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Phase locking of long Josephson junctions
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We present numerical simulations on the phase locking of solitons in long Josephson junctions by
the application of external microwave signals. The fu11 partial differential equation with boundary
conditions has been used. Overlap and inline geometries are considered; the effects of dc magnetic
fields and different configurations of the rf fie1d have also been investigated.

I. INTRODUCTION

Recent experiments' on the phase locking of long
Josephson junctions have increased the interest in the to-
pic. The phase locking observed experimentally has been
of two different types; in one case the long Josephson
junction (LJJ} is locked to an external rf signal, ' and in
the other case two or several LJJ's are mutually locked.
In this latter case a large amount of radiated microwave
power was observed (about 0.2 pW at 10 GHz}, so the to-
pic clearly has technological significance. There has been
some recent theoretical work aimed at obtaining an un-
derstanding of a LJJ phase locked to an rf signal; this
semianalytical model, in which the soliton has particle-
like properties, provides rather simple expressions for the
dynamics and the range of phase locking. Other work
uses the multimode expansion technique to obtain ap-
proximate solutions to the perturbed sine-Gordon equa-
tion (PSGE). In this paper we have used the necessary
computer time and performed a full numerical simulation
of the PSGE with boundary conditions. Our results are
compared to those of the semianalytical particle model,
and similarities and differences are pointed out.

The paper is organized in the following way. Section
II describes the equations, the numerical methods, and
the criteria for the characterization of the different types
of solutions. Section III and several subsections show the
results of the simulations for overlap junctions, including
the locking range and the effect of a dc magnetic field.
Section IV shows the corresponding results for junctions
of inline geometry. Section V discusses the results and
concludes the paper.

tial dimension x is measured in units of the Josephson
penetration depth, A, =(A'/2epodJO)'~. ri is the (nor-
malized) external bias current, which may be space and
time dependent, and the damping constant a is given by
a=(fi/2er JOC)', where r is the tunneling resistance
per unit area.

Since r scales inversely with the area and Jo and C are
proportional to the area, a is a quantity determined only
by the properties of the barrier. Finally P(x, t) is the
phase difference between the superconducting pair phases
on either side of the junction. Equation (1} is known to
support the motion of solitons —or fluxons, as they are
called in the present system. ' The fluxon (a quantum of
magnetic flux) is a 2n phase shift that may move along
the junction length under the competing influence of the
bias current and the damping. An approximate analyti-
cal expression for the fluxon is

/=4 tan '(e&) (2)

with g=(x ut)y(u). H—ere y(u) is the Lorentz factor
defined by y(u)=(l —u )

' . u is the fluxon velocity,
which in normalized units has a maximum value of 1.
The normalized voltage connected with Eq. (2) is

P, =2u sin(P/2),

which appears as a propagating voltage pulse on the
Josephson transmission line (JTL). The detailed dynam-
ics of the fluxon will critically depend on the parameter
values, and on the boundary conditions, which will be in-
troduced as they are needed for the particular problems
to be considered.

II. THE EQUATIONS, NUMERICAL METHODS,
AND CHARACTERIZATION OF SOLUTIONS

A. The equation

The long Josephson junction is described by the per-
turbed sine-Gordon equation given by '

—P„„+P«+a/, +sing=g .

Here time t is normalized to the inverse plasma fre-
quency I/coo=(AC/2eJO)'~, where C is the capacitance
per unit area and Jo is the pair current density. The spa-

B. Numerical methods

We solved Eq. (1) with boundary conditions discussed
later, by a fourth-order Runge-Kutta time integration.
The spatial derivatives were approximated by simple
finite differences between segments of the discretized
junction. This method is equivalent to integrating a
second-order differential equation for each segment of the
junction. We scaled the segment so that there were at
least 20 within a Josephson penetration depth. Most of
the data reported here used 241 segments in a line 12
penetration lengths long. We found a time step of 0.0126
normalized units (500 steps per rf cycle), sufficient to
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maintain convergence of the integration.
Our use of finite differences for the spatial derivatives

means that our solutions correspond to a line of discrete
junctions coupled by lumped inductors. However, the
use of 20 such segments per penetration depth makes the
results acceptably accurate.

C. Characterization of solutions

0

f r r

The topic of our paper may be illustrated by a typical
example of a numerical simulation as shown in Fig. 1. It
displays the voltage P, as a function of space x and time
t. The parameters are 1=12, a=0.1, r1=0.155 (overlap
geometry as defined in Sec. III). For the boundary condi-
tions (with applied rf signal) we have used
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P„(0,t )=$„(I, t ) =z,f singlet, (4)

b, T =2l /u, „=2m leo . (5)

Here hT is the time between two successive collisions

with re&=0.4 and co =0.214.
The details of the boundary conditions and the param-

eter choice will become clear in the following sections,
and Fig. 1 is just meant to illustrate the methods we are
using for the analysis. The dynamics shown in Fig. 1 is
simple. The voltage of the soliton, P„ is pulselike. It
travels in one direction as a soliton and in the other as an
antisoliton. The periodic energy input to both boun-
daries (as described in Refs. 7 and 8), which is a conse-
quence of the boundary condition Eq. (4), will be in syn-
chronism with the external rf field at frequency cu, if the
following condition is satisfied:

FIG. 2. Spatial Poincare map for a period 3 phase-locked
solution —overlap junction: 1=12, g=0.22, a=0.1, co=0.642,
and v,f=0.4.

of the soliton with the same end of the junction (see Fig.
1},and u,„ is the average soliton velocity. Our numerical
test for this phase locking consists of a spatial Poincare
map. That is, we plot P, (or alternatively P„or P} once
for every full rf cycle, i.e., at time intervals b T =2m /co.
If phase locking has occurred, the corresponding P,
curves should be identical and will be plotted on top of
each other. (This is a simple extension of the Poincare
map for a usual driven ordinary differential equation. )

Under some circumstances subharmonic locking may
occur. In this case the soliton line shape repeats itself ex-
actly after a number, N, of full rf cycles. Figure 2 shows
such an example with the spatial Poincare map for a
period 3 subharmonic (N=3). Figure 2 shows the results
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FIG. 1. Soliton phase locking in an overlap junction: 1=12,
g=0.155, a=0.1, co=0.214, and re~=0.4.

FIG. 3. Trajectory of phase-locked soliton —overlap junc-
tion: 1=12,g=0.155, a=0.1, m=0.214, and re&=0.4.



180 N. F. PEDERSEN AND A. DAVIDSON 41

III. GVKRI.AP JUNCTIONS
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The geometry of the overlap junction is shown in Fig.
5(a). In the absence of a magnetic field or rf excitations
the boundary conditions are *

(6)

With a dc magnetic field H,„, the boundary conditions
are

$„(0,t ) =p„(1,t ) =aHE, (7)
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FIG. 4. Special Poincare map as defined in the text. Inline
junction with chaos: 1=12, ~d, =0.7, a=0.1, g=0, m=0.205,
and K,f=0.4.

corresponding to plotting 12 rf cycles after the initial
transient had died out. Note that for clarity we have
used P„as the ordinate instead of P, . (P„ is negative for
an antisoliton. ) The parameters are as in Fig. 1, except
r1=0.22 and co=(3) 0.214=0.642. To simplify the study
of soliton dynamics we also developed a useful subpro-
gram to record the instantaneous peak voltage and plot
this as a function of time and position in the junction.
Thus we can obtain the trajectory of the "particle" corre-
sponding to the soliton. Figure 3 shows an example of
such a plot with parameters corresponding to those of
Fig. 1. The anomalies at the junction ends are due to de-
tails of the collisions with the boundaries. (Energy ab-
sorption and phase shift occur in the collision process. '

)

Yet another type of test —somewhat like a Poincare
map —is shown in Fig. 4. Here the peak voltage and the
position corresponding to that peak voltage are sampled
once every rf cycle at time intervals ET=2m /co. Figure
4 shows such a plot for a case in which chaotic intermit-
tent motion has occurred. (This type of motion for a so-
called inline junction will be discussed in more detail in
Sec. IV.) Figure 4 has the following parameters: 1=12,
a=0.1, co=0.205, and q=0. The boundary conditions
are P„(0,t) =0.7+0.4 sincot and P„(l,t ) = —0.7
+0.4 singlet.

where IcHz=H, „,/AJJO, . and Jo is the maximum super-
current density.

We will assume that the rf excitation is coupled to the
LJJ through the magnetic field, H&, at the junction ends.
In this case the boundary conditions may be written
(a,t=H, .t/A, qJo) (Ref. 7)

P„(0,t)=P„(l,t)=v, tain&et .

We will assume a spatially uniform bias current in Eq.
(1). Thus we have rt=Id, /JOLW, where L and W'are the
length and width of the LJJ, respectively, and Id, is the
dc bias current. g= 1 corresponds to having the max-
imum supercurrent Io =JOI.S.

A. Range of phase locking: overlap geometry

One of the important quantities to determine is the
range of phase locking, i.e., the range of bias current, hg,
for which the LJJ remains phase locked. This of course
depends on the rf amplitude, ~&, and possibly other fac-
tors as well. In Ref. 1 it was found experimentally that
hg was proportional to ~,f. This same behavior was also
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FIG. 5. Geometry of the overlap (a) and inline (b) Josephson
junctions.

FIG. 6. IV curve of overlap junction: a=0.1, 1=12, (a) free
running and (b) rf driven with m=0.214, a&=0.4.
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observed both experimentally and theoretically in recent
papers. ' Also in small area Josephson junctions such
behavior is most commonly observed for phase locking.
Figure 6 shows a calculated IV curve for a LJJ of the
overlap geometry. The parameters are i=12, a=0.1,
re&=0.4, and co =0.214. The voltage is given by

V =hP /5 t = 2m /( I /u, „)=(2n /I )tt,„. (9)

According to Eq. (5) phase locking has occurred if
co= tru, „/I, i.e., at the fundamental phase-locking step we
have a voltage V=2'. Figure 6 shows both the IV curve
in the absence of an rf excitation and that with the ap-
plied rf signal. Both curves were obtained through a full
numerical simulation of the partial difFerential equation,
Eq. (1), with appropriate boundary conditions, Eqs. (6)
and (g). The vertical asymptote u =2m/I is obtained by
setting u,„=1 in Eq. (9). Figure 7 shows the range of
phase locking as a function of a&. Note the linear depen-
dence as also observed in Refs. 1, 3, and 4.

The mechanism for the phase locking is the following:
Suppose the bias current is lower than g=0.20, which

corresponds to the center of the step in Fig. 6. With g
lower than that corresponding to the center of the step,
the free running velocity is such, that after a back and
forth crossing of the soliton, the external rf field has al-
ready fulfilled one period. Thus, the free running soliton
must have its average velocity increased by the rf field in
order to be synchronized to it. Accordingly, when the
soliton is at x = l, it receives an energy input from the rf
signal to increase its velocity. When the junction is again
at x =I it will arrive in phase with the rf signal to receive
a new energy input; note that at x =0 the rf excitation is
in opposite phase, but since at x =0 we have an antisoli-
ton, it will also receive an energy input there.

Altogether the rf drive increases the average velocity of
the soliton and keeps it phase locked. The same type of
argument applies for the slowing down of the soliton
when rI is above the value corresponding to center of the
step.

The mechanism described above is the reason that we
cannot expect a phase locking when the frequency is dou-
bled and other parameters remain unchanged. This was
confirmed in our numerical simulations. When the fre-
quency was tripled to co=0.642, we found again phase
locking (cf. Fig. 2). In fact our simulations showed that
the locking range was exactly the same as with co =0.214.

Figure 7 also shows the result of a simple perturbation
analysis. If we assume with Ref. 8 the approximation
that it is the total current that is important for the dy-
namics, rather than the details of the spatial distribution,
we may write

03 pl+2~=const . (10)

This leads to a simple estimate of the locking range, Ag,
given by

b, rI =2trg,

UJ pp
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FIG. 7. Range of phase locking —overlap junction, step at
U=0.428. /=12, a=0.1, and co=0.214. Open circles corre-
spond to phase-locked motion, open triangles to quasiperiodic
behavior, and filled triangles to soliton absorption. Dashed-
dotted curves: simple perturbation theory.

which is shown as the dashed-dotted lines in Fig. 7. Note
that for the numerical simulation the locking range is
linear with the rf amplitude for small amplitudes, and
that the simple expression, Eq. (11), is a surprisingly good
approximation.

In the low-bias end of the locking range, annihilation
of the soliton from the bottom of the phase-locked step is
very likely to occur; this leads to a zero-voltage solution.
In order to precisely determine the lower part of the lock-
ing range, one must be very careful with the initial condi-
tion for the simulation, and change parameters only in
small increments. This is difFerent from the particle mod-
el where the soliton number is a conserved quantity. In
fact in the work of Ref. 4 it was found, that at low-bias
current and parameters comparable to ours, the (con-
served) soliton goes typically through a period-doubling
bifurcation leading to chaos, as the bias current is re-
duced from the bottom of the phase-locked step.

The kinetics of the phase locking may be understood
from the composite graph in Fig. 8. In the upper part is
shown the phase-locked soliton (p„ is displayed for con-
venience) on the line of length I after the transient has
died out. Thus each curve consists of many retraces in
synchronism with the external rf signal, i.e., at times
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(a) A,

0

024

T„=n T. Each curve in Fig. 8(a) corresponds to a
different value of the bias current g, that can be read
from Fig. 8(b). Note that the position of the soliton peak
varies as the bias current is changed. This is plotted in
Fig. 8(b), where the position bx from the x =1 end of the
junction is measured positive when p„ is positive and
negative when P„ is negative. When ted=0. 20 (near the
center of the locking range, curve C) the soliton has its
free running velocity. Note that the soliton is near x =I
when the microwave field ~~in(erat) is near zero at
T„=nT. For curves DEFG the soliton is near the center
of the junction when a~incot is zero, i.e., near the edge
when ~,pin~t is at its maximum. The energy transfer to
the soliton is maximum, resulting in an increased average
velocity. For curves A and 8, we find similarly that ener-

gy is removed from the soliton, because the microwave
field is near its minimum when the soliton is near x =l.
Thus bias below the center of the step results in a de-
creased average velocity. We find that the locking range
is exceeded when the soliton peak in Fig. 8(a) has moved
such that ~bx ~

)1/2. Thus we may define a phase angle
P being m/2 at the upper end of the locking range ri„
where Ax =I/2 and being —m/2 at the lower end of the
locking range nl where bx = —I/2. This is indicated in
the lower part of Fig. 8(b).
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FIG. 9. Spatial Poincare map of quasiperiodic solution—
overlap junction: 1=12, a=0.1, g=0.28, co=0.214, a~=0.4.
The numbering, n, corresponds to time T„=n2m/co.

B. Quasiperiodic so1utions

When the range of phase locking is exceeded, several
different types of motion may occur. Absorption of a
fluxon and subsequent transition to zero voltage happens
near the lower end of the phase-locking range, gL, in Fig.
6. At the upper end of the phase-locking range, g„, a
smooth transition to a quasiperiodic behavior takes place.
The spatial Poincare map does not repeat itself as in Fig.
2, but shows up as in Fig. 9, in which there is a new trace
for every rf cycle. The numbering in Fig. 9 corresponds
to strobe times defined by T„=n 2m /co with n

=1,2, 3, . . . . Another Poincare-like plot which is useful
to demonstrate this type of quasiperiodic behavior, is
shown in Fig. 10. Here we have plotted the value of P,
versus sin(oit), at the time when the soliton crosses the
center of the LJJ going in one direction. The appearance
of the plot in Fig. 10 is rather similar to a typical Poin-
care map for a quasiperiodic solution to a driven ordinary
differential equation (ODE).
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FIG. 8. Phase locking of overlap junction: i=12, a=0.1,
co=0.214, ~„f=0.2. (a) Spatial Poincare map: A: g=0 232, B:

=0.23, C: g=0.20, D: g=0.168, E: g=0.166, F: g=0.164;
and G: g=0.162; (b) peak position of phase-locked soliton vs
bias current.

Sin (tlt) t)

FIG. 10. Quasiperiodic solution —overlap junction: Poin-
1care map defined by voltage P, and time t for passing x =
2

in

one direction; J= 12, a =0.1, q =0.27, co =0.214, x&=0.4.
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FIG. 13. Soliton (maximum) trajectory —inline junction, free
running case: 1=12, a=0.1, ~d, =1.2; dashed curve: perturba-
tion theory qualitatively.

FIG. 14. IV curve of inline junction: 1=12, a=0.1; (a) free
running, (b) rf driven with a,&=0.4, co =0.205.

smoothly decaying exponential ' as shown qualitatively
by the dashed curve. The parameters of Fig. 13 are
~d, = 1.2, a =0.1, I= 12. The plateaus seen in the comput-
ed curves have their origin in the soliton interaction with
oscillations in the junction.

A. Range of phase locking: inline junction

For the inline LJJ we also calculated the IV curve in
the presence of rf fields by numerically simulating the
partial differential equation (PDE) [Eq. (1)] with ap-
propriate boundary conditions [Eq. (13)]. Typically we
used 500 time steps per rf cycle and 241 spatial segments
as in the overlap case. Figure 14 shows a calculated IV
curve with the following parameters: a =0.1, I= 12,
co =0.205, and ~&=0.4. For ad, = 1.2 the free running fre-
quency is the same as the chosen applied frequency. The
free running and phase-locked IV curves for the inline
case appear somewhat similar to those of the overlap case
(Fig. 6), although they certainly differ in details. Note for
example that the phase-locked step in Fig. 14 is asym-
metric. The locking range is shown in Fig. 15 as a func-
tion of sc,&. Note that also for the inline geometry the
phase-locking range is proportional to ~,&

for small ~,&.

Simple perturbation theory ' predicts that the locking
range h~d, =a,z, which is shown as the dashed-dotted
curves. At the upper end of the locking range, a„, the
range of phase-locking falls short of the perturbation
theory prediction. For sr& below -0.35 we have a transi-
tion from phase locked to quasiperiodic behavior some-
what similar to that of Fig. 7. Around a&-—0.35 there is a
break in the curve, which is caused by the creation of an
additional soliton on the line. This may be seen from Fig.
14, where it is observed that switching takes place to a

0.5—
I

0.5

r f A&PLI TUDE 'K
r~

FIG. 15. Range of phase locking —inline junction: step at
U=0.41. /=12, a=0.1, and co=0.205; circles correspond to
phase locking, squares to chaos, upright triangles to quasi-
periodic, and upside down triangles to intermittent quasiperiod-
ic behavior. Dashed-dotted lines: simple perturbation theory.
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FIG. 18. Inline junction —quasiperiodic solution shown with
peak voltage: i=12, a=0.1, &cd, =1.25, a,f=0.2, co=0.205.

POSITION X

FIG. 16. Inhne junction with chaos: I= 12, a =0.1,
]cd,= 1.452, 1(,f =0.4, a) =0.205.

state with U =1.0, approximately twice the limiting volt-
age of a one soliton state. Note that ad, =2 corresponds
to the critical current, where Suxons and antifluxons are
created continuously at the edges. ' At the threshold
discussed (dashed line in Fig. 15) we have approximateley
Kd +K~= 1.85. The soliton motion in the region of the
parameter just above that line space is chaotic and will be
discussed in the next section.

B. Inline junction: chaotic solutions

The soliton motion after the threshold for the genera-
tion of a new soliton has been passed (the upper end of
the locking range as discussed earlier} may best be de-
scribed as chaotic, as can be seen in Fig. 16. Solitons are
apparently continuously let in an out of the junction, but
on the average there are approximately two. As noted
above this is in agreement with the voltage of approxi-
mately 1.0 as observed in Fig. 14 for 1.42&ad, &1.58.
Figure 17 displays this type of solution in another way.
Here the peak voltage is plotted as a function of position
in the junction for a number of rf periods. Again the
solution is by appearance clearly chaotic. A further
study of this type of complicated motion is outside the
scope of this paper, and will be left for later investiga-
tions.

At the lower rf amplitudes, where new solitons are not
created, the quasiperiodic motion may typically appear as
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FIG. 17. P~ . Peak voltage as a function of position-inline junc-
tion, chaos: 1=12,a=0.1, ad, =1.55, x&=0.4, co=0.205.

FIG. 19. Inline junction —trajectory of intermittent soliton
motion: l= 12, a =0.1, ad, =0.75, a&=0.4, co =0.205.
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FIG. 20. Inline junction —peak voltage of intermintent, chaotic soliton motion: i=12, a=0.1, ~d, =0.7, ~~=0.4, co=0.205.

in Fig. 18, where we have displayed the peak voltage (cf.
Fig. 13) for tc&=0.2. The signal is changing slowly be-
cause there is no phase lock. For the shown example
there are 5.1 back and forth crossings of the soliton in 5.0
rf periods.

At the lower end of the locking range but for higher
values of v,f, we observe another very interesting non-
linear soliton motion. Here the motion appears —for a
number of rf cycles —to be quasiperiodic (almost phase
locked) as in Fig. 18, but then there is a transition to a
state in which the solition moves very slowly in the center
of the junction —outside the reach of the rf signal. Even-
tually it will again reach the other end to be stimulated
by the rf signal and possibly to be (almost) phase locked
again. A typical peak voltage trajectory is shown in Fig.
19. Over many rf cycles the signal appears as a series of
bursts at irregular intervals as seen in Fig. 20. Such a sig-

nal is typical of chaotic intermittency' and will be
characterized by a large low-frequency noise component.
The intermittency is probably stimulated by the details of
the oscillations of the line in connection with the slow
motion in the inside of the junction when the phase lock
is lost.

V. CONCLUSION

The phase locking of solitons in long Josephson junc-
tions by means of an external rf field has been investigat-
ed by a full numerical simulation of the partial
di8'erential equation. When appropriate, a comparison to
the results of a simple perturbation approach has been
made. Besides the phase-locked behavior, quasiperiodic,
intermittent, and chaotic motion of the soliton has been
observed.
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