A6}. A momentum density
of unity would correspond to a noninteracting system.

I. Zero temperature

The momentum densities r(p)=r (p)+r'(p) for the
2D and 3D versions of model 8 are shown in Fig. 1.
Qualitatively similar behavior is observed for the other
two models (A and C). The curve for the normal state
shows the Fermi-edge discontinuity, whereas the curve
for the superconducting state is smeared over the pairing
region bounded by

p =[2m, (p+co )] =(I+0.2)pF .

Incidentally, a small discontinuity occurs in the momen-
tum density for a superconductor at momenta p+ because
of the discontinuity of the gap parameter [cf. Eq. (A6)].

We note that the momentum density for the normal

state is relatively Hat near the Fermi edge in the 3D sys-
tem in contrast to the slight peaking tendency observed
in the 2D case. This behavior rejects the singularity at
the Fermi edge associated with the energy denominator
in Eq. (3.12).

The zeroth through the second moments of r(p) for
models A, 8, and C are given in Table I. The results for
the normal and superconducting states are very similar
(differences less than l%%uo) for all the 3D models. The
largest changes from the normal to the superconducting
state occur in the case of the 2D versions of models 8 and
C. In model 8, for example, the lifetime (proportional to
1/M, ) is 1.8%%uo longer in the superconducting than the
normal state.

2. Temperature dependence

Temperature dependence in Eq. (3.9) arises from the
gap parameter, the positron Boltzmann factor, and the
electron Fermi factor. To establish the general trend, we
consider only the temperature dependence of the gap pa-
rameter, in which case Eq. (3.9) reduces to Eq. (3.11).
The lifetime was found to have a temperature dependence
similar to the gap parameter itself; it increases with de-
creasing temperature and is nearly saturated at a reduced
temperature of 0.5.

VI. EFFECT OF HIGHER-ORDER CONTRIBUTIONS

The effect of superconductivity on positron-
annihilation characteristics was found in the aforemen-
tioned calculations to be greatest in the 2D narrow-band
models (8 and C). The differences between the moments
M for normal and superconducting states in 2D models
8 and C can largely be attributed to the pronounced
(normal-state) edge enhancement between p and pF,
which essentially disappears in the superconductor. ' In
fact, a reasonable upper-bound estimate of the relative
change

b Mo/(Mo )„=[(Mo )„—(Mo ), ]/(Mo )„
is given by

fAr(p)dp/f r(p)dp,

where

hr (p) =r„(p) r„r(p), —

with reef(p)=r„(p) for p(p and r„,&(p)=r„(p ) for

pF &p &p . bMO/(Mo)„ therefore depends sensitively
on the edge enhancement in the normal state, and an ac-
curate calculation requires going beyond the first-order
treatment considered in the preceding sections.

The problem of a positron in (normal) jellium has been
studied extensively over the past three decades, using
techniques that in effect sum terms to infinite order. The
most prominent of these are based on the Bethe-
Goldstone (BG) equation, ' ' the Lippmann-
Schwinger equation, or the Sawada-boson formalism.
No attempt has yet been made to adapt these methods to
a superconductor, although it would be possible in princi-
ple to do so. The treatment presented earlier in this pa-
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per represents a first-order approximation to the Bethe-
Goldstone equation. A somewhat larger relative edge
enhancement is predicted by the Bethe-Goldstone equa-
tion than by the other methods, and we therefore use re-
sults from the BG equation to obtain an upper-bound
estimate on b,Mo/(Mo)„. Based on Fig. 2 of Ref. 33,
which corresponds to r, =4, we find

f b,r(p)dp/ J r(p)dp =4% for p =0.8pF

(which is roughly the value of p corresponding to mod-

els 8 and C; the conclusion would not be affected by
choosing smaller values of p ). When the background
effect due to filled bands is included, as discussed in the
preceding section, the upper limit on bM&/(Mo)„would
be reduced to less than l%%uo, which is much smaller than
the experimental results for lifetime in the cuprates Refs.
3 —5 (see the following).

The preceding analysis corresponds to a 3D system; to
our knowledge no solutions to the BG equations in two
dimensions have been obtained. Our experience with the
first-order calculations indicates that the edge enhance-
ment should be more pronounced in two dimensions than
in three. Nevertheless, we would expect bMo/(Mo)„ to
be increased by less than an order of magnitude in going
from a 3D to a 2D system.

VII. COMPARISON WITH EXPERIMENT

Let us consider how these predictions compare with
experimental observations on the cuprates.

C. Doppler-broadening line-shape parameter

The experiments by Jean et al. show lifetime and
line-shape parameter shifts of the same sign (i.e., positive)
in going from the normal to the superconducting state.
(We note that other workers have observed negative
line-shape-parameter shifts in the superconducting state. )

Theory, on the other hand, predicts a positive change in
lifetime but a negative change in line-shape parameter.

D. Conclusion

Although there are many uncertainties in the compar-
isons described earlier the overall impression is that a
BCS-like framework is difficult to reconcile with the ex-
perimental observations in Refs. 3—5.

ACKNOWLEDGMENTS

This work was supported at Argonne National Labora-
tory (ANL) by the U.S. Department of Energy, Offtce of
Basic Energy Sciences (BES—Materials Sciences), under
Contract No. W-31-109-ENG-38. H.-B.S. received sup-
port from the Advanced Computational Methods Center
and from the Office of the Vice President for Research at
the University of Georgia. This material is based on
work supported by the National Science Foundation un-
der Grant No. DMR-8913878. Computational work was
performed at the National Magnetic Fusion Energy Com-
puting Center at Lawrence Livermore National Labora-
tory. We are grateful to T. McMullen for discussions and
for making unpublished results available to us. We also
acknowledge helpful comments by P. Vashista.

A. Shift in lifetime APPENDIX A: ANOMALOUS PROPAGATORS

The positron lifetime was observed to be constant at
tempertures above T„butincreased by -7% on cooling
either (Refs. 3—5) YBa2Cu306 9 or (Refs. 3 and 5)

La& 85Sro &5 Cu04 from T, to helium temperature and
(Refs. 3 and 5) 15% for T12Ba2CaCuzOs. The theoretical
upper-bound estimates of bMol(Mo)„described in Sec.
V are based on a number of assumptions that are difficult
to check. As mentioned, no information is available con-
cerning 2D solutions to the BG equation, which may
show a large edge enhancement, particularly for a heavy
electron mass. On the other hand, the BG equation prob-
ably overestimates the edge enhancement, judging by
comparison with more refined calculations. ' Overall,
a lifetime shift of 7—15% would seem to be difficult, al-
though perhaps not impossible to achieve, within the
BCS framework.

B. Temperature dependence of lifetime

The experiments show a linear temperature depen-
dence for T12Ba2CaCu208 and YBa2Cu3069, although a
saturating behavior was found for Lai 85Sro &5Cu04. The
BCS model predicts saturating behavior, basically be-
cause the gap parameter saturates. Therefore, it is
difficult to reconcile the measurements of temperature
dependence for the first two of these compounds with the
BCS model.

and off-diagonal (12,21) elements are

F,(r, k) = ( T g&t(r)g &)(0)),
F, ( kr)—:( T, t( g)(r)ggt(0) ) .

fn the spectral representation, one has
2 2

Qk ViG(i vk, ) , = +
1v E& 1v+Ek

2 2
U) Qg

G, (iv, k)= + .
1 v E) 1v+E)

F,(iv, k)=
1v —E& 1v+Ek

(Xi Qi Ui
F,(iv, k)=

1v Ek

~here

1v+Ek

The Nambu prescription for the electron Green's func-
tion in the BCS state has the (2 X 2) spinor form

C, (r, k) —= —( T,liq(r)fq(0) ), (Al)

where the diagonal (11,22) elements are

G, (r, k) —= ( T,/k)(r)fgt(0) ),
G, ( kr) = ( T,P ~)(r)g k)(0) ),
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The gap function in the BCS model is given by

(A2)

(A3)

(A4)

(A5)

(A6)

APPENDIX 8: TEMPERATURE DEPENDENCE
OF r (p)

If the smearing of the Fermi factor is neglected

(p, ))T), Eq. (3.7) can be integrated analytically, yield-

ing

r (p) =
—,
'

I sgn(x~ —x )erf( ~xF —x
~
)+erf(xF +x)

exp[ —(xF+x )](e —1)/2x ],
where e is the unit-step function, 6 is the gap parameter,
and gz—=k /2m —p is the excitation energy relative to
the Fermi energy. The pairing-shell thickness coo is of the
order of the Debye frequency in conventional supercon-
ductors.

(B1)

for isotropic electron and positron bands, where
x =p/(2m&T)', xF =pF/(—2m&T)' . The lowest-order
temperature-dependent correction can be exhibited more
clearly by expanding the error functions:

r (p)=(e( g)—(m—T/2m. )'
I [(pF —p) '+p ']exp[ —(pF —p) /2m~T)

+(pF+p) exp[ (pF—+p) /2m~ T]—p exp[ (pF+p )/—2m~ T]I } . (B2)

The leading correction to Eq. (Bl) is thus of the form

(m T)'~ /(pz p) exp[ ——(pF —p) /2m~ T),
which is appreciable only near the Fermi edge. Inciden-
tally, Eq. (B2) can also be directly obtained from the rela-
tion

r'(0)=ln[(pF+2)/pF] (2D) . (C2)

~ith Eqs. (Cl) and (C2), we obtain in the high-density
limit (pF ~ ~ ):

simplicity) setting g (q) =1 in Eq. (4.4), we find the corre-
sponding result for a two-dimensional system:

J[fp, T]=J[fp, 0]+4' V f(p)T+O(T }, r(0)=1+ A/pF, (C3)

where

J[f,p, T]—:(2n/T) .f d k f(k) exp( —I3(z q),

and

APPENDIX C: r '(p) NEAR FERMI EDGE
AND AT ZERO MOMENTUM

Some analytical results can be derived for the normal
state near p =0 and p =pF. Substituting Eq. (4.1) into
Eq. (3.12), we obtain

r'(0)=(4/mq, )[m/2 —tan '(pF/q, )], (3D) . (Cl)

Replacing d 3k /(2n )3 by d k /(2m ) in Eq. (3.12) and (for

r '(p )-const+ ln[(pF +p ) /(pF —p ) ] . (C5)

The singularities in Eqs. (C4) and (C5) result from the
zero in the energy denominator of Eq. (3.14) at

p =k =pF, and are analogous to susceptibility singulari-
ties. As in the case of Kohn anomalies, the effects in-
crease as the dimension is reduced.

where (Ref. 37) A3D=4/m and Az&=2. The constant A

is a measure of the strength of the Coulomb correlations
between the positron and the electron liquid.

The singularity in the integrand of Eq. (3.12) at p =pF
dominates the behavior in the immediate vicinity of the
Fermi edge. In the 3D case, we find

r'(p) —const+[(pF p)/pF]ln[(pF —p)/pF] . (—C4)

A logarithmic singularity occurs in two dimensions,
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