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Band-structure calculations of BN by the self-consistent variational cellular method
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The electronic band-structure calculations of zinc-blende-structure BN is carried out with use of
a self-consistent version of the local-density variational cellular method. The crystal potential and
charge density are approximated within atomic and interstitial space-fillin cells by their spherical
average. We find that the values obtained for the valence-band widths and minimum band gaps of
BN are in good agreement with the results of recent ab initio calculations.

There have been in the last few years successful at-
tempts to use the basic ideas of the cellular method, as
originated by Wigner, Seitz, and Slater, ' to develop new
methods of investigating the electronic structure and re-
lated properties of molecules, crystals, finite cluster of
atoms, etc. Several applications have shown that
these new versions of the cellular method are fast and ac-
curate schemes of electronic-state calculations. What
makes these recent improvements on the original cellular
method so reliable is the use of variational principles to
solve the boundary-condition problem on the surface of
the cells.

The variational cellular method (VCM), as proposed by
Ferreira and Leite, was initially applied to perform self-
consistent-field (SCF) calculations of one-electron energy
spectra, binding energies, and bond lengths of diatomic
molecules. ' Shortly thereafter the method was extended
to periodic structures with an arbitrary number of atoms
per unit cell, and non-SCF results were reported for the
band structure of metallic sodium and lithium' and of
the elemental semiconductors diamond and silicon. " In
this paper we present the consolidated SCF version of the
method and report on the results of its application to cal-
culate the band structure of the zinc-blende —structure
BN crystal.

In order to implement the SCF version of the VCM for
periodic structures we have combined the non-SCF for-
mulation of the method" with the procedure described
by Ferreira and Leite to calculate the electronic charge
density within the cells. According to the VCM, the
crystal space is partitioned into space-filling atomic (in-
terstitial) polyhedra, the crystal potential is approximated
within each polyhedron by its spherical average, and the
one-electron wave function with wave vector k and ener-

gy c is expanded within each polyhedron i as a linear

combination of partial waves R;((r ) Y(,(r). rR;((r ) is the
solution p,((r) of the radial Schrodinger equation and
Yz(r) is the spherical harmonic corresponding to the
angular-momentum quantum numbers l, m. Using the
cellular representation of the wave function, the Bloch
conditions and a variational expression, Ferraz et al.
have derived the VCM secular equation for periodic
structures. " In order to obtain the secular matrix, H,
which is parametrized in terms of c, numerical integra-
tions on the surfaces of the polyhedra are required. The
one-electron energies c are obtained by searching for the
zeros of the determinant of H.

We follow now the work of Ferreira and Leite for
molecules to calculate the spherical average p, (r) of the
electronic charge density in the polyhedron I'.. We start
by first normalizing the radial functions so that

q;((0) =0, dq, ((r )

dT
r=R

A Q matrix is obtained from the secular matrix I, by re-
placing p, & by q, j and making zero the elements of H that
do not contain p,I. The charge density in each polyhed-
ron i can readily be obtained by

4mr'p, (r)= ——g g gp, ((r)d„c,(
2

v k I

with

p(((0) =0, p;((R ) = l,
where R is the radius of the inscribed sphere in the po-
lyhedron i. We search for the second linearly indepen-
dent solutions q, ((r) of the radial Schrodinger equation
on which are imposed the conditions
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In Eq. (3), v runs over occupied levels, d, is the space de-

generacy of the level, X is the number of unit cells of the
crystal, and the labels j, j', and j" refer to atomic po-
lyhedra belonging to an arbitrary unit cell. Equation (3)
is the extension of Eq. (37) in Ref. 3 for periodic struc-
tures.

One can improve considerably on the cellular represen-
tation of the crystal potential by introducing interstitial
(empty) polyhedra into the crystal space partitioning. '2

In this way it is possible to handle open structures within
the framework of closely packed lattices. If the polyhe-
dra have approximately spherical shape, we can assume
that Eq. (3) is valid even for r)R. Thus, the Poisson's
equation, which determines the Coulomb potential, can
be integrated for all values of r inside of each polyhedron.
It has been verified that this procedure leads to better re-
sults when compared to the use of the standard "muffin-
tin" approximation for the charge density. '

The secular equation derived by Ferraz et al.,
"Eq. (3),

and the Hohenberg-Kohn-Sham local-density-functional
approximation are the basic ingredients of the SCF VCM
formulation. We report now on the results obtained by
applying the method to calculate the band structure of
zinc-blende —structure BN.

The properties of BN have deserved a great deal of at-
tention from both technological and basic points of
view. ' Although there are few experimental works in
the literature concerned about the electronic structure of
this compound, several theoretical calculations have been
reported. ' Until recently these calculations were not
able to provide a clear picture of the electronic structure
of the material. Their results for the energy levels and for
the transition assignments differ significantly. However,
recent rigorous calculations have lead to a consistent
description of the BN band structure. ' ' One of our
goals is to compare the results of these recent calcula-
tions with those obtained from the SCF VCM for BN.

In this work we handle the BN structure within the
framework of a closely packed bcc lattice. The crystal
unit cell is then partitioned into four equivalent truncated
octahedra, two of which locate the B and N atoms, and
the two others, the interstitial positions (empty cells)."'
The value 3.615 A was taken for the lattice parameter'
and the Hedin-Lundqvist' expression for the local-
density functional was used to describe the exchange-
correlation effects.

In order to perform the first interaction in the SCF
scheme we follow the procedure described by Ferraz et
al. in their fourfold-partioning non-SCF VCM calcula-
tions for silicon and diamond. " A crystal potential is
built from the spatial superpositions of Coulomb poten-
tials and charge densities of the B and N atoms. ' From
this potential, which is spherically symmetric in each po-
lyhedron, we determine the partial waves and the secular
H matrix. The evaluation of the elements of H requires
surface integrations at the hexagonal and square faces of
the four octahedra. The calculations are carried out nu-
merically by selecting sets of 10 points on each face of the
polyhedra. The cellular representation of the wave func-
tion includes symmetrized cubic harmonics whose max-
imum angular momentum is /, „. We have verified that
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FIG. 1. Energy bands of zinc-blende —structure BN as calcu-
lated by SCF VCM. The zero of energy was placed at the top of
the valence band.
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FIG. 2. Valence radial electronic charge distribution along
the BN bonding direction. The origin of the distance is t~~en at
the B site. The N site is at 2.96 a.u. The r coordinate is mea-
sured from each nucleus to the border of the corresponding cell
at half way of the bond length (dashed line).

for BN the valence bands are fully convergent forl,„=4, and the lower conduction bands converge forI,„=5. As we have pointed out previously, once the
convergence in the cellular expansion is reached, the
solution is no longer sensitive to the number and location
of the points used to perform the integrations on the cell
surfaces.

The Q matrix, which is basic to determine the cellular
potential for the next SCF cycle, depends on the particu-
lar polyhedron considered and on the particular value of
the orbital quantum number l. Since the Q matrix is ob-
tained directly from the secular H matrix, it also contains
the Bloch phase factor exp(ik R) where R are direct-
lattice vectors separating conjugate points on the surfaces
of the polyhedra. " Thus, each non-null matrix element
of Q is obtained by performing a sum running over all the
lattice vectors connecting two parallel faces, each one be-
longing to one polyhedron.

Once the H and Q matrices are known, the calculations
of the C;I coefficients given in Eq. (3) are carried out by
constructing the inverse matrix H ' and performing the
energy derivatives numerically. The sum over k occupied
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TABLE I. CoInparison of the zinc-blende —structure BN valence-band widths and minimum band

gaps (in eV) from the SCF VCM calculations with the experimental results and the recent theoretical
calculations.

Ref. Upper

Valence-band width
Lower

Theory

Full
Minimum band gaps

Direct' Indirect'

this work
14
15
16

20
21

10.1
10.8
9.7

10.7

5.3
5.9
5.5
5.9

19.7
20.3
19.9
20.1

Experiment
& 22.0

7.9
8.6
9.9
8.8

5.0
4.2
7.0
4.4

(6.0
=6.4

'All the theoretical values correspond to I »~ I ».
All the theoretical values correspond to I »~X', .

states required to calculate the radial charge density p; (r )

is performed using three special k points in the Brillouin
zone (BZ).' Since the electronic charge density is spheri-

cally symmetric in each polyhedron, the integration of
the Poisson's equation is straightforward, leading to the
cellular potential to be used in the next SCF cycle. Suit-
able mixtures of potentials have ensured a rapid conver-
gence of the calculations for BN.

In Fig. 1 the calculated SCF VCM band-structure of
zinc-blende —structure BN, along high-symmetry lines in
the BZ, is shown. Table I compares the valence-band
widths and minimum energy gaps obtained from SCF
VCM with the results of the most recent calculations.
The entries in Table I include results of an ab initio pseu-
dopotential local-density calculations, ' a minimum-basis
linear-combination-of-atomic-orbitals (LCAO) approach
with an adjusted indirect gap' and a full-potential linear
augmented-plane-wave calculation. ' The experimental
results are from soft-x-ray spectroscopy and uv-20

absorption ' measurements.
It is gratifying to conclude that the SCF VCM results

are in fairly good agreement with those obtained from re-
cent rigorous calculations. The symmetry of the lowest
conduction-band state of BN, as it arises from theory, has
been subject of controversy in the past. The assignment
of the X; point in the BZ for the conduction-band
minimum is a common feature of all the calculations
compared in Table I. Particularly, the SCF VCM leads
to an X3 level at 5.6 eV above the X&. This value is also
in good agreement with the results obtained from an ab
initio relativistic pseudopotential method (4.77 eV) and

from a relativistic linear-muffin-tin-orbital method (4.93
eP) 22

Figure 2 shows the total valence radial electronic
charge density along the bond direction of BN. The vari-
ational solution of the boundary-condition problem in the
VCM leads to negligible wave-function mismatch on the
cell surfaces. As a consequence, SCF charge densities
and potentials are continuous through the cell boun-
daries. From Fig. 2 we can extract the total valence
charge inside the spheres surrounding each atom. These
are touching spheres with radii equal to 1.48 a.u. The
values 2.33e and 4.61e were found for the B and N
spheres, respectively, leaving about one electronic charge
(e ) distributed within the two interstitial polyhedra in the
unit cell. The total charge density p(r) along the bond
displays a local maximum within the polyhedron corre-
sponding to N. Although this asymmetric distribution of
charge along the bond indicates an ionic character for the
BN compound, our results show that the B atom is losing
less charge than that inferred from the pseudopotential'
and (LCAO) (Ref. 15) calculations.

In this report we have presented the SCF version of the
VCM and investigated its virtue by carrying out the
band-structure calculations of zinc-blende —structure BN.

This paper complements our previous works where the
non-SCF version of the method was applied to metallic
and covalently bound crystals. The theoretical formula-
tion of the SCF VCM is conceptually simple and the re-
sults obtained for zinc-blende —structure BN indicate that
the method is fast and accurate.
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