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We show that thermodynamic properties of semiconductors are accessible to first-principles cal-

culations and can be computed with good accuracy.

The ab initio calculation of properties of semiconduc-
tors is a central issue in present-day theoretical solid-state
physics. In the last 10 years major progress has been
made with the advent of accurate total-energy calcula-
tions based on the local-density approximation for ex-
change and correlation within density-functional theory
(DFT). These calculations have shown that it is possible
to predict accurately properties such as the equilibrium
lattice structure, the elastic constants, and the phonon
spectrum. !

However, even relatively simple thermodynamic prop-
erties such as the thermal expansion coefficient,
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where () is the volume, P the pressure, B the bulk
modulus, and T the temperature, have not been calculat-
ed with ab initio methods. The basic reason is that « is
dependent on anharmonic effects and therefore its evalua-
tion can hardly be reduced to a small set of total-energy
calculations as has been the case for the properties-listed
above. Even if one uses the well-known quasiharmonic
approximation for a,
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where (o, (,T) is the internal energy of an oscillator of
frequency o, ; at temperature T, one is faced with the
difficult task of evaluating, in the whole Brillouin zone
(BZ), the phonon frequencies w,, and their volume
derivative, i.e., the so-called Griineisen parameters. The
integral over the BZ can be simplified by the use of sets of
special points,? but still the calculation of phonon fre-
quencies at such points would be difficult since it requires
the introduction of prohibitively large supercells. Such
difficulty is circumvented by the use of molecular-
dynamics (MD) methods® that take fully into account
anharmonic effects and do not require explicit evaluation
of the whole phonon spectrum. Since, however, these
methods are based on the classical approximation for the
ionic motion, they will correctly determine a only for
temperatures T larger than the Debye temperature @,
(®p =645 K for Si), where quantum effects can be
neglected. In this limit Eq. (2) predicts a temperature-
independent a.

A first-principles MD method has been recently intro-
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duced by two of us.* In such a scheme one performs a
MD simulation in which the interatomic forces are calcu-
lated from the electronic ground state using accurate
DFT methods. This is at variance with conventional MD
where the interatomic potential is determined by empiri-
cal means. The method is based on the assumption of a
fictitious classical dynamics for the coupled evolution of
the ions and of the Kohn-Sham (KS) single-particle orbit-
als. The dynamics is generated by the Lagrangian
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where M; and R, are the ionic masses and positions,
¥;(r,t) the KS orbitals, u a fictitious mass associated to
them, A;; are Lagrangian multiplers used to impose the
orthonormality constraints on the ¢;, and E[{¢;},{R;}]
is the energy functional

E=3 [ d’ryf(0[—(#/2m)V (N +V[n(r), (R;}],
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where the functional V[n(r),{R;}] contains the
Coulomb repulsion and the effective electronic potential
energy including external potential, Hartree, and ex-
change and correlation contributions. n(r)=3; |¢;|? is
the electron density in terms of occupied KS orbitals.
The Born-Oppenheimer (BO) potential for the ions, i.e.,
®({R,}), is given by the minimum of the functional
E[{¢;},{R,;}]] with respect to the y’s subject to the
orthonormality condition. The dynamics generated by
the Lagrangian L closely reproduce the BO dynamics for
the ions, if one starts with 3’s that minimize E and
chooses for u a small enough value. In such a case the
P’s follow adiabatically the ionic motion without acquir-
ing a significant kinetic energy K,= 3, u [ (d’rl¢;|%
This has been verified in previous works, and further evi-
dence will be given below.

We used a periodically repeated MD cell with the sil-
icon atoms arranged in the diamond structure. In most
of our calculations we used a 54-atom fcc cell and an en-
ergy cutoff E_,, =8 Ry for the expansion of the y¥’s in
plane waves. BZ sampling was performed with the T
point of the MD cell. The pseudopotential was taken
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TABLE 1. Convergence study of equilibrium lattice constant and bulk modulus of crystalline silicon.
Our results are obtained from pressure calculations within a constant N*% procedure, as in Ref. 9. The
experimental values and the theoretical results of Ref. 9 are also presented for comparison.

T=0 lattice parameter (a.u.)

Bulk modulus (Mbar)

Experimental 10.263 0.992
theory: Ref. 9 10.204 0.93

Our results:

54 atoms fcc cell s-NL sp-NL s-NL sp-NL
E..=8 Ry 10.00 9.96 1.53 1.32
E..=12 Ry 10.22 10.09 1.21 1.18
E.. =24 Ry 10.41 10.21 0.89 0.97
64 atoms sc cell s-NL sp-NL s-NL sp-NL
E..=8 Ry 9.92 1.35
E..=12 Ry 10.04 1.20

from Ref. 5 considering only s nonlocality and using the
Kleinman-Bylander representation.® We have checked
the convergence of our results by making additional stat-
ic and dynamic calculations with larger energy cutoffs
and including p nonlocality. The dependence of our data
on the MD cell was investigated by repeating some of the
calculations with a larger 64-atom SC cell. In all our cal-
culations we have kept fixed the number of plane waves
(N®Y) when varying the volume of the cell.” This gives
rise to a slower convergence with respect to cutoff than
working at fixed E,,.® However, in our MD simulations,
particularly at constant pressure, we are forced to adopt
a fixed N*¥ scheme.

The results of our static convergence tests, for the lat-
tice parameter and the bulk modulus B at T=0, are re-
ported in Table I. The main factor affecting the conver-
gence of our results is E_;, while a better sampling of the
BZ as done in Ref. 9 has only minor effects. Indeed our
24-Ry calculation compares well with that of Ref. 9 when
we include p nonlocality (sp-NL), whilst using only s non-
locality (s-NL) we overestimate the bond length by
~2%. Similar conclusions on the effect of p nonlocality
were obtained in Ref. 10.

The integration of the equations of motion was made
with the Verlet algorithm!! using a fictitious mass u =300
a.u. and an integration time step Az~1.7X107'¢ sec.
Such a value is only a factor ~2 smaller than the At
used, for instance, by Broughton et al. 12 in a convention-
al MD simulation for silicon based on empirical intera-
tomic potentials.

Two kinds of simulations were performed, one at con-
stant volume (CVMD) and the other at constant pressure
(CPMD)."* In the second one the following terms were
added to the Lagrangian in Eq. (3):

iwa+pra, (5)

where P is the external pressure imposed on the system
and W is a parameter of appropriate units adjusted to set
the time scale for volume fluctuations. In our simulations
we set P=0 and took W=0.05 a.u. In every run the sys-
tem has been heated up and then has been equilibrated
for at least 500A¢ before taking cumulative averages. An
analysis of the data showed that, for the quantities of in-

terest, 3000Ar were sufficient to compute accurate aver-
ages.

In order to check that the BO dynamics can be evalu-
ated correctly from the Lagrangian L, we have calculated
the internal energy of the system as a function of temper-
ature. We calculate the ionic internal energy as

U(T)=<2%M,R}+E[{¢,-},{R,]]>, ©)
I

where the angular brackets indicate temporal average on
a convenient finite observation time, and the (ionic) tem-
perature T is related to the equilibrium value of the kinet-
ic energy (K;)=(3; MR }) by suitable normaliza-
tion. In the hypothesis of adiabatic behavior of the cou-
pled dynamics for R; and y¥’s during the observation
time, U (7) as defined in Eq. (6) should be a good approx-
imation of U'(T)=( 3, {M;R 7+ ®({R,})). For aclas-
sical highly harmonic system, which is the case here,
U'(T) is given by the equipartition law AU'(T)
=U(T)—U'(0)=NkgT, where kp is the Boltzmann
constant and N is the number of degrees of freedom of
the (ionic) system. It is seen in Fig. 1 that this is indeed
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FIG. 1. Variation of the internal energy U of crystalline Si
with temperature. Results of both CVMD (solid squares) and
CPMD (solid circles) are displayed. Horizontal and vertical
bars are error bars. The exact result for a classical harmonic
crystal is represented by the straight line.
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the case and that CVMD and CPMD give consistent re-
sults.

In MD simulations the thermal expansion coefficient
can be computed directly from the definition
a=(1/30)0Q/0T)p or a=(1/3B)(dP/dT), if CPMD
or CVMD are used, respectively. The derivatives are cal-
culated numerically by making a finite temperature
change AT, either at constant P or at constant (), with
respect to a reference equilibrium thermodynamic state,
which we have chosen to be the state at T =0,P =0.
This is adequate even at high T since we found that both
Q) and P vary linearly with T within the accuracy of our
calculations, confirming the prediction of the classical
quasiharmonic theory. Notice that both € and B vary
little with T: for instance, ) changes by about 1% for
AT=1000 K. The results of our calculation are
displayed in Fig. 2 together with the experimental curve.
The experimental data show for T <®p a rich structure
which also includes at low temperature a region of nega-
tive expansivity. This behavior of quantum nature is
completely missed by our classical galculation which pre-
dicts an approximately constant a. Therefore our data
should be compared with experiment only in the high-
temperature range (7 > ®p). Already with a cutoff of 8
Ry there is a satisfactory agreement between theory and
experiment. Furthermore, constant pressure and con-
stant volume data are consistent.

We have checked the stability of our calculation with
respect to N¥V (E_,) and the size of the MD box. We
have also studied the effect of the inclusion of p nonlocali-
ty in the pseudopotential. In Table II we summarize our
results. These calculations were performed with CVMD
simulations because they are slightly less expensive com-
putationally than CPMD (by about 10%).

As to the effect of E_,, we note that the variation from
8 to 12 Ry is not dramatic, especially when p nonlocality
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FIG. 2. Thermal expansion coefficient a of ¢-Si as a function
of temperature. Experimental values, indicated with triangles,
are taken from Ref. 14; the dotted line is just a guide to the eye.
Theoretical values: squares and circles indicate CYVMD and
CPMD results, respectively. The error bars are also shown.
The Debye temperature @), is indicated by the arrow.

TABLE II. Thermal expansion coefficient a of ¢-Si. Our re-
sults are compared with the experimental values for T2 @®),.
The theoretical data are from runs at different 7 in the range
400-1100 K. The result obtained in a computer simulation us-
ing the classical Stillinger-Weber (SW) potential [Ref. 12(b)] is
also shown.

a(107¢ K1)
Experimental (T>20,) 3944
SW potential: Ref. 12(b) 2.0
Our results:
54-atom fcc cell s-NL sp-NL
Ecut:8 Ry 49 44
E..=12 Ry 5.6 4.5
64 atoms sc cell s-NL sp-NL
E..=8 Ry 3.1
E..=12 Ry 3.4

is also included. Although the full convergence in the
T=0 properties is reached at larger E_,, in the evalua-
tion of a there is a compensation between the variation of
B and of 0P /9T with E . Therefore the result at 8 Ry
can be considered satisfactory even though not fully con-
verged.

The second point that we considered is the importance
of a more accurate treatment of the nonlocal part of the
pseudopotential with the inclusion of both s and p nonlo-
cality (sp-NL). From Table II we see that « is quite sen-
sible to p nonlocality especially for the highest E_, (there
is a reduction of 20%), and the agreement with experi-
ment is improved.

Another important feature that one would like to in-
vestigate is the dependence of our results on the MD cell.
Since computer limitations do not allow at present an ex-
tensive study of the size dependence of our simulations,
we have only repeated some of the calculations with a
64-atom sc cell. On going from the 54- to the 64-atom
cell the variation of the T=0 structural properties is very
small, while the variation of a is not negligible (more
than 20%) and results in a somewhat worse agreement
with experiment. We suggest that this is a consequence
of the different representation of the phonon spectrum
that is achieved with the 54-fcc and with the 64-sc cell,
respectively. While the fcc cell samples only phonons in
the interior of the diamond BZ, the sc cell samples
several zone-boundary phonons which have the largest
negative Griineisen parameters.'* This leads to a reduc-
tion of the calculated a values (Table II). For compar-
ison we also show in Table II the result of a recent calcu-
lation of a based on the Stillinger-Weber empirical poten-
tialli(ghich leads to a significantly larger underestimate of
a.

In summary, we have presented an ab initio MD simu-
lation of ¢-Si at finite temperature. This work indicates
that thermodynamic properties of semiconductors are ac-
cessible to first-principles calculations.
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In particular, the thermal expansion coefficient at high
temperature has been calculated with both constant-
volume and constant-pressure MD simulations. Con-
sistent values and good agreement with experiment were
obtained in the two cases.
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