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Impurity states in a quantum-well wire of GaAs-Ga, „Al„As
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We investigate the behavior of the hydrogenlike impurity states in a small wire of GaAs inside a
Ga, „Al„As structure. The e8'ects of disorder are taken into account in the calculation. It is
shown that the hopping energy plays an essential role in the formation of the impurity bands and
that the peak energy as a function of impurity concentration or wire dimension behaves in the same

way for both cases. Results are compared to a recent experiment on cathodoluminescence.

It is very well known that impurity bands have impor-
tant consequences in optical studies and transport mea-
surements on small semiconductor structures such as het-
erostructure, quantum wells, and quantum-well wires
(QWW's). This has recently been a very active field of
research, ' motivated largely by the development of
molecular-beam epitaxy and metal-organic chemica1-
vapor deposition techniques which have made it possible
to fabricate high-mobility semiconductor microstructures
with extremely small spatial extensions. ' " Here we
will focus on a QWW that is made of GaAs, which is sur-
rounded by Ga&, A1„As, and has a square cross section
of width L. In this heterojunction the electronic motion
is quantum-mechanically confined on the plane XP while
being free to move in the Z direction, along which quasi-
one-dimensional (quasi-1D) transport can occur. In the
wake of previous calculations done for a QWW, ' we as-
sume the Hamiltonian in a random, one-body tight-
binding approximation, with monovalent impurities as

g Ji &&i[+ g V;, li &&pl,

where E& is the binding energy, which is taken as aur en-
ergy origin, V, is the random energy integral for the

I

transfer of an electron from the ith site to the jth site (i.e.,
hopping matrix), and &r~i &=%(r—R;) is the ground-
state wave function of an electron bound to an impurity
at R;. The impurity bandwidths and the density of states
D(E) are calculated from the Green's functions

G,',*'(co)= & 0(a, . a, ~0 &,
1
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with configuration averaging over the random distribu-
tion of impurities. We treat this configurational average
according to the Matsubara-Toyozawa (MT) (Ref. 13)
theory for doped semiconductors. Let us define

(3)

where & & means configuration averaging and
Z+ =~+is. As the impurities are distributed completely
at random, the configuration average can be performed
by making the positions of all intermediate impurity sites
that appear in the Green's function run over the whole
space with equal probability. If the summation over in-
termediate impurity sites is replaced by an integral,
g;~N fdR, , where N is the impurity concentration,
one can then obtain

Z*& G,+—'(a)) & =5,, + ' + g g, JdR, fdR„V(R„, ) V(R, z) V(R „„).
v= 1 =1

For a given value of Z (from now on we will omit the
symbols +), those terms with smaller v-p values make
larger contributions when X is large. Following this lead-
ing principle, MT have chosen only those diagrams in
which different journeys have no common sites with one
another. The coupled equations derived from this
scheme are written, in our 1D version, as

(5)

V(k)= Jexp(ikz)V(z)dz .

Defining

= {Nao [u (ai)+is(co)]]
(co)

where ao is the effective Bohr radius, we have for the
density of states D (co)

1 Ng(co) V (k)dk
g(~) 2mco2 1 N((m)/V(k)cu '—(6) D(co)=

In the above equation N is the number of impurities per
cm and V(k) is the 1D Fourier transform of hopping en-
ergy V,"= V(R, —R. ) = V(z):

With the use of Eqs. (5), (6), and (8) we get the self-
consistent equations
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1 V'(q)[u (co) —V(q)]
co=Noou co +- dq

[u(co) —V(q)] +s (co)

and

1/4

4(r) =Nz 2A
cos( m.x /L )cos(n y /L)

Xexp[ —A, (x +y +z )] (13)

E = &+I V'„„—+V—(x,—y)l+&,
2
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where V(x,y) = ~ outside and zero inside the wire of di-
mension L. We use the function'

1 V (q)
u co —Vq +s

where q =kao and V(q) =a 0 V(q/ac ).
For 1D lattices, Im[G;;(co)] shows discontinuities at

co=E, and m=E„, where E& and E„are the lower and

upper band edges, respectively, given then the impurity
bandwidth. The Re[6;;(co)] diverges at E, and E„. The
u (co) and s(co) are obtained self-consistently from Eqs.
(10) and (11).

In GaAs where the electron effective mass is
m ' =0.067m 0 and the dieletric constant ~= 13, the
effective Rydberg unit is R *=5.3 meV and the Bohr ra-
dius is ao =100 A. We will adopt these units. The vari-
ational solution for the isolated impurity is given by

and the hopping energy (i I e /K( IR, —R, I ) Ij},i e.,
' 1/2

V(R, L)= E, —2AR
2k
li

+(AR) S(R,L),

where Ec is the Coulomb energy, IRI = IR; —R~ I, and
S(R,L) is the overlap integral (i Ij ), i.e.,

with Ixl, lyl ~ L /2, and zero otherwise and A, a variation-
al parameter. N&=2f 0 cos (m x/L)exp( —2W )dx is

the normalization constant. The impurities are located at
the center of the quantum wire. Considering the impuri-
ties distributed around the center of the wire, the values
of the energies will present a small variation. We take a
constant value for the energies which reduces the prob-
lem to the treatment of only the off-diagonal V,. matrix
elements. ' After obtaining A. numerically by minimizing
E, for each L, we calculate the following expressions: the
binding energy EB

E =2 — —EB (14}

N{$0 cm } S(R,L)=exp( —A,R /2) . (16)
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In Fig. 1 we show the peak energy Ep(L) obtained at

the maximum of D(E), i.e., D(EP), and the bandwidth
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FIG. 1. Variation of binding energy E&(L), peak energy
Ep (L ) of maximum D ( E), and bandwidth AE (L ) with the wire

0
dimension L. Upper scale represents Ep(N) for L =200 A, as a
function of impurity concentration N.

FIG. 2. Maximum of the impurity density of states D(Ep) as
a function of L and N. Upper scale represents D(Ep, N) for

0
L =200 A as a function of N. Lower scale refers to D(Ep, L)
for N = 10 cm ' as a function of L.
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FIG. 3. Hopping energy V and overlap integral S vs interim-

purity distance R and L. Right scale represents S(R,L).

AE(L) for N =10 cm ', Es(L), and Er (N) for L =200
A. It is worth pointing out that Ez ~5.3 meV for a large
value of L (L )&ao ). It corresponds to Es of a donor in

GaAs. For L ~0 the electron wave function will recover

Ga, Al As. For the sake of comparison L =100 A
corresponds to E&=24 meV, a similar value found by
Brum. ' Lee and Spector' found 17 meV and Bryant, '

for a cylindrical cross section, found 16 meV. It is no-
ticed also that for L =200 A the system undergoes a
similar energy around 13 meV for all calculated proper-
ties. This brings our attention to the observed catho-
doluminescence in the GaAs-Ga& As Al heterojunction
with L =200 A, by Petroff et a/. ' They observed a
broader linewidth of 15 meV, with a full width at half
maximum. We have obtained from it 12 meV. The peak
energies Ep(L) and Ep(N) decrease with a small
difference between them. For some approaches which
use the center of gravity Eco(L) instead, as function of
L, and have impurity bands with many structures, one
can expect ECG(N} to have the same behavior as Eco(L)

In Fig. 2 we show the behavior of D(Er, N), for
L =200 A and D(EP,L) for a known N (here we use
X =10 cm ', a linear density for the mean interimpurity
distance along the z axis). The crossing of the curves
gives D(EP) around 10 cm 'meV '. It corresponds to
L =200 A and N = 10 cm

In Fig. 3 we show the hopping energy and overlap.
The hopping energy has a remarkable enhancement for
smaller L or R. This will give a broader bandwidth. For
L &100 A it will have the same value of Ec. For
L =200 A V(R) will decrease rapidly for large R given a
smaller bandwidth. On the other hand for fixed N, V(L)
and S (L } will play a difFerent role in the formation of the
impurity band. V(L) will decrease smoothly and S(L)
will increase up to its maximum value. These combined
effects, for such doping concentration, will always give a
reasonable impurity band.
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