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Strong-coupling theory for the multidimensional free optical polaron
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A Landau-Pekar variational theory is employed to study the multidimensional free-optical-
polaron problem in the strong-coupling regime. The ground-state energy, the effective mass, and
the average number of virtual phonons around the electron are obtained in harmonic-oscillator and
hydrogenic approximations. It is shown that no simple dimensional scaling relations exist in the hy-
drogenic approximation.

The multidimensional polaron problem introduced re-
cently by Peeters, Wu, and Devreese' (PWD) has generat-
ed a great deal of interest. This problem is indeed in-
teresting and holds promise because it serves as a model
system for the study of the dimensional dependence of
polaronic properties. Several investigations have fol-
lowed since the work of PWD and quantities such as the
ground-state (g.s.) energy, the effective mass, the im-
pedance function, the mobility, the average number of
virtual phonons around the electron, etc. , have been cal-
culated by using different approximate methods. The
general consensus is that the polaronic effects are more
pronounced in lower dimensions.

In a recent paper we have investigated the multidi-
mensional free-optical-polaron problem in the
intermediate-coupling regime by generalizing the Lee-
Low-Pines (LLP) canonical transformation method to N
dimensions. In the present paper we study the same
model problem in the strong-coupling regime. The g.s.
energy, the effective mass, and the average number of vir
tual phonons around the electron in the g.s. are calculat-
ed by a variational method in which the phonons are de-
scribed classically by the coherent state and for the elec-
tronic part two trial functions are used, namely, the
Gaussian function and the hydrogenic 1s wave function.
It turns out that the harmonic oscillator approximation
provides a better description for the electron motion. In
both cases, however, the polaronic effects appear to di-
minish with increasing dimensionality. As expected, our
harmonic oscillator approximation results for the g.s. en-
ergy and the effective mass do follow from the corre-
sponding PWD expressions in the limit a~00. Conse-
quently, the resulting PWD scaling relations for these
quantities are obtained. We explicitly show that the
strong-coupling expression for the average number of vir-
tual phonons around the electron in the g.s. also satisfies
a similar scaling relation in this approximation. (In Ref.
7 the same scaling relation was obtained in the intermedi-
ate coupling LLP approximation. ) In the hydrogenic ap-
proximation, however, the PWD scaling relations are not
satisfied by any of the three quantities we have con-
sidered.

The multidimensional free-optical polaron may be de-
scribed by the Frohlich Hamiltonian generalized to N di-
mensions (ND):
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Here all the vectors are N dimensional and units have
been chosen such that 8=m =m=1, n being the Bloch
effective mass of the electron and to the optical-phonon
frequency which is assumed to be dispersionless. Follow-
ing the prescription of PWD the electron-phonon interac-
tion coefficient gq may be written as
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where P =p+ gq qb qbz is the total momentum operator,
p standing for the electron momentum, u is the Lagrange
multiplier which may be identified as the polaron veloci-
ty, and

pq=(4(r)le' "I@(r)) .

Variation of (4) with respect to f* now yields

fq= —g~ql(l —u q),

so that (4) becomes

where V is the volume of the N-dimensional polar crystal
and e is the dimensionless electron-phonon coupling con-
stant.

We now choose for the trial wave function for the
Hamiltonian (l) the Landau-Pekar ansatz

Ie &=I@(r)&exp g(f„b f'b ) IO)—, (3)
q

where fq will be treated as a variational function, IO) is
the unperturbed zero phonon state satisfying b IO) =0
for all q, and 4(r) is some electronic function to be
specified later and extremize the quantity'
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To make further progress we have to choose 4(r) for
which we take two trial functions. Let us first choose
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where A, and po are variational parameters. Equation (7}
now reduces to

In the harmonic oscillator approximation we get

a I ((N —1)/2)
2N r(N/2)

Though (17) can be shown to follow from (14) and (15) it
has not been reported earlier, to our knowledge, in its ex-
plicit form. It is apparent from (14), (15), and (17) that
polaronic effects diminish with increasing dimensionality
and for %=3 we get back the Landau-Pekar results with
the Gaussian function. Comparison of (14), (15), and (17)
with the corresponding three-dimensional (3D) expres-
sions leads to the PWD scaling relations
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where terms up to quadratic in u have been retained.
Variations with respect to po and A. give No«N 3o» I'((N —1)/2) 3&m'
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Also for the average number of virtual phonons in the
cloud around the electron in the g.s. there exists a similar
scalar relation

and therefore the variational energy takes on the follow-
ing expression:
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For the electronic function we next take the ND
Coulomb g.s. wave function

and the expectation value of the total momentum opera-
tor becomes (where av denotes average)
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(13) with r and po as the variational parameters. The results
are

Thus the g.s. energy and the effective mass of an N-
dimensional polaron are given in the harmonic oscillator
approximation by HANDg. s. , C
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m Hon = [I ((N —1)/2)/I (N/2)] (15)
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which follow immediately from the a~~ limits of the
general expressions obtained by P%D and Peeter and De-
vreese. %e can also calculate the average number of vir-
tual phonons around the electron in the g.s. which is
given by
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which again show that the polaronic effects become
weaker in higher dimensions. But now we do not have
any simple scaling relations like (18)—(20). Thus, as has
been rightly pointed out by Peeters and Devreese, the
existence of the scaling relations depends crucially on the
approximation one invokes.
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