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Conduction electrons in GaAs: Five-level k.p theory and polaron effects
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Properties of conduction electrons in GaAs are described theoretically using a five-level k-p mod-

el, which consistently accounts for inversion asymmetry of the material. The dispersion relation

E(k) is computed and it is shown that the conduction band is both nonparabolic and nonspherical.

The energy dependence of the electron effective mass, the energy-momentum relation in the forbid-

den gap, and the spin splitting of the band are calculated. Analytical expressions for the band-edge

effective mass, the spin splitting, and the Lande factor g are presented, taking explicitly into ac-

count an interband matrix element of the spin-orbit interaction. A five-level P p theory for the con-

duction band in the presence of an external magnetic field is developed. Resonant and nonresonant

effects due to polar electron-optic-phonon interaction are included in the theory. The spin g value

of conduction electrons is calculated as a function of energy and magnetic field. Spin-doublet split-

ting of the cyclotron resonance and the cyclotron-resonance-mass anisotropy are described. A com-

parison of the theory with experimental data of various authors is used to determine important band

parameters for GaAs. It is sho~n that away from the band edge the polaron effects in GaAs are

comparable to the band-structure effects.

I. INTRODUCTION

Gallium arsenide has become in recent years the
second most important material for semiconductor appli-
cations. This has motivated numerous experimental
investigations of the three-dimensional and two-
dimensional systems involving GaAs. On the other hand,
the theoretical band structure of GaAs used in interpreta-
tions of the experimental data has been largely
oversimplified. It has been commonly assumed that the
conduction band of the material is spherical and parabol-
ic. %'hen this assumption proved manifestly insufficient,
a simple nonparabolic spherical model has been used.
Such a model is provided by a three-level k p description,
in which one takes explicitly into account the I 6 conduc-
tion level and the I 8 and I 7 valence levels, neglecting all

other bands. '2 This model successfully describes the
conduction bands of narrow-band-gap materials InSb,
InAs, and Hg, „Cd„Te, since in this case the I 6-I 8 and
I 6-I 7 interactions dominate. The model also has the
merit of simplicity, providing analytical expressions for
the eigenenergies and eigenfunctions.

However, it has become increasingly clear that the sim-
plest three-level k p model is not sufficient to describe
correctly the conduction band of GaAs. Hermann and
Weisbuch indicated that it is not possible to account for
the band-edge values of the effective mass mo and the
Lande factor go within this framework. Experiments on
the electron-spin relaxation showed that the Kramers de-
generacy of the conduction band is lifted due to lack of
inversion symmetry in the zinc-blende lattice.
Cyclotron-resonance data of high magnetic fields demon-

strated a pronounced band's nonparabolicity, while the
data for different field orientations exhibited an observ-
able band's nonsphericity. A11 these features cannot be
described by the three-level model with neglected distant
bands.

A natural extension of the three-level model is the ap-
proach of Kane, in which the k p interactions with dis-
tant bands are included in the second-order perturbation
theory (i.e., up to k terms). A similar approach, taking
into account the presence of a magnetic field, is known as
the Pidgeon and Brown model (cf. also Grisar et al. and
Weiler et al. ). The inclusion of distant bands allows one
to describe realistically the I 6 conduction band, as well
as the I 8 and the I 7 valence bands in narrow-gap semi-
conductors. However, as far as the conduction band of
GaAs is concerned, this approach has two shortcomings.
The first is practical: the model contains quite a few
band parameters which do not have a clear physical
meaning and which can be determined only by interpret-
ing numerous data, as was the case for InSb. ' The
second is more fundamental: GaAs is not a narrow-
band-gap semiconductor and the fundamental gap Eo be-
tween the the I 6 and I 8 levels is about 1.5 eV, while the
gap E, between the I 6 and the upper I 7 conduction level
is about 3 eV. Thus, the k.p interaction across the gap
Eo is not really dominant and one may not expect even
an improved three-level model to work well for GaAs. It
has been recently shown that this model gives a weaker
band nonparabolicity than the one observed experimen-
tauy. "

An alternative approach to that of Kane' and of
Pidgeon and Brown has been proposed by Ogg' (cf. also
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Refs. 13 and 14). It uses the band-decoupling scheme of
Luttinger and Kohn' to higher orders of the k p pertur-
bation. This way one obtains an effective one-band Ham-
iltonian, which accounts for a band's nonparabolicity (up
to k terms}, nonsphericity, and spin splitting. As
demonstrated by Golubev et al. , this scheme is useful
when discussing anisotropy of the cyclotron-resonance
data. Otherwise, however, this formalism neglects higher
powers of k terms, it requires a large number of parame-
ters, employs complicated symmetry considerations, and
it is inconvenient in finding the corresponding wave func-
tions.

Having in mind a precise description of the conduction
Pand in GaAs and similar materials, we have developed a
five-level k p model, which takes explicitly into account
two additional conduction levels I 8 and I 7. A similar
approach for the 8 =0 case has been proposed by
Rossler. ' In our description we take consistently into ac-
count the lack of inversion symmetry by including the in-
terband spin-orbit term 5 (cf. Ref. 17), and we show that
it plays a substantial role in the description of magneto-
optical data.

Although GaAs is a weakly polar material, it has been
shown recently that some of its magneto-optical proper-
ties can be understood only by accounting for polar in-
teraction between electrons and phonons. ' ' To this
end we incorporate into our description nonresonant and
resonant polaron effects and demonstrate that indeed
they are comparable to the band-structure effects away
from the band edge.

II. FIVE-LEVEL k.p THEORY

We first consider the case of no external fields. The ini-
tial one-electron eigenvalue problem reads

+ Vo(r)+ (o XVVo) p O'=E]I], (1)
2mp 4m 2c2

The E'" energies are defined below. The index
/'=1, 2, 3, . . . runs over the bands, and

1
p, , =—«, , p+ («XVV«) «(j .

4mpc2
(5)

The second term on the right-hand side (rhs) of (5) ap-
pears to lead to linear k terms in the energy E(k) and it
has been often cited in the literature in this context.
However, as shown by Bir and Pikus, this term vanishes
for 1 =I'. There exist other sources of linear k terms in-
volving combinations of the spin-orbit and k p interac-
tions (cf. Kane ').

If the Q& amplitudes satisfy rigorously Eq. (3), the inter-
band spin-orbit terms 8]'; do not appear in (4). Howev-
er, we will use functions which do not satisfy (3) exactly,
so that Hl'I' remain.

In the following, we consider a five-level model (5LM}
of the band structure at k =0 (cf. Fig. 1). The set of LK
amplitudes used in our calculations is specified in Table I.
Periodic functions S and X,Y,ZQ', Y',Z' are assumed to
be real and to transform like s-like and p-like atomic
functions under operations of the tetrahedral symmetry
group. The X', Y', Z' functions denote the conduction p-
type levels; the X, Y,Z functions denote the valence p-
type levels. The Q& functions given in Table I diagonalize
the spin orbit within (I t], I 7) and (I ]],I 7) multiplets. As
a consequence, due to inversion asymmetry of the zinc-
blende lattice, there exists also a spin-orbit coupling 5 be-
tween the above multiplets (Pollak et al. ] }. One could
choose a more complicated basis, in which the interband
spin-orbit term would not appear, but this would in turn
complicate the interband matrix elements of the momen-
tum.

In the basis of Table I (taken in order,
Q], Q9 Q3 Q]] Q5 Q]3 Q7 Q]] Q3 Q]o Q4 Q]3 Q6 Q]4), the
matrix (4) takes the form (6} at right, in which
k+=(k„haik )/3/2 and A, =E—A k /2mo.

where Vp is the periodic lattice potential, mp is the free-
electron mass, and the spin-orbit term is written in the
standard notation. We look for solutions of (1) in the
form of Luttinger and Kohn (LK), '

%k (r) =exp(ik r) g c] (k)Q&(r) . (2)

The summation is over all bands and the index m indi-
cates the band of interest. The LK periodic amplitudes
satisfy (1) at a band's extremum (at k =0 in our case),

p + Vo(r)+ (o X VVo)'p Q] =E]oQ, ,
2mo 4m oc

where E,p is the edge energy of the 1th band. The LK
functions are orthonormal: (1/Q)(Q] ~Q]) =5]], where
the integration is over the unit cell Q. We insert (2) into
Eq. (1) and use (3). Multiplying on the left by (1/Q)Q]",
and integrating over the unit cell, one obtains

C
c

15

CC
1

Po

Ulcc.
C15

Eo

2 2

E + E5].]+ k p]]+—H]'] c] =0 .(I) S.o. m

I 2mo mp

(4)

FIG. 1. Five-level model for the conduction band of GaAs
near the I point of the Brillouin zone. The interband matrix
elements of momentum and of the spin-orbit interaction are also
indicated.
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in which Gp=Ep+Ap and G1=E1+A1~ In GaAs, 6 is
small and the above energies are close to the observable
ones.

The spin-orbit energies are defined as

', , (x![vv,,p], !z&,
4Pt2 pc

, , &x![vv„p],!z &,
4m oc

Z = — (x![v v, p] !z'&,
4P7l oc

and the momentum matrix elements are

N

I

I I

+

'„&s!q„!x&,
mpn

'„(s!p„!x&,~o

g= '„(x!p,!z'&= ' (x'!p, !z& .
mpQ m00

(10)

O O

o

Equating the determinant of the matrix (6) to zero, one
can calculate numerically the E(k) dependence resulting
from the five-level model if the band-edge energies and
the matrix elements are known.

We use the energy gaps measured experimentally.
Thus we take Ep= —1.519 eV, ' 60= —0.341 eV,
E1=2.969 eV, ' and 61=0.171 eV. The sign and
value of the interband spin-orbit energy 5 lately has be-
come a subject of interest. ' We take 6= —0.061 eV,
calculated with the use of the empirical pseudopotential



1564 P. PFEFFER AND W. ZAWADZKI

TABLE I. Luttinger-Kohn periodic amplitudes used in the 6ve-level model. The total angular
momentum j and the band-edge energies E'" shown in the middle entries refer to functions on both
sides.

Jz

u] =+1/3R '+ ~
—+2/3Z

u2=R+ f

u3 =&2/3R+ &+&1/3Z' f

u4 =1Sf

u ) =&1/3R+ $ —&2/3Z f
u6=R+ f

u7 =&2/3R+ &+&1/3Z f

E(I)

El

E()
El

u1

u, =&1/3R' 't+&2/3Z'$
u9= —R'

u, 0=&2/3R' 't —&1/3Z'|,
u1]=iS&

u12 =&1/3R 't+ &2/3Z $

u13 = —R

u11 =+2/3R $ —+1/3Z

1

2

—3
2

1

2

1

2

1

2

3
2

1

2

method of Gorczyca.
We use also the band-edge values

mc (expt) =0.0660mc, go = —0.44

determined in the cyclotron resonance and in the spin
resonance, ' respectively. We discuss the polaron
effects in Sec. V. It should be mentioned, however, that a
nonresonant polaron correction must be accounted for
when determining the bare electron mass m 0. Using the
relation m c (expt) =m ~~ =m c(1+a/2)/(I+a/3) (cf.
Ref. 19), and the polar coupling constant a=0.065, we
calculate the bare mass mo =0.0653mo. This value is
used in the P p calculations for electrons in the presence
of a magnetic field.

The momentum matrix elements Pc,P, , Q have been
treated as adjustable parameters in the overall best
description of various experimental data. This procedure
is outlined in the next section.

It has been noticed by Hermann and Weisbuch that
also the five-level k p model cannot account for the
band-edge values of mo and go. We follow their pro-
cedure by adding the far-band contributions C and C' to
mo and go, respectively. This is equivalent to adding the
term (tit'k /2mc)C to the E(k) relation obtained from
5LM. This way of including the far bands is admittedly
an approximation. In principle, different far-band contri-
butions should be included in the diagonal terms of the
matrix (6). However, since we are interested mainly in
the conduction band, the above procedure should give
good results.

Thus, our model contains all in all five adjustable pa-
rameters. Our best ad~usted values for the conduction
band of GaAs are

values of Pc, P„and Q, we have used a slightly difFerent
value of C= —2.31.

It should be noted that, within the framework of 5LM,
the linear k terms do not appear.

III. k p THEORY: RESULTS

~ 01 1
tQ

N(10 em )
10 aO

I I

0.3

0.2

We first calculate the E(k) dependence for the conduc-
tion band. In the five-level model the conduction band is
nonspherical, nonparabolic, and spin split (for a given
general direction of k). The nonsphericity is related to
the Q terms. The spin splitting is related to all four ele-
ments Pc, P, , Q, and b, [cf. (14)], but more particularly it
is due to nonvanishing values of P, and 6 (which vanish
in crystals with inversion symmetry). Figure 2 shows the
calculated E(k) dependence for the three directions of k.

In order to describe explicitly the band nonparabolicity
and to facilitate calculations which do not require high
precision, we introduce an effective two-level formula,

2 2

, =E 1+ (11)
2m 0 Eo

in which mc =me(expt) and an effective value of E&& &0

Ez =27.86 eV, E& =2.36 eV, E&=15.56 eV,
0 1

in the standard units Ep =ZmoP /R, and

C = —2. 15 and C'= —0.0215 .

The above value of C has been obtained by taking into ac-
count the polaron correction, i.e., doing the P p calcula-
tions (for the presence of a magnetic field) with the bare
electron mass and including, subsequently, nonresonant
and resonant polaron corrections (cf. Sec. V). In the non-
magnetic calculations we have used the experimental
mass value mc (expt) and, in order to have the same

0.1

4 6 e
It'(10"cm ')

FIG. 2. Dispersion relations E{k)for the conduction band of
GaAs. The dotted line indicates parabolic spherical band. The
upper solid line shows the dispersion for k~~[001] according to
5LM, the lower solid line the same for k~~[111], and the
dashed-dotted and dashed lines the dispersions of the spin-up
and spin-down states for k~~ [011],respectively.
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is adjusted to fit the mean E(k) value at k=5.5X10
cm ', averaged over the three k directions (values for
k~([001] and k(~[111]are counted twice as they are spin
degenerate). Equation (11) has been used often in the
description of InSb, InAs, and other narrow-band-gap
materials and it is easily applicable to various observable
properties. ' Our adjusted value is Eo =0.98 eV. Com-
paring the effective value Eo with the fundamental gap
~Eo~, one can see that 5LM describes a considerably
stronger nonparabolicity than the two-level model with
the real energy gap ( a parabolic band corresponds to
Eo = ee). Equation (11) is more general than it may ap-
pear, since it represents the Srst two terms of the general
expansion of k (E) in powers of E, cf. Ref. 31. It should
be borne in mind, however, that the description (11) is in-
creasingly less valid as k becomes large.

Figure 3 shows the electron velocity: u; =i)i ' BE/Bk;
for k~~[001]. The dashed line has been calculated for the
two-level formula (11) with Eo =1.52 eV. In the latter
case the velocity reaches the maximum value asymptoti-
cally for large energies, which is characteristic of the
semirelativistic behavior. In the five-level description
the velocity goes through a maximum of v,„=10
cm/sec. Experimentally, the highest electron velocities
of v =9X10 cm/sec have been reported in experiments
with ballistic electrons.

At the band edge the conduction band is spherical and
the effective mass can be defined unequivocally. Using
the second-order perturbation theory with respect to k
terms in the matrix (6), we have derived the following ex-
pression for the effective mass at the I 6 edge:

r

mo 1 26', Ei=1——Ep +
0 3 ' EOG] E& Go

2E(i Go
+EpEp +

E~(mev)
10 50 100 800

in which the primed quantities have been defined in (8).
For b, =0 the above formula reduces to that given by
Hermann and Weisbuch.

For a spherical or spheroidal band with an arbitrary
nonparabolicity, an effective electron mass may be
defined, relating the velocity v to the pseudomomentum
Ak. ' Such a definition does not seem possible for the
warped energy band with which we deal. However, one
can define a cyclotron-resonance effective mass for a
given direction of magnetic field (cf. Sec. VI). For
sufficiently low magnetic fields the cyclotron-resonance
mass is a quasicontinuous quantity. In particular, in a
spherical but nonparabolic band the cyclotron-resonance
mass at low fields is equal to the momentum mass:
1/m =(1/fi k)dE/dk, defined by the relation m'v
=8k.

The details of the calculation of the Landau levels are
described below. In Fig. 4 we show the cyclotron-
resonance masses calculated at low field intensities for
three principal directions of magnetic field. The mass
values are compared with experimental results of various
authors and various techniques. The data at high Fermi
energies are well described by 5LM. In the effective two-
band description (11), the energy-dependent effective
mass is m '(E)=m o (1+2E /Eo ) (cf. Ref. 31).

In Fig. 5 we show a calculated spin splitting of the
electron energies in GaAs for the k~~[110] direction. This
splitting is due to the lack of inversion symmetry and
obeys the relation E&(k)=E&(—k). The splitting van-
ishes at k =0 and at the zone edge k =3m /2ao. We also
show for comparison the results of Christensen and Car-

+—'Z /E .E +C,
0.1.2 GaAs

(12) 0.10

N
GaAS

O
O

0.5

L ——
L 00i

0 I

E(eV)

FIG. 3. The electron velocity in the conduction band of
GaAs vs the electron energy, as calculated according to the
two-level k p model (dashed line) and using &LM for k)([(X)l]
(solid line).
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I
0.08 I ~&

0 +~ qg II

n

a ~ a ~ a ~ ~ al a a a ~ aal a a a a a a ~ al

10 10 3 10
N(em )

FIG. 4. The cyclotron-resonance effective mass of electrons
in GaAs vs the Fermi energy (upper abscissa) and the corre-
sponding free-electron density (lower abscissa). The solid lines
show the results of 5LM calculations for three principal direc-
tions of the magnetic field. Experimental data: 0, Y. I.
Ukhanov (Ref. 34); +, H. Piller (Ref. 35); D, W. M. De Meis
(Ref. 36); 0, A. Raymond et al. (Ref. 37); e, G. Torkar (Ref.
38); f, W. G. Spitzer and J.M. Whelan (Ref. 39);0, C. G. Olson
and D. W. Lynch (Ref. 40); El, K. Murase et al. (Ref. 41); l3, M.
Cardona (Ref. 42); 0, E. P. Rashevskaya et al. (Ref. 43).
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—15-—10
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FIG. 6. The dispersion E(k) for imaginary k values in the
forbidden gap of GaAs. The dashed line has been calculated ac-
cording to the two-level model, the solid line according to 5LM
for k~~[001]. The experimental data: squares, Padovani and
Stratton (Ref. 49); circles, Conley and Mahan (Ref. 50).

FIG. 5. Spin splitting of the conduction band in GaAs due to
inversion asymmetry vs the wave vector k~~[011], as calculated

according to 5LM (solid line). The dashed line shows the results

of LMTO calculation.

Po(2G I +E'i ) —P f (2Eo+ Go ) (14)

For b =0, expression (14) reduces to the formula pub-
lished by Zawadzki et al. Using our parameters we cal-
culate, for GaAs, y =24. 12 eV A

The value of y can be measured in experiments on spin
relaxation of conduction electrons (Dyakonov and Perel'
mechanism ). Using this method Aronov et al. es-
timated, for GaAs, y =20.9 eVA . [This has been cal-
culated from the value a =0.06, using the relation
2y =ah I (2m o I ~ Eo ~ )

' .) Marushchak et al. estimat-
ed y =24.5 eVA (from a=0.07). Thus our calculation
is in good agreement with the experimental data.

In Fig. 6 we show the E(k) relation in the forbidden
gap of GaAs, calculated for k &0 (i.e., imaginary k
values) with the use of 5LM and k~~[001]. The dotted
line shows the same for the two-level model (ll) with
~Eo~ =1.52 eV. This region of energies is not accessible
classically and the experimental values have been ob-
tained in tunneling experiments on Schottky barriers.
We get a qualitative agreement between the theory and
experiments, but the latter are not precise enough to
draw quantitative conclusions.

dona, obtained from a self-consistent linear muSn-tin
orbitals (LMTO) calculation (adjusted band model). The
comparison shows that our calculation correctly de-
scribes the spin splitting up to k =2.5 X 10 cm ' and ac-
counts for its maximum.

At low k values the inversion asymmetry splitting is
proportional to k . Using matrix (6) and the third-order
perturbation theory with respect to k terms we have de-
rived the following expression for the splitting at low k,

bE=2y[k (k k +k k +k k ) —9k k k ] (13)

where

4y=
3 E E G G

PoPi«P'i —GoGI}
0 1 0 1

—1.9

—2.1

—2.3—
3 1 2

k, (10 cm )
1

k„(10cm )

FIG. 7. The dispersion relations E(k) for the light-hole and
the split-off valence bands in GaAs, as calculated according to
5LM for two k directions.

Finally in Fig. 7 we show E(k} dependences for the
light-hole and split-off valence bands for k~~[100] and

k~~ [110].These have been calculated using 5LM with the
above band parameters and C =0. The light-hole
band is seen to be strongly spin split. In the split-off
band the spin splitting is much smaller. The calculated
light-hole masses at the band edge are m~z(k~~[100]}
=0.080 82ttto, m ~z(k~)[110])=0.070 54mo, and

m~'h(k~~[111]) =0.068 13mo. These are to be compared
with experimental values: ttt ~z(8~~[001])=0.087mo, '

rn &z
=0.082m o, and m &z (B~~

[001]) =0.082mo. s

For the split-off band we calculate for the three princi-
pal directions of k approximately the same value

m,', =0.1653mo. This is to be compared with the
measured values of tn,', (8~~[001])=0.170trto, '

m,', =0.159mo, and ms p 0 154mo.
Thus 5LM gives a good description of the light-hole

and split-off bands, particularly if one would include, in
addition, appropriate far-band contributions. The 5LM
description considerably modifies results of the three-
level model, in which E(k) for the light holes may not go
below the energy of 2b,o/3 (cf. Kane '). The E(k) depen-

-1.5,
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dence shown in Fig. 7 describes the physical reality con-
siderably better.

On the other hand, one may not expect 5LM to de-

scribe the heavy-hole band well, since it includes the k p
interaction of the I s(hh} edge with only one multiplet
(I s, l 7). This is not enough to reproduce correctly the
heavy-hole masses.

I

+
~ O

IV. P p THEORY

A. Five-level model for BAO

o~ 0 +

Precise values of band parameters near a band's ex-
tremum may be obtained from magneto-optical experi-
ments and their comparison with the theory. It is there-
fore of interest to describe the conduction band of
GaAs-like materials in the presence of an external mag-
netic field. Below, we develop the five-level model near
the I' point for the case BPO.

The initial one-electron eigenvalue problem reads

c4 4
0 {~ 0

I I

+

4„

+
4„

I

p'+y (r)+, , (o XVV, ) P+psB o q'=Eq',
2~0 oc

(15)

C4

I

I

+

where P =p+ e A is the kinetic momentum, A is the vec-
tor potential of magnetic field B, and the Pauli term is
written in the standard notation. Due to the presence of
a magnetic field the eigenvalue problem (15}is not period-
ic. We look for its solutions in the form

ql=g fi(r)ui(r), (16)

in which u&(r) are the Luttinger-Kohn periodic functions
satisfying (3), and f&(r) are the envelope functions, slowly
varying within the unit cell. The summation is over all
energy bands. Inserting (16) into (15), using (3), multiply-
ing on the left by (1/Q)u&', and integrating over the unit
cell, one obtains

1 P +E'" E5 + p—.P1

2mo

+

I

+
I

.o

+psB oi i+Hi~ (fi =0 '. (17) + 4
Cl„

The matrix elements p» are defined in (5), and
o&&=(1/Q)(u&. IoIu&). The interband matrix elements
of the spin-orbit interaction have been retained for the
reasons discussed in Sec. LI.

Equation (17} represents a set of coupled differential
equations for the envelope functions f&. It involves as yet
no approximations, apart from the requirement of slow
variation of A(r) and f&(r) within the unit cell. We
proceed as in the no-field case specifying 5LM (shown in
Fig. 1) and taking the set of basis of LK functions given
in Table I. The resulting eigenvalue problem is written in
matrix form (17), in which the matrix is given in Eq. (18)
at right.

I

} oo

I

I

I

o
I
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The same ordering as in (6) has been used. We define

Po =Po/fi, P', =P&/h', Q'=Q'/i', A. =E P—/2rno,

p =IJ&B, and P+ = (P„+iP~ )/&2. The ordering has been
chosen in such a way that for Q'=0 and P, =O the ma-

trix (18) factorizes into two 7 X 7 sets. The matrices A &,

A2, and D are given below for principal directions of
magnetic field. The direction of B is specified by the vec-
tor potential A. %hen specifying A one should keep in
mind that the functions u, used to obtain the matrix (18)
are written in the coordinate system parallel to [100],
[010],and [001]crystal directions.

I

jew

+

o
=o
A +

~ O

B. Approximation Q =0

We first consider the approximation Q =0, which re-
sults in a spherical conduction band. Consequently, the
energies do not depend on the direction of magnetic field.
We take the gauge A = ( —By,0,0), corresponding to

B!![001]. One can then look for the envelope functions in

the form f& =exp(ik„x+ik, z)P&(y). We further simplify

the problem by considering the case k, =O, which is of
main interest in magneto-optical and magnetotransport
phenomena.

For Q =0 and k, =0 the set (17) factorizes into two

7X7 sets, which are soluble in terms of harmonic-
oscillator functions. The first set has the solutions

+
+ +0 & 0 ~ 0

I&

+
I

~ 0

I

ch +

O

I +

+
Q

Ci!n —1)
C, !n+1)
C, !n

—1)

Cii(n )

C In —1)
C„[n+1)
C7!n —1)

(19)

P ~n ) = —(fi/L)(n +1)' ~n +1),

P —
I
n ~

= (A/L )n '
I n —1)—,

(20)

(21)

where N=n, and n ) =exp(ik„x)P„[(y yo)/L], in-
which yo=k„L is the center of oscillations,
L=(fi/eB)'~ is the magnetic radius, and P„are the
harmonic-oscillator functions. The C& coeScients in

front of oscillator functions with negative indices are
equal to zero. The corresponding number matrix is cal-
culated from (18) performing the operations

( OO

I

—Ic4

+
+

O

+
I

I

—l~

4„+
I

I

CO

I

~ frv

+

+

I

P ~n ) =2(A'/L) (n+ —,')~n ) . (22)

This way one obtains Eq. (23), at right, in which
Po =Pc/L and P", =P, /L. The eigenvalues give the
magnetic energies of the seven bands involved ("b" or"—"states) for the Q =0 (spherical) case.

For the second set the eigenfunctions are

)cv

+

+

+
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~ In+1&

C, In
—1&

C„in+1)
e+=.c, in &

C„in+1)
C, in —1)
C„In+1)

(24)

O O
CV

I

+

( oo

I

+
+

O

+

+
~ O

The corresponding number matrix is calculated from (18)
performing operations indicated in (20)—(22). The result
is Eq. (25), at right. The eigenvalues give the magnetic
energies of the seven bands involved ("a" or "+"states)
for the Q =0 (spherical) case.

Using (23) and (25) it is possible to derive an analytical
expression for the spin g value at the edge of the conduc-
tion band (which does not involve the Q terms). Calculat-

ing the polynomial F,(E„n,B)=0 from (25) and the po-

lynomial F&(Eb, n, B)=0 from (23), one can calculate

(dE, /dB)z 0 and (dEb/dB)z 0, which determine the

linear expansion of the energies in B. Their difference

gives the band-edge g value in the five-level model. The
result is

I

+I~
I

O & O O O
ICI Ci

+
+

~ O

I

+
+

O +4„

I

~ O

E
+EP

E0G,
Go

EiGo

r

2 El Gl
2+ E0 P Ei Go E0G

+

a„

R„

+ - lfv

+

+

O

2 1—-'b« /E E +
0 & EG EG

1 0 0 1

+2C',

C. General case: Bii[0O1]

We now turn to the general case of QWO, in which en-
ergies depend on the direction of the magnetic field.
We consider first BII[001] crystal direction, taking
A=( —By, 0,0). The matrices A „A2, and D, indicated
in (18) are then obtained in the form

1
A, = — —Q'P,v'3

—Q'P,
3

&2/3Q'P, —(27)

(26)

in which the constant C' represents the far-band contri-
bution. For 6=0, the above formula reduces to the ex-
pression given by Hermann and Weisbuch. We have
used (12) together with (26) for the band-edge electron
mass in a preliminary fitting of the band parameters.

I

~ icv

+
+

(
OO

+

+

I ra

+
I

O

+
+

I

+
+

+

I

&2/3Q'P, 2Q
3
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A2 = — Q'P,1

v'3

1~ Q'P,

&—2/3Q'P, (28)

N —1, —

N+3, —
(32)

&2/3Q'P, 2Q
3

D = &2—/3Q'P

&2—/3Q'P

&1/3Q'P

O'P+

&1/3Q'P

(29)

In order to find the eigenenergies we use the method of
Evtuhov, applied for the first time to warped valence
bands of Ge. The method is based on the fact that devia-
tions from a band's sphericity are small. Thus we look
for each envelope function of the set in the form

for the N+ states (set a). Here N+ and W denote ma-
trices (23) and (25), respectively, and Q symbolically
denotes matrices containing only Q terms.

If one is interested in energies of N* states for not
overly high numbers N, it is enough to include the
nearest-neighbor matrices and to truncate the rest. This
is good enough for the I 6 conduction band since the Q
terms do not couple directly to the I 6 band edge. We
have checked that for low N an inclusion of the second-
neighbor matrices changes magnetic energies in the con-
duction band only by a fraction of a percent. Thus for
8~~ [100]the calculation amounts to a diagonalization of a
21 X 21 matrix.

f&(r) =exp(ik, z) g c' ~m ), (30) D. General case: B))[110]

N' —3, +

N+1, +
(31)

for the N states (set b), and

where ~m ) functions have been defined above and c' are
numerical coefticients. We again set k, =0. To focus the
reader's attention we consider the first equation of (18).
The forms (30) are introduced to this equation and indi-
cated operations performed according to (20)—(22).
Next, the equation is multiplied on the left by (0~ and in-
tegrated over the crystal volume. This leaves only a few
nonvanishing terms and the result is a simple algebraic
equation for a few c' . Next, the same equation is multi-
plied by ( 1

~
and integrated, resulting in the next algebra-

ic equation for a few c' . The procedure is repeated with
higher oscillator functions. A similar calculation is then
carried out with the remaining 13 equations of the set
(18). This way one obtains an infinite set of equations for
c . The solutions of this set contain magnetic energies
for all the bands involved and all the quantum numbers
1V.

In practice, one solves the problem by truncating the
infinite set and looking for good approximate solutions.
For this purpose one should order the equations for c'
according to increasing quantum number N. This is best
done by requiring that for Q =0 the infinite matrix fac-
torizes into the 7X7 matrices (23) and (25), ordered ac-
cording to increasing N —:0+, 0, 1+, 1, etc. When
this is done one finds that the infinite matrix (with Q
terms) factorizes into two independent infinite matrices.
The latter, when truncated to the "nearest neighbors"
coupled by the Q matrices, have the following schematic
forms:

For the B~~[110] crystal direction we take the gauge
A=(Bl2)(0,x, —x). In order to obtain the spherical
part of the matrix in the previous form, we define a coor-
dinate system with the new z' axis parallel to [011]direc-
tion:

x'=(y —z)/&2, y'= —x, z'=(y+z)/&2 . (33}

Next, the new basis of the periodic functions ui'(r') is
defined to have the new functions in the new coordinates
in the same form, as given in Table I. For instance,
u 2

=(X'+ i Y') f '. This is achieved by transforming
X', Y', Z' from X, Y,Z according to (33) and the spin
functions according to (cf. Kane')

e '~ cos( —,
' 8) e '4' sin( —,

' 8)
—e '~ sin( —'8) e'~ cos( '8)—

2 2

(34)

where /=90' and 8=45'. Next, the matrix elements of
the p P operator are calculated using the new basis ut(r),
expressed in the old components X, Y,Z, 1, $. This gives
the p-P matrix in terms of three operators:
(P~ P, )/&2kiP an—d (P +P, )/v'2. Upon introducing
the new coordinates (33} the vector potential is first
transformed as a vector A'(r) in the new system and then
expressed in the new coordinates. This gives A'(r')
=( —By', 0,0). Transforming the momentum operators
into the new coordinates, one finds that the above opera-
tors define exactly raising, lowering, and parallel opera-
tors for the magnetic problem in these coordinates:
P'=(P„'+iP~)/v 2 and P,', respectively This comp. letes
the calculation of the eigenvalue problem for 8~~[011].

The spherical part of the matrix (18) (without Q terms)
is the same as for the 8~~ [001]case, while A „Az, and D
take the form
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Q'(P+ P— }

2v2
—Q'(3P +P+ )

2v'6

Q'(P P+—)

2

Q'(P+ P—)

2v'2 3

Q'(3P+ +P }

2v'6

Q'(P P+ )—

Q'(3P++P }

Q'(P —P+ ) +-
2v'2 3

Q'(3P+ +P )

2v'3

Q'(3P +P+ }

2v'6

Q'(P P+ }-
2v'2 3

Q'(3P +P+ )

2v'3

Q'(P P—+ )

2

Q—'(3P +P+ }

2v'3

2A

3

Q'(P P+—)

Q'(3—P++P }

2v'3

2A

3

(35)

(36)

Q'P,D=

Q'P,
v'2

Q'P,
v 3

Q'P,
v'6

Q'P,
v'2

Q'P,
v'6 (37)

0 Q 0
N —1,+ Q 0

N, k Q
N+1, +

0
0

0
N+3, +

(38)

It is seen that for k, =0 there is D =0, so that for this
case the matrix (18) factorizes in general into two 7X7
matrices for "a"and "b" states.

Using Evtuhov's procedure one obtains two number
matrices, which have the following schematic form (iden-
tical for both spin states)

and L9=54.73'. Again, we require that in the rotated sys-
tem the periodic functions have the same form as Table I.
This allows one to find their form in terms of X,Y,Z and
f, 1 functions. The p P operator is then calculated using
this basis. This gives the matrix expressed in terms of
three operators: [P„+P 2P, +i &3(P—

» P, )]I v12—and
(P„+P~+P, ) Iv 3. In the rotated coordinate system the
vector potential becomes A'(r')=( —By', 0,0), while the
above operators become P'+ =(P„'+iP„')Iv'2 and P,', re-
spectively. This completes the derivation of the eigenval-
ue problem for the Bii[111]direction. Again the spheri-
cal part of the matrix is the same as for the Bii[001]and

Bing[011] directions, while the Q terms are different,

The matrices on the diagonal are defined in (23) and (25),
while Q denotes matrices involving Q terms [in general,
different from those in (31) and (32)]. Again, when con-
sidering energies of not too high N states it is enough to
include the first neighboring matrices coupled directly by
Q matrices to the state in question. This requires a nu-
merical diagonalization of a 35 X 35 matrix, as illustrated
by (38).

i —Q'P—, +1, b
v'3 ' 3

i 'Q'P——

i &2/3Q'P,

i ,
' Q'P+——iv 2/3Q'P,

. v'8
i Q'P+— 2Q

3

. 1, E . V8
i —Q'P, +— i Q'P—

v'3 ' 3 3

E. General case: Bing[111]

Finally, we consider the case of the Bing[111] crystal
direction. The gauge is A =B[(x —y) l2, (x —y) l2,
(y —x)], the transformation rules become

1
i —Q'P—, +v'3 ' 3

i ,
' Q'P—

(40)

i v 2/3Q'P,

x'=(x +y —2z)v 6,
y'=(y —x)/v 2,
z' =(x +y +z) /v'3,

(39)

i ,
'Q'P+—

i 2v/3Q'P,
. v'8
i Q'P 2Q

3

i —Q'P, +—i Q'P~. v'8

3

and the spins transform according to (3), where /=45' (41)
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V'2D= —i Q'P
3 +

i —QP
1

3

—i Q'P+ —i Q'P
3

i ,
' Q—'P+

i —,
' Q'P+

where 3 =2ire Acoi (I/ic„—I /ico), and ic„and ico are the
high-frequency and static dielectric constants, respective-
ly. We are interested in corrections to Landau energies
caused by virtual-phonon emission at low energies. Since
GaAs is a weakly polar material, the Frolich interaction
is treated in the second-order improved Wigner-Brillouin
(IBW) perturbation theory.

The perturbed energy of the nth Landau level is given
by E„=E„+4E„,where the correction is

Using Evtuhov's procedure one obtains a number matrix,
which factorizes into two independent matrices. Trun-
cating the problem for N+ and N states to the nearest-
neighbor interaction via the Q terms, one has to diagonal-
ize numerically the following matrices (schematically).
For the N (set b) states

N —3, —
N, —

N —1, +

0

0
N+3, —

(43)

For the N+ (set a) states,

N —3, +
N+1, —

Q 0

Q 0
N, + Q

N+3, +
(44)

V. MAGNETOPOLARON EFFECTS

It has been recognized during the last few years that
resonant and nonresonant polaron efFects in GaAs are
comparable to band-structure effects. ' ' Clearly, some
properties are more affected by the electron-phonon in-
teraction than others, but, in principle, polarons should
be included in any precise description of magneto-optical
phenomena in this material. Below we describe the main
features of our approach. Since we are concerned with
magnetic fields below 20 T, i.e., below the resonance con-
dition fico, = ficoL (where fico„ is the energy of the
longitudinal-optical phonon), there is no need to employ
the Green-function formalism (cf. Ref. 57).

The polar interaction of electrons with longitudinal-
optical phonons is introduced in the standard way,

H = g —(b e~q' bte—1
(45)Fr q q

The diagonal matrices are defined in (23) and (25), while

Q denotes matrices involving only Q terms. Thus for the
B~~[111]direction and k, =0 a calculation of magnetic
energies requires numerical diagonalization of 28X28
matrices.

As mentioned above, the truncation of the infinite ma-
trix into blocks coupled directly by Q matrices to the
state of interest, N*, provides a very good approximation
for not overly high quantum numbers N. However, since
the matrix elements of the lowering and raising operators
behave roughly as v N and the energy differences stay
approximately the same, the first-neighbor coupling be-
comes progressively worse as N gets higher.

M„(ct) ibE„= gg
m=0 q nm

(46)

M„are the matrix elements of the Frolich interaction
calculated using the Landau wave functions, while the
energy denominators are

D„' =E„—(E~ +5~ +ficoL) . (47)

hE„,= exp( —x )x
V'L, 0 g(x+g)

(48)

The shifts 5 are related to the improvement of the per-
turbation theory and they require some consideration.

One proves in the diagrammatic analysis of the polaron
problem that in the self-energy calculation —that is, in
(46) and (47)—the energies EO,E„.. . should be final
electron energies, i.e., they should already include correc-
tions due to the electron-phonon interaction. On the oth-
er hand, it is known that a finite order of the WB pertur-
bation theory (46) is not invariant with respect to the
choice of zero of the unperturbed Hamiltonian. Shift-
ing the zero by 5 leads to a shift 5 of E„energies in
denominators (47) and, in principle, the results should be
minimized with respect to this shift. In order to improve
the WB perturbation theory according to the above prin-
ciples, Lassnig in Ref. 18 proposed to take 5 the same
for all levels and equal to 5 =b,EO, where bEO (8)
denotes the polaron shift of the zeroth level, calculated
using the Rayleigh-Schrodinger (RS) perturbation theory.
This choice has the following merits. (1) In calculating
b Ei according to (46) the decisive (resonant) term is tak-
en correctly with the final energy Eo+bEO . (2) At
8 =0 the polaron shift of all levels, calculated with the
improved BW theory, is b,E„=—aA'coL. (3) The polaron
energy for the zeroth Landau level at all B is the same for
IBW and RS theories. (4) At high fields the lower pola-
ron branch pins to E, =Eo+RoL, which is observed ex-
perimentally (cf. Ref. 19). In the following we adopt the
ansatz 5„=bEO .

For the zeroth Landau level all denominators (47) in
the sum (46) are nonresonant. The matrix elements of the
Frolich interaction between Landau states are well
known, and one can express the series (46) by an in-
tegral. ' For the first Landau level one term in (46) can
become resonant (the interaction with the zeroth state
due to the phonon emission). For this reason we break
the sum into bE'=hE„', +EEr'e» in which the non-
resonant part contains the summation from 1 to ~ and it
is again converted into an integral. The resonant part
can be expressed in the form first given by Nakayama,
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where g =(Eo+fico„+Eo E—, )/fico„and cc is the po-
lar coupling constant. We have independently calculated
the polaron corrections to the spin-up and spin-down
Landau levels since the phonon-induced spin-Aip interac-
tions are negligible. The values a=0.065 (Refs. 18 and
19) and iricoL=36. 2 meV (Refs. 19 and 63) have been used.

At 8 =0 the nonresonant IBW theory gives for all
Landau levels m„*,

&
=ma (1+ cc/2)/(1+a/3) (cf. Ref.

19). Thus at the beginning we calculate the bare mass
m 0 from the band-edge experimental mass m ',]

=ma (expt). The value of mo is used in the "bare" P p
theory and then the polaron effects are introduced. This
brings the theoretical band-edge mass at 8 =0 to the ob-
served value mo (expt). However, the resonant polaron
contribution becomes important for n = 1 as 8 increases,
so that the above procedure is nontrivial. When calculat-
ing the nonresonant part, involving a summation over the
infinite number of levels, we use a parabolic approxima-
tion to the energies, i.e., we assume that all levels are
equally spaced. In this procedure, however, the value of
%co, is computed for each magnetic field from P p theory.
In the resonant term (48) the realistic, nonparabolic ener-
gies are used.

VI. P p THEORY: RESULTS

It is now possible to discuss the calculation of the
effective masses, shown in Fig. 4. Having computed the
Landau energies for a given field orientation, we define a
cyclotron-resonance effective mass m' by the formula
E(N+1, +) E(N+)=—AeB/m'. Such a mass depends
in general on the spin orientation, the intensity and direc-
tion of the magnetic field, as well as on ¹ However, it
turns out that for low field intensities one obtains the
same mass value for a given average electron energy, re-
gardless of whether the energy is reached by changing the
spin, X, or 8, where the average energy is defined as
E = [E(N + 1,+ ) +E (N, + ) ]/2. This fact allows us to
plot the cyclotron-resonance effective masses as functions
of energy for various field directions, as shown in Fig. 4.

A similar procedure can be used to calculate the
effective Lande factor g

* as a function of energy for vari-
ous field directions. The g value is defined by the relation
E(N, +) E(N, —)=g'p—, &B Again. , one obtains the
same values of g'(E) at low magnetic fields regardless of
whether the average energy, E = [E(N, + )

E(N, —)]/2, is reach—ed by changing N or B. The re-
sults for the principal field directions are shown in Fig. 8.
They illustrate the common tendency of the g factors in
III-V compounds to reach the free-electron value of +2
at high electron energies. Since the band-edge value of
g

* in GaAs is negative, it crosses zero at achievable elec-
tron energies. A similar phenomenon occurs in InSb and
InAs.

In Fig. 9 we show calculated g* factors for X =1 and 2
as functions of magnetic field intensity for the principal
field directions. It can be seen that for 8 &30 T the g
values for N =0 and 1 have different signs. This situation
was recently realized in pulsed-field experiments of Najda
et aI65

Unequal g values for the X =0 and 1 Landau levels re-

1.5

1.0

0.5

I I ~ I I i ~ I I I ~ I ~ ~ I ~ I

0 0.1 0.2 0.3 0.4
E(ev)

FIG. 8. The Lande factor of conduction electrons in GaAs vs

the electron energy, calculated for three directions of magnetic
field with the use of 5LM.

suit in diff'erent energies of the cyclotron resonance (CR)
for spin-up (0+~1+) and spin-down (0 —+1 ) transi-
tions. In experiments with a fixed light frequency
and swept magnetic field one observes a spin doublet of
CR, in which the higher-energy transition occurs at a
lower field. In high-quality GaAs the spin-doublet is rel-

atively easy to observe since, due to small electron g
values, both ground spin states are populated at low tem-
peratures and high magnetic fields. The splitting can be
measured to a high accuracy because it is recorded in one
sweep of the field, so that it does not require a precise ab-
solute calibration of the magnet. The spin-doublet split-
ting of CR has been used by Zawadzki et al. in the first
demonstration that the five-level P p model is necessary
for an adequate description of the conduction band in
GaAs. The same effect has been used by Golubev et al.
in the first experimental demonstration that the conduc-
tion band in GaAs is nonspherical.

In Fig. 10 we show experimental results on the spin-
doublet splitting of CR for the three principal field direc-
tions, compared to our theoretical description. The split-
tings b8 between two CR peaks are plotted as functions

0..1i I I

—0.1

—0.3

—0.4

0 I I

0 10 20 B(T) 30

FIG. 9. The Lande factor of conduction electrons in GaAs
for the two lowest Landau levels vs magnetic field intensity, cal-
culated for three field directions with the use of 5LM.
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FIG. 10. Spin-doublet splittings of the cyclotron resonance
for the conduction electrons in GaAs vs B' for three field direc-
tions. The solid lines are calculated using 5LM and including
polaron effects. Experimental data: half-open circles, Golubev
et al. (Ref. 6); solid circles, Sigg et al. (Ref. 25); open circles,
Hopkins et al. (Ref. 28).

0 100 800 3 2 300
B'(T')

FIG. 11. Shifts of mean cyclotron-resonance field for the
conduction electrons in GaAs vs 8 for different field orienta-
tions. The solid lines are calculated using 5LM and including
polaron effects. Experimental data: half-open circles, Golubev
et al (Ref 6) solid circles Sigg et al (Ref 25)' open circles

Hopkins et al. {Ref.28).

of the average resonance field intensity (squared). The
thoeretical fit to the anisotropy of the splittings is our
main test in determining the parameter Q. As we have
mentioned above, Q is responsible for the band nonspher-
icity within the five-level model. As argued in Ref. 45,
the spin-doublet splitting is relatively insensitive to the
polaron effects. The reason is that, while both CR ener-
gies are substantially affected by the polaron shifts (cf.
Fig. 12), the latter are nearly the same for both spin tran-
sitions, so that their difference is only weakly affected. It
should be emphasized, however, that in contrast to Refs.
25 and 45 the polaron effects have been included in the
present description.

In Fig. 11 we show differences of average CR fields
measured for different B directions, B~», j

—
Btoo, ~

and

B~o»~
—

Btoo, ~, as functions of magnetic field intensity
(squared). These shifts are directly related to the anisot-
ropy of the electron mass. The theoretical shifts are
somewhat smaller than the observed ones, i.e., the experi-
mental anisotropy is smaller than the theoretical one.
We have been unable to obtain a better fit with parameter
values which would describe other experiments well.
However, in contrast to the results shown in Fig. 11, the
experimental anisotropy observed in GaAs by means of
CR at megagauss fields is higher than the theoretical one,
calculated for the same band parameters. The discrepan-
cy between the lower-field and higher-field results is not
understood at present.

Finally, in Fig. 12 we show the cyclotron-resonance
effective masses for the spin-down and spin-up CR transi-
tions versus the resonant energy, as measured and calcu-
lated for B~~[001]. The dashed lines indicate the results
of calculation in which the polaron effects are omitted
and the theoretical mass at the band edge is taken to be
equal to the measured (i.e., polaron) mass. The dashed
lines are almost straight. This follows from the fact that,

as already mentioned above, in a band described by rela-
tion (11), the energy dependence of the momentum mass
is m '(E)=m o (1+2E/Eo ), i.e., the mass increases
linearly with the energy. ' The solid lines have been cal-
culated including the nonresonant and resonant polaron
effects, beginning with the "bare" mass. It can be seen
that the resonant polaron effects become increasingly im-

portant as the excitation energy approaches the optical-
phonon energy. Figure 12 illustrates our previous state-
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FIG. 12. Cyclotron masses of electrons in GaAs vs transition
energy (spin-up and spin-down transitions) for 8~~[001].
Dashed lines: five-level P.p theory with the band-edge mass
equal to the observed value. Solid lines: five-level P.p theory
including resonant and nonresonant polaron contributions. Ex-
perimental data: solid circles, Sigg et al. (Ref. 25); open circles,
Hopkins et al. (Ref. 28).
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ment that the polaron efFects in GaAs are comparable to
the band-structure effects.

VII. DISCUSSION

The presented description of conduction electrons in
GaAs accounts quite well for a variety of magneto-
optical data. The largest discrepancy between theory and
experiment, concerning the anisotropy of the cyclotron
mass, is shown in Fig. 11. It should be mentioned, how-
ever, that at very high magnetic fields of 100 T the same
theory gives a mass anisotropy lower than the experimen-
tal one, whereas in Fig. 11 the theoretical anisotropy is
higher than the experimental one. The best overall fit al-
lowed us to determine important band parameters.

The adjusted best value of the matrix elements P& de-
pends strongly on the value of interband spin-orbit ener-

gy 5 used in the calculations. In the present analysis we
have used b, = —0.061 eV, calculated by the empirical
pseudopotential method. Using three difFerent
methods, Cardona et al. calculated b = —0. 11 eV
(LMTO}, —0.085 eV [linear combination of atomic orbit-
als (LCAO)], and —0.07 eV (k p}. In the five-level k p
model of Rossler' and in the effective Hamiltonian ex-
pansions of Ogg' and of Braun and Rossler' the ex-
istence of 5 has been ignored.

Carrying the self-consistent relativistic LMTO calcula-
tion, Christensen and Cardona calculated the spin split-
ting of the conduction band due to inversion asymmetry.
For small k values [cf. our Eq. (13}],they obtained y =82
eVA for an unadjusted band structure, and y=17 eVA
for an adjusted band structure. The last value agrees
reasonably well with our result of y =24. 12 eV A

In a recent paper, Cardona et al. also derived formu-
las for the inversion asymmetry splitting and the g value
of conduction electrons in GaAs-type materials using a
six-level k.p model and taking into account the existence
of h. Their formulas ignore the differences between the
energies on the diagonal of the k.p matrix and the mea-
sured band-edge energies [resulting from the existence of
tT~; cf. our Eqs. (8)]. There exist additional differences be-
tween their formulas and our formulas, but the
discrepancies do not affect strongly the numerical values.
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