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Critical properties of a dilute gas of vortex rings in three dimensions
and the A, transition in liquid helium
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We compute the critical properties of a dilute gas of circular and elliptical vortex rings in a
three-dimensional superAuid using a scale-dependent mean-6eld approximation of the Kosterlitz-
Thouless type. A set of scaling differential equations is derived and solved numerically. The system

has a second-order phase transition with superfluid density critical exponent v=0. 57 and specific-
heat critical exponent a=0.64 for circular rings and 0.50& v&0. 53, 0.94&a(0.99 for elliptical
rings of small eccentricity. The relevance of these results for the understanding of the A, transition
in liquid helium is discussed.

INTRODUCTION

Vortex-unbinding phase transitions of the type first dis-
cussed by Kosterlitz and Thouless' have been highly suc-
cessful in the description of the critical properties of
two-dimensional superfiuids. In three dimensions, it is

easy enough to set up the analogous problem: Compute
the thermodynamica1 properties of a system of loops,
with interaction energy given by

Uo(R) = [ln(R Ir)+C],pI R
2

(2)

Of course, this is easier said than done since the phase
space for the system is the space of all closed curves
("strings") in three dimensions, with a far from trivial in-

teraction. Numerical simulations have been attempted,
and they suggest that vortex filaments do play a crucial
role at criticality. A different approach has been followed

by Williams, in which the phase space is drastically re-
duced by considering vortex filaments of circular shape
only. Here, each state of a given loop is labeled not by an
infinite number of parameters but by six: three for posi-
tion, two for orientation, and one, radius, for size. An ex-
act renormalization-group calculation is still not possible,
but a scale-dependent mean-field approach can be suc-
cessfully completed, and Williams obtained a value
v=0. 53 for the superfluid density critical exponent v. In
this paper we follow an approach that is similar in spirit
to that of Williams but differs in quantitative detail. In
this way we improve the computation of v to v=0. 57.
We are also able to compute the specific-heat critical ex-
ponent a =0.64. In addition we redo everything for vor-
tex rings of elliptical shape with varying small eccentrici-
ty, obtaining 0.50(v(0.53 and 0.94&a(0.99.

The energy associated with an isolated vortex ring of
radius R and circulation I, both in classical and quantum
fluids, is

where p is the liquid density and C a constant whose ex-
act value depends on what goes on inside the vortex core,
of radius r. For a superfiuid, the value C=0.464 has
been proposed, and expression (2) is valid for a thin vor-
tex ring, that is, for 8 &&v. As we are interested in the
critical behavior of the system, what goes on at a micro-
scopic scale should not matter and the precise values of ~
and C should be irrelevant as far as the universal quanti-
ties are concerned. A system of noninteracting vortex
rings will clearly not have a phase transition, as the ener-

gy that it costs to get one grows monotonically with R.
Interactions have to be taken into account, and now we
follow the ideas of Kosterlitz and Thouless, ' as explained
in particular by Young, whereby this interaction is ap-
proximately considered by way of a scale-dependent
screening. This makes sense, since a vortex ring behaves
in many respects as a magnetic dipole, and we expect that
the self-interaction of a large ring will be screened by
smaller ones, whose creation will be facilitated by the
presence of the larger one, and one might expect that as
in two dimensions, it will cost a finite energy to form
infinitely large rings. It has also been noted that for a
hypothetical system of vortices whose energy was propor-
tional to length, allowing for arbitrarily shaped vortices
would mean that at a finite temperature the gain in entro-

py would dominate over the cost in internal energy allow-

ing for infinitely large vortices to occur.
The basic physics we wish to emphasize is that, just as

in two dimensions, a three-dimensional superfiuid is
characterized by a condensate wave function having vari-
ations both in amplitude and phase. The latter may be
multiple valued, in which case singular regions appear:
vortex points in two dimensions and closed vortex lines in
three. As already mentioned, a vortex line of finite length
costs (for a nonzero core cutoS a finite amount of energy
to form and, because of thermal excitation, there will be a
nonzero population of such lines at any finite temperature
T, with a distribution of lengths that will depend on T.
As the temperature is increased the mean size of the vor-
tex loops will also increase; a large loop wi11 polarize the
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medium lowering the energy that it costs to form a small-
er one, and these, in turn, will screen the self-energy of
the former making it easier and easier to form longer and
longer vortex loops. In this paper we show that there is a
finite critical temperature T, at which infinitely long vor-
tex loops occur. The appearance of closed vortex lines of
infinite length (or, more precisely, bounding an area of
the size of the system) signals the disappearance of
superfluidity, of course, because the phase of the order
parameter can now change by multiples of 2m rendering
the flow states unstable.

SCALE-DEPENDENT MEAN-FIELD APPROACH
TO INTERACTING VORTEX RINGS

We wish to approximate the properties of a system of
interacting vortex rings by way of something like a
dielectric constant. An ideal incompressible fluid of den-

sity p, velocity v, and vorticity co is described by the
equations

V v=O,

V A v= a),

and its energy is

E= fU dr.
2

These relations are clearly analogous to the magnetostat-
ics equations

V B=O,

VAB= j,
C

E= fB dr,

for a magnetic field 8 and current j. This allows for a
visualization of the fluid as a magnetic system with field

B=&4npv

and current

j=c+p/4mm .

We now compute the energy that it costs to form a vortex
ring with velocity field v, in a prescribed uniform exter-
nal flow vo that may be produced, for instance, by a much
larger vortex ring. The total energy of the fluid is

E= f (vo+v, ) dr
2

from which we extract the interaction energy

+int vo pv&dr=vo'

where P is the vortex momentum which, for a vortex fila-
ment parametrized as r =r(a), is given by

whereas in the fluid it has the usual form

In order to study screening effects we need a "diarnagnet-
ic constant, " for which we need a magnetic susceptibility,
for which in turn we need the magnetic polarizability of a
vortex loop measuring its response to an external flow.
This "magnetic polarizability" is

B (mv
u=0

where the statistical average ( ) is taken over all possible
vortex orientations. One then has, for a dilute gas of vor-
tices,

fdQ m v exp( —PP v)
q=lim

v Qexp —P v

4m

3
l?l

For a vortex ring of radius R and circulation I the "mag-
netic moment" is m = I R /4, giving for the scale-
dependent "polarizability"

q(R)= — Ppl R
12

The negative sign indicates that, contrary to a system of
current loops, vortices are diamagnetic: They tend to
orient themselves with their magnetic moment pointing
opposite to the external flow. The "magnetic susceptibili-
ty" is obtained by calculating V g; q; n;, where V is the
volume of the system, i labels the vortex states, q,. is the
polarizability of a vortex in the ith state, and n, is the
number of vortices in that state. The sum over states is
carried out replacing g, by ( V/~ ) jR2dR d8, with 6 a
solid angle. The average number of vortices in a given
state is e ~ where Vis the energy that it costs to put the
vortex in that state. Consequently, the susceptibility g is
given by

Thus, within the magnetic analogy, the vortex mornen-
turn is related to the magnetic moment m of a current
loop through

Pm= 4'
There is, however, an important physical difference be-
tween the magnetic and fluid systems in the sign of the in-
teraction. This is due to the absence in the fluid of elec-
tromagnetic induction effects. These effects are responsi-
ble for the fact that in the magnetic system, for fixed
current intensity, the force acting along some generalized
coordinate g' is

as

pI
y ( )A dr(o)d y(R)= f R' dR'q(R')e

T
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Only vortices smaller than R contribute to the screening
of a vortex of radius R. Since the energy of a thin isolat-
ed vortex ring is given by (2), it can be regarded as a
string with a line tension

d Uo pI 2

To(R }= = [ln(R /v)+ C+ 1]
dR 2

due to its self-interaction. If, however, many more vor-
tices are present, this tension will be modified with a
scale-dependent "diamagnetic constant" e(R ):

T()(R )
T()(R)~T(R }=

e(R }

and the energy of a vortex becomes

Pp I R [ln(R /r ) +C + 1 ]
12e(R )

1677 (R /7. ) e

ln(R/r)+C+1
l =ln(R /r),

(6)

that gives the new set of equations

For a numerical solution of (5) we choose )u= 1.39pI' ~ as
given by Jones and Roberts on the basis of a Landau-
Ginzburg theory for an isolated vortex. A considerable
simplification in the numerical search for a critical point
of (5) is obtained through the change of variables

U(R)=(tt+ J T(R)dR
7

pI f & ln(R'/r)+C+1 dR,
2 "~ e(R') (3)

dl l +C+1

dl 6(1 +C+1)
where LM is the energy needed to form a vortex of radius ~.
Under the assumption of a dilute gas, the self-energy of a
ring of radius R is affected only by smaller vortices, act-
ing as a magnetic medium with linear response. Using
then a= 1 —4~g we have

r

e(R) =1+ Ppr' J'dR —PU(R')e (4)

which, together with (3},contain all the relevant informa-
tion for our model.

SCALING EQUATIONS
AND CRITICAL BEHAVIOR

We have derived a set of (coupled, integral) equations
[(3),(4}]for the effective potential U(R ) and the "diamag-
netic constant" e(R ). One relevant physical quantity is
the superfluid density' p, =e( ao )

' as a function of tem-
perature. To find it, one studies numerically the asymp-
totic behavior of e as R ~0(), and tries to see whether
there is a temperature where this asymptotic behavior
changes qualitatively, signaling a phase transition. If
such a critical temperature exists, the next task is to com-
pute the behavior of e( Do ) near the critical temperature.

A property of (3),(4) that greatly simplifies the analysis
is that it can be turned into a set of two coupled ordinary,
nonlinear differential equations:

3
6

de 4m
p 2 R pU(g)

dR 3
pI — e

(5)
d U pl [ln(R /r)+ C+ 1]
dR 2e(R }

with initial conditions U(R =r)=p and e(R =r)=1.
The first initial condition is the energy needed to create a
vortex of minimum size, and the second is the statement
that for a vortex of minimum size there are no smaller
vortices, and hence no screening. The critical behavior of
(5) should not depend on the precise values of the param-
eters or on the precise values of the initial conditions.

with initial conditions

3.0-

2.0-

OX)
0.0 1.0

K

2.0 3.0

FIG. 1. Trajectories for Eqs. (7). There is a sharp transition
at the critical value Ko, =0.54222.

y(l =0)= e
16m

C+1
which, upon elimination of the temperature P, turn into
the single condition

16m 12pE(l =0)
y 1=0 = expC+1 pI r(C+1)

We have solved numerically the system (7} using a
fourth-order Runge-Kutta method with adaptive step
size. The trajectories are shown in Fig. 1, and it may be
easily observed that there is a sharp change in the quali-
tative behavior of the system at a critical value Ko, of
I(:(1=0). It is given by

&o =o 5~222

So, our first conclusion is that a system of interacting



158 LUND, REISENEGGER, AND UTRERAS 41

and solve (7) for different values of Kz in the vicinity of
E o„corresp ondin g to t K[10 i, 10 ]. The resulting
e(co ) as a function of reduced temperature t is adjusted
to the curve

lne( ~, t ) = —v Int +const

by way of a linear least-squares fit. This procedure yields
the critical exponent

v=0. 57 .

For t (0 the quantity e( ~ ) diverges. As a check on the
numerics, we redid the whole computation with the sys-
tem (5) and the critical behavior was confirmed. A de-
tailed discussion of the computational details, including
numerical accuracy, has been given elsewhere. ' As an
additional check the scaling equations were solved with a
different, well-tested, numerical algorithm" (PLOD) and
the value of v was confirmed. Both codes were also used
to solve the scaling equations derived by Williams and,
although we obtain the same value as he for his

Eo, =0.174471449, our computation gives a critical ex-

ponent for those equations of v=0. 50, at variance with
Williams's claim of v=0. 53.

COMPUTATION OF THE
SPECIFIC-HEAT EXPONENT

Near the transition temperature T, the specific heat is
given by

1 BA
dt

where Q is the thermodynamic potential per unit volume

4~k, T,
II(t) R ~ f R 2dR PU(R, t)—

7' T

It can be numerically evaluated as follows. Take the sys-
tem of equations (5), with linearly scaled length and ener-
gy variables x =R/r and u =PU and define the dimen-
sionless parameter p=Prp, f' To obtain .the specific
heat we need the second derivatives of the grand poten-
tial 0 with respect to P or p (they being proportional).
We have, up to a multiplicative constant,

d 0
CU—

dp

d 1
x e dx

dp p 1

define a function F(x ) so that

dF (x)=-
dx

2 —Q(x)
F(1)=0 .

vortex rings in three dimensions has a phase transition.
The next task is to find the critical behavior. To do this,
we define the critical temperature t = 1 —( T/T, ) in terms
of which one has

Ko,Ko= [ln(x ) +C + 1 ],dx 2E'

dx 3
xe "(1—pu ),

d"p [ln(x)+ C + 1] (e—pep),
dx 2c

x e "(pu —pu —Zu ),

d"pp [ln(x)+C+1] 2P p2E' p6 +
dX P PP

dF =x e
dX

2

p

2
2QP QP QPP+
p p p

where differentiation with respect to the parameter p is
denoted by a subindex p; in particular,

BF
Fpp(x) = (x),

Bp

and one has the relation

c, = limp F (x).
z~oo

The initial conditions are e(1)=1, u (1)=@@=1.39p,
ep(1)=0, up(1)=1.39, epp(1)=0, u (1)=0, and

Fpp(1) =0. In this way, we obtain the "diamagnetic con-
stant" e and the specific heat c„ in just one integration. A
linear least-squares fit to c, = t gives

a=0.64 .

ELLIPTICAL VORTICES

In order to see what is the trend in critical behavior as
the number of degrees of freedom of the system is in-
creased, in this section we enlarge the dimension of the
phase space by two, by considering ellipses of small ec-
centricity parametrized as

X(cr)=(R coscr, R (I+e)sino', 0) . (10)

The two additional degrees of freedom are the eccentrici-
ty e,0(e &E ((1, and the orientation of a given ellipse
within its plane. The quantity E is a (small) parameter
characterizing the maximum allowed eccentricity of the
elliptical vortices. In principle, the critical behavior of
the system depends on its value. However, as we shall see
below, the critical behavior turns out to be quite insensi-
tive to the actual value of E. Going back to (1), we take
its leading behavior when the vortex is very thin. To do
this, its singularity is regularized replacing ~X; —X~~
by (~X; —X, ~

+r )
' with r a small cutoff whose ex-

istence is important but whose precise value should be ir-
relevant for the critical properties. We need to find

Clearly, Q=lim„„F(x) .To obtain the specific heat we

solve the system

d 6' 4K
dx 3

px e
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&r' „„,dX dX 1

gm' «do' [ix(o)—X(o')i2+r ]' 2

to leading order when &~0. The dominant behavior in

the double integral comes from points with o.-o.' so we

introduce the new variable 6 —:0.—0 ' in terms of which

dUi

dR

dU2

dR

pI R
ln —,

4e(R )

pr'
2e(R )

p2

4m o ( X' '5'+ )'"
p2 ix'

)do ix'i ln ' +O(1}
4m. 7

where O(1) terms remain finite when ix'i5/r~ ~; and
ix'~5 is a typical length for the vortex filament. For a
circle of radius R, ix'i =R and we recover (2). For an el-

lipse parametrized as in (10)

ix'i=R[1+e cos cr+O(e )]

and

H = (2+e )R ln —+R (e+2C+eC }
pr' R

4 7

Since we are considering ellipses of small eccentricity
only, the length scale is set by R. Hence, the "diamagnet-
ic constant" will be a function of R only: e=e(R ) and
the effective potential will be

U(R, e)=p+ f, (2+e }ln
4 ~ e(R ')

+2 C+1+e+
2

%e have already seen that for any loop the "polariza-
bility" is given by q

= 4nPpm /3 w—hich for our ellipse
means

V= U, +(1+C/2) U2,

U=p+2U, +(1+C)U2,
8

de 4n
p p R pU

dR 3
pI — e

X
1

(PV)'
( 1+PEV) pEv

(PV)'

e
—PEv

+ l 2[2+—2PEV+(PEV)2]
(PV)' (PV)

( 1 +pEV) ttEy

(PV)'
1

(PV)2

The same reasoning that led to (9) in the circular case
now gives

de 477 s

which have to be solved numerically with the initial con-
ditions e(r)=1, U|(r) = U2(r)=0. We have done this for
three values of E: 0.1, 0.3, and 0.5. In all three cases
there is a phase transition and we compute the critical ex-
ponent v in the same manner that was used for circular
rings. The linear least-squares fit using the reduced tem-
perature interval t K[10,10 ] gives v=0. 51, 0.50,
and 0.53 for E =0.1, 0.3, and 0.5, respectively.

To obtain the specific heat, we proceed as was done
previously; namely, write down the equations in terms of
dimensionless variables x =R/r, e, u, =PU&, u2=PU2,
etc. Defining also co=pA, and the dimensionless parame-
ter p=pprr, as before. Because of the enlarged phase
space, the potential 0 (per unit volume) is now

2

n= —, xe ~4m ~ 4

pr3

q= — Ppr R (1+2e) .
12

Next, to compute the "magnetic susceptibility"
V ' g; q; n; the sum over states is replaced as follows:

R dRdO~Re Rde
'T W~R ~ oo 7

0(e(E
This is so because there are Re d fir ellipses with eccen-
tricity e with orientation between |( and p+1 ltj and, for a
given orientation, R de/r different ellipses with eccentri-
city between e and e+de. Hence

y(R, E)= f R' dR'f edeq(R', e)
0

Xexp[ —PU(R', e)] .

The integrals over e can be done explicitly and we get the
following set of scaling equations for a dilute gas of ellip-
tical vortex rings:

Qi p ln(x ),
dx 4e

+pF(u up~ ) —2Fu~]—,

du ip jn(x )

dx 4~2
(e p6 ),

1pp ln(x )
(2p&p peep' 2eep)

dx 4p

dQ2 P
dx 26'

dQ 2p

dx
(e pe ),

de@ 4m s

dx 3
x e "(F pFu +pF —),

d epp 477 x e "[pF +2F (1—pu )
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TABLE I. Critical behavior of a dilute gas of vortex loops
for different values of the maximum allowed eccentricity
E p -t c -t

0 (circles)
0.1

0.3
0.5

0.57
0.51
0.50
0.53

0.64
0.96
0.94
0.99

du 2'
3 (2pE~p pcepp 2eep )

4 —u

[p (Gzz 2u~G—~)+p (uz u~~)G—
dx p

+2p(u G —G )+2G],
where u, v, F, and 6 are given by

u =Pp, +2u&+(I+C)ui,

v =ui+(1+C/2)u2,

6= 1

U2

EU

2
e "+

&

—2[2+2Ev+(Ev) ]

(1+Ev ) z„e
U2

DISCUSSION

Our main motivation in this work has been to study
the possibility that, as sometimes stated in the literature
in the past, ' vortex loops may be the driving mechanism

and the initial conditions are now (since the factor
Pp= 1 39p has been included in the equations), e(1)= I,
u, (l)=u2(l)=co(1)=. . . =co (1)=c,(1)=0, where

c, ( ~ ) is the specific heat of the model. These equations
are again solved numerically for E=0.1, 0.3, and 0.5,
and the singular behavior of the specific heat gives
a=0.96, 0.94, and 0.99, respectively. The results for the
critical exponents are summarized in Table I.

responsible for the A, transition in liquid helium. Of
course, there are detailed numerical computations of the
critical exponents of the 3D XF model that are in very
good agreement with experiment. ' They, however, offer
little insight into the physical mechanism responsible for
the transition. We have carried out computations of v
and a using a scale-dependent mean-field theory ap-
proach in the spirit of Kosterlitz and Thouless, ' with a
phase space drastically cut to six (circles) or eight (el-
lipses) dimensions. This is an uncontrolled approxima-
tion in the sense that there is no quantitative estimate of
what is being neglected, although one would intuitively
expect circles to be a reasonable first approximation and
ellipses to provide corrections. It has been established
that a dilute gas of vortex rings does indeed have a
second-order phase transition in this context, and a first
computation, that of v for circular rings, gives v=0. 57,
which is closer to the experimental v=0. 67 than the
v=0. 50 obtained in a 2+@ expansion. ' The specific-
heat exponent, however, is a=0.64 which is not as close
to the experimental value of a- —0.01. Enlarging the
dimension of phase space to include elliptical shapes
gives 0.50 & v &0.53 and 0.94 & a &0.99, which are
values still farther from the experimental ones. The con-
clusions are then that either vortices are not responsible
for the A. transition in liquid helium, or that, if they are,
the interaction cannot be modeled by a scale-dependent
mean-field approximation, or the infinite dimensionality
of the phase space of vortex rings has to be taken fully
into account, or both.
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