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Enhancement in nonlinear effects in percolating nonlinear resistor networks
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The nonlinear response is studied in a percolating network of superconductor and normal con-
ductor with nonlinear I-V characteristic below the percolation threshold of the superconductor.
The crossover current density J& NL, defined as the current density at which the linear and nonlinear

responses of the network become comparable, is found to have a power-law dependence

JL NL -(p, —p) as the percolation threshold is approached from below. With use of a model of the
percolating network below p, analogous to the nodes-links-blobs picture, 0 is found to be
0=vd(d —1)—1, where vd is the correlation-length exponent and d is the dimensionality of the lat-
tice.

I. INTRODUCTION

The subject of percolation phenomena has attracted
much attention over the past decade. ' Studies in the
geometric aspects of percolating systems, for example,
has led to the use of the idea of fractal objects in physical
systems. Transport properties in percolating systems are
usually studied within models of random resistor net-
works. In a network which consists of randomly occu-
pied normal conducting and insulating bonds (N/I sys-
tems}, the network conducts only above the percolation
threshold where there exists a connected path of conduct-
ing bonds. Similarly, in a network with superconducting
and normal conducting or insulating bonds (S/N or S/I
systems), the network becomes superconducting above
the percolation threshold of the superconducting bonds.
For linear I- V response for the conducting bonds, one can
define critical exponent t (s) describing the divergence of
the network resistance (conductance) in a N/I (S/N) sys-
tem in the vicinity of the threshold. It is these richnesses
in the interplay between geometric and transport proper-
ties that have led to a deeper understanding of the phys-
ics in macroscopic disordered systems.

In this Brief Report, we consider the geometrical
effects of a percolating system on the nonlinear transport
properties in a superconductor-normal-conductor non-
linear resistor network. Nonlinear composite systems
have recently attracted much interest. Stroud and Hui
studied the finite-frequency nonlinear dielectric response
of a mixture of nonlinear dielectric in a linear host in the
dilute limit of nonlinear constituent, and demonstrated
the relation between the nonlinear-random-network prob-
lem and the noise problem in linear random network.
Zeng et al. proposed a general effective-medium-type ap-
proximation for calculating the effective nonlinear sus-
ceptibility of a mixture for all concentrations. Recently,
Blumenfeld and Bergman pointed out that the results in
Ref. 4 can be used to derive a characteristic value of the
current at which the nonlinear and nonlinear responses in
a N/I mixture become comparable. It is the purpose of
this paper to study the effects of percolation on the

effective nonlinear response of a S/N network below the
percolation threshold of the superconductor.

Below the percolation threshold p„the conductivity of
the whole network is still finite. The I-V response of the
network, however, is nonlinear due to the nonlinearity of
the individual nonlinear bonds. We define a crossover
current density JL NL as the current density at which the
linear response and the nonlinear response of the network
become comparable. Using a picture of the percolating
network below p, analogous to the nodes-links-blobs pic-
ture often used above p„apower-law dependence of
JLNL is derived. It is found that, near the percolation
threshold, JL &L-(p, —p), where H =vd(d —1)—1,
where p is the fraction of superconducting bonds, vd is
the correlation-length exponent in d dimension, and d is
the dimensionality. This result shows that the nonlinear
response of the network becomes more pronounced as the
threshold is approached due to the restricted geometry of
the path through which current flows in the vicinity of
the threshold.

II. DERIVATION

We consider a d-dimensional hypercubic lattice with
fraction p of superconducting bonds and fraction 1 —p of
normal conducting bonds. Each normal bond is assumed
to have identical I- V response of the form

v =ri +bi (a) 1),
where v and i are the voltage across the bond and the
current in the bond, respectively. The second term in Eq.
(1) represents the nonlinear response of the nonlinear nor-
mal bond. Response of the form Eq. (1) has been studied
previously in a N/I mixture and also in the finite-
frequency regime, ' although most studies in nonlinear
percolating systems assumed nonlinear response of the
form without the linear term in Eq. (1}. The form of Eq.
(1) is of interest because most materials have linear
response in the limit of small current and become non-
linear in the presence of large current. For materials
with inversion symmetry, the lowest order nonlinearity
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refers to a=3.
We first consider the case of a full lattice of nonlinear

bonds. Let L be the linear dimension of the lattice and a
be the lattice constant. If a current I is injected into the
lattice, the voltage Vacross the network is given by

V =rI/(L /a) '+ b [I/(L /a)" '] (2)

as I/(L/a) ' is the current in each path connecting the
lattice from one side to another in a full lattice. The in-
jected current density is given by J=I/L '. Let JL NL

be the current density at which the linear response and
the nonlinear response in Eq. (2) become equal in rnagni-
tude, then for a full lattice

JO ( r /b )1/(a —1) —(d —1)
LNL

—r (3)

U =n'+bi (4)

The voltage V across the system is then given by

As more and more normal bonds are removed and re-
placed by superconducting bonds, the percolation thresh-
old p, of the superconductor is approached. Below p„
the conductance of the network is still finite. The I-V
characteristic of the network is nonlinear due to the as-
sumed nonlinearity in each of the individual normal
bonds. To consider the percolation effect on the non-
linear response, we invoke a picture for the percolating
S/N network similar to that of the "nodes-links-blobs"
picture in N/I networks. ' For p ~p„the percolating
material (superconducting clusters in this case) can be ap-
proximated by an array of nodes separated by the corre-
lation length g. Each node is the center of a supercon-
ducting cluster of linear size of order g. Adjacent clus-
ters are separated by a thin layer of normal bonds. At
some places, there is only one normal bond separating the
superconducting clusters. These bonds are the "singly
disconnected bonds" (SDB's). The number of SDB's
diverges as (p, —p)

' as the percolation threshold is ap-
proached from below. ' " This picture of the percolating
network below p, has been used successfully to study the
problem of fluctuations in resistance, " i.e., the noise
problem, in percolating networks. Also, the present au-
thor and co-workers used this model to study the
nonuniversal breakdown behavior in superconducting
and dielectric composites. '

Using this model of percolating systems below p„the
nonlinearity of the network can be studied. Let I be the
current injected into the lattice, the current passes
through each path from one side to another in the array
of superconducting clusters and thin layers of normal
bonds is approximately given by I/(L/g) ', as there
are (L/g) ' paths assuming a regular array. Let L, be
the number of SDB's in the thin layer separating adjacent
superconducting clusters. As mentioned above, I.

&

-(p, —p) '. The current in each SDB is thus given by
i =I/(L/g) 'L, , if we neglect the effects of multiply
connected regions, i.e., places where adjacent clusters are
separated by more than one bond. ' The voltage 0 across
the layer of normal bonds separating two adjacent clus-
ters is given by

V =(L /g)u

due to the assumed geometry of the percolating network
below p, .

Substituting the form of i and Eq. (4), Eq. (5) can be
rewritten as

(d —
1 L gd

—1

V=r— J+b- J (6)

where J =I/L ' is the injected current density. We
define the crossover current density JL Ni as the current
density at which the linear and nonlinear terms in Eq. (6)
become equal in magnitude. Hence,

' &/(a —1)

JL-NL L
b

(7)

The correlation length g diverges as g-a(p, —p)
where vd is the exponent characterizing the divergence in
a d-dimensional system. Substituting this result and
L, -(p, —p) ' into Eq. (7), we obtain

JL-NL JL-NL(pc I )

with the exponent H given by

H =vd(d —1)—1 . (9)

The crossover current density JL Nz thus decreases to
zero following a power law as the percolation threshold is
approached from below and H is the exponent character-
izing the power-law behavior. Note that with the present
model for the percolating network, H does not depend on
a, i.e., the crossover current density behaviors the same
way independent of the detail of the nonlinear behavior
of individual normal bonds.

GI. DISCUSSION

Near the percolation threshold, JL NL vanishes with a
power law with exponent K=vd(d —1)—1. To show
that this is the case, we use the standard values for vd '
which give H =

—,
' and 0.76 for d =2 and 3, respectively. '

The exponent H increases as dimensionality increases and
takes on the value H =—', for d =6, the upper critical di-

mension of percolation. Hence, H & 0 for all d.
The result Eqs. (8) and (9) implies that due to the re-

stricted geometry near the threshold, the nonlinear be-
havior is enhanced relative to the case of a full lattice of
nonlinear bonds. This result will be of potential practical
use because such percolating S/N composite has a high
conductance and yet is highly nonlinear. It is well known
that the system of X/5 composites can be related to a
N/I composite if the dielectric constants are considered
instead of the conductivities, as the imaginary part of the
dielectric function of a normal component diverges at the
low-frequency limit and thus plays the role of supercon-
ductor in a S/N composite. ' Thus, with slight
modification, the result here can be used in X/1 compos-
ites in the low-frequency regime. It will be interesting to
see if other methods such as the eft'ective- medium ap-



41 BRIEF REPORTS 1675

proximation, real-space renorrnalization analysis, ' and
computer stimulations give similar result as the simple
scaling theory presented here.
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