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We discuss the effect of nonconservative forces on ions near surfaces and apply it to recent experi-
mental work of Yu on the sputtering of 0 from Nb and Va. These data displayed a significant de-
viation from the usual exponential dependence of yield on 1/v, . This deviation which occurs at low
velocities was partially explained by Lang using a model in which the sputtered ion interacts with a
single surface atom via a Morse potential. Although his model suggests that the effective velocity of
the ion is larger than that observed it does not explain the full deviation of the effective velocity,
which goes through a minimum and then turns up as the observed velocity goes to zero. In our pa-
per we show that just by including a nonconservative force in the Lang model the full deviation can
be explained nicely.

I. INTRODUCTION

Existing semiclassical theories on charge exchange be-
tween sputtered or desorbing ions and metal surfaces
treat ions as classical particles, where the explicit time
dependence of the electron hopping matrix element
comes solely from the classical trajectory of the ions. '

Thus the classical equations of motion of the ions play
the important role in determining an analytical expres-
sion for the ion survival probability, and the energy
dependence of the observed ion energy distribution will
depend on the choice of ion-surface interaction forces.

Recent experimental data of Yu on ion energy distri-
butions of sputtered 0 from vanadium and niobium sur-
faces display a significant deviation from the usual ex-
ponential dependence of the yield on the inverse of the
normal component of the ion velocity. This deviation has
been partially explained by Lang' with a suitable choice
of ion trajectory, derived from a Morse potential. But it
does not completely fit the experimental results.
Sroubeck introduces the effect of charge diffusion (back
fiow and buildup of holes in the metal). His model is
based on an intuitive rate equation and seems to quantita-
tively explain the anomalous low-velocity effect observed
in Yu's data; however, it does not have the "first-
principle" appeal of Lang's approach which uses the
Blandin, Nourtier, and Hone method for calculating the
neutralization probability. Since there are not enough ex-
perimental data available, it is not possible to come to
any firm conclusion about the exact mechanism of ion
reneutralization, but one can definitely explore various
possibilities that may effect the rather complex processes
of charge exchange. In this paper we would like to ex-
plore the effect of nonconservative forces on ion reneu-
tralization and especially on the ion energy distribution.
In the following sections we first review the various
derivations of the nonconservative forces and discuss
their application to ion reneutralization.

II. THE ORIGIN OF NONCONSKRVATIVE FORCES
IN QUANTUM MECHANICS

A. Green's-function approach to nonconservative forces

%(0), then E(0)= —v F, (3)
where v is the velocity of the atom and F represents all
forces acting on the particle, (i.e., both conservative and
nonconservative forces). E (0) can be written as

E(0)= g V„„(0)( C„(0)C„(0))
kk'

=Im Tr[V(0)G(0, 0+)] . (4)

The time-dependent motion of an atom near the sur-
face of a metal couples the affinity level to the Fermi sea.
The result of the broadening of the level can be viewed as
a nonconservative force acting on the trajectory of the
atom. The level width can also be thought of as a slight
departure from adiabaticity where there is an exchange
of energy between the electronic and atomic coordinates.
The nonconservative forces can be derived from general-
ized correlation functions but can also be obtained from
the time derivative of the expectation value of a time-
dependent Hamiltonian. Following Blandin, Nourtier,
and Hone, the external time-dependent potential V(t) is
linearized about the value at some instant of time t =0,
i.e., 5 V( t ) = V( t ) —V(0). Therefore, the perturbed
Green's function 6 obeying Dyson's equation departs
very little from the unperturbed 6 corresponding to
%=&(0), that is,

6 '=6'+6'5VG '+O(5V )

=G'+6'5VG'+O(5V'),

where 6' denotes the advanced Green's function. Writ-
ing G in terms of 6 "and 6 ' yields

G =6+6'6VG+G5VG' —G 5VG" . (2)
If E(0) represents the expectation value of the Hamil-
tonian
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If G(0,0+ } is replaced by G, then the first contribution to
E(0) would be the conservative part of the force. Since
for our problem we are interested in the nonconservative
contribution to the force, we will look at the second con-
tribution to E(0). The linear 5V terms of Eq. (2} when

substituted into Eq. (4) will give the nonconservative
forces. Therefore, the frictional contribution toE(0) is

Ef(0)=1m Tr V(0)[Go5VoGo+ Go5VOGo] .

If 5 V(t ) = V(0)t, then Eq. (5) yields

Ef =n. Tr[ V5(sf —%)]
In the vector space spanned by the eigenfunctions of %,
i.e., ~s, v&,

Ef fry ~(sfV~V(sfV )
I

VV

and the friction force is

Ff = ng —~(cfv~VV~efv'&~'v . (8)
I

V) V

The velocity dependence of the friction (nonconservative)
force can also be obtained from the force-force correla-
tion function as seen in Refs. 10 and 11. Equation (8)

yields a nonconservative force that is dissipative in na-

ture.

8. Nonconservative force from the optical potential

From the Born-Oppenheimer separability of the wave
function, Brenig' has shown that the electronic level
width function, which is proportional to the reneutraliza-
tion or ionization rate, acts as a complex potential on the
atom (or ion). Since we would like to consider the atom's
trajectory as a classical one, first the time dependence of
the expectation value of the momentum operator under
the influence of the optical potential has to be examined,
and then using the Erhenfest theorem the classical equa-
tion of motion can be obtained. Starting with the
Schrodinger equation

iA =Hp=[HH+H„]g, (9)
Bt

where HH =p„„/2M is the Hermitian part of the Hamil-
tonian and Hz, which is equal to the optical potential, is
the antihermitian part. (For simplicity we restrict our-
selves to one dimension and ignore the conservative part
of the potential}. p„„represents the canonical momen-
tum, namely —i Ad /dZ. We assume that H„ is explicitly
dependent on time via the expectation value of the coor-
dinate Z, i.e., H((Z ) ). The time dependence of the ex-
pectation value of any operator 0 is given by

d' 'Odz= ':H-0-+"
[H„,O]+ 1(t dZ, —(10)

where [HH, O]+ are the commutation and anticommuta-
tion of HH and 0, respectively.

If we now let 0=Z, then

2iMp„„— H~Z =p =Mu (12)

It is the expectation value of this mechanical momentum
that is measurable and therefore translates into the classi-
cal momentum via the Erhenfest theorem. Substituting

p into Eq. (10),
2

d i &can

dr A' 2M
' „~' H„MZ

)

2iM a
Z

8 H
dr B(Z)

'2

'H„—(p—„„&+ H„M(Z) . (13)

In the classical limit

(p )=p(r)=M (Z)=—M Z(r}—.a c}

Bt dr

Therefore the classical force equation is

4i 2i ~H~F=M ——Hq —— Z(t) U(t)
A BZ(t)

+ H„Z(t) . (14)

If H~ represents the explicit time-dependent level-width

function, then the aforementioned expression for the
force F represents the velocity-dependent nonconserva-
tive force arising due to the coupling of the electronic lev-

el of the desorbing atom with that of the continuum of
the metal. If H„ is considered small then the last term of
Eq. (14}can be neglected. It is again seen that a complex
potential gives rise to a velocity-dependent dissipative
force.

Specifically when H~ = —i he "' one can easily
show that

1/2

and

U(Z) =vi 1+ Z+-2C 1

au~ u

C= 5'&04

(15)

with u] = u „.We will see in the next section that this ve-

locity dependence serves to explain the sputtering data of
Yu previously alluded to.

III. VELOCITY DEPENDENCE
OF THE ION SURVIVAL PROBABILITY

A. Ion survival probability from time-dependent
perturbation theory

The electron occupation number n, (t) of the affinity

level of a desorbing ion is obtained from time-dependent
perturbation theory and can be written as

—„&»= &,.„&-—,H„&Z & .1 2l

The mechanical-momentum operator can then be defined
as
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Eg
n((, ) =—I dE f dv ((&(r)exp i I [F'. —F. (r, ')+i()(r )]'dr

77 00 00 T

2
(16)

where U(t ) is the electron hopping matrix element, b, is
the level width function and is proportional to the reneu-
tralization rate, and eo(t) corresponds to the electron en-
ergy level of the desorbing ion. The corresponding rate
equation obtained by differentiating Eq. (16) is

dn, (t )
i)(r)n, (i)

+— cU., t A,* t +c.c. ,
1

and

P(t, t')=exp —f A(r)dr
f'

The first term of Eq. (17) represents the electron survival
rate on the atom and can be identified with the Menzel,
Gomer, and Redhead (MGR) (Ref. 13) contribution to
the ion survival probability. The second and third terms
of Eq. (17) correspond to the rate at which the substrate
states are replenished by the hopping back of the ionizing
(neutralizing} electron. The MGR model does not take
into account the effect of electrons tunneling back into
the substrate. If in Eq. (17) the matrix element for tun-
neling back into the substrate is taken to be a 5 function
in time, i.e.,

U.„(r)~ U.„5(r),

where

A, ( )r= f dr'U. „(r'}exp i f dr" [s—e, (r")]P(r,t')

where C is constant either positive or negative depending
on the nature of friction force (electronic transition or
chemical plasina effect) and vz(Z) is the surface-normal—Z /Z~component of the ion velocity. The term e is
modeled into the equation to take care of the Z depen-
dence of the level width function in the case of electronic
excitations [Eq. (8)] or the Z dependence of the surface
electron density in the case of the plasma polarization
contribution to the energy change. The equation of
motion of a particle under the influence of a friction force
is then

vz(Z) =v +cZ&exp[ —Z/Z&], (20)

260 yz.=exp — ln(1+Coe ')
QvyCp

(21)

where CO= C/yves. It is seen that (
—lnP) ' is not linear

in vi, as is often assumed. For C~O one recovers the
phenomenological exponent inverse velocity dependence.

C. Ion survival probability using an inverse velocity-dependent
nonconservative force

v~ being the normal component of the velocity of the
detector. Usually the level width function b, (r) is taken
to be of the form 5(r)=doe r . If y= 1/Zz then
P( ~,0) becomes

P( ~ ) =P( ao, 0)=exp —2 f dZ
~ b(Z)

z, vz(Z)

then the solution to Eq. (16) gives

n, ( ao ) ~ P ( 00,0)

()(: exp —2 f 5(r }dr
0

(18)

In this section we investigate the nature of the velocity
dependence of the ion survival probability for the case of
the vz -dependent nonconservative force. This model of

1

the force is encountered in the case of fluctuations of the
electric field in a plasma.

'

The equation of motion is
which is identical to the MGR result. The MGR model
of ion survival probability is simple, and we will use it to
calculate the reduction factor P for simple trajectories.

8. Ion survival probability
with friction force proportional to the velocity

dvz e -az
vz +a

dZ vz2

where a is the force constant and e can be associated
with the tailing of e1ectron density with the surface-
normal distance. The solution of the equation is

' ]/4
For simplicity of calculation we choose a hard wall

conservative potential for the desorbing ion. The fric-
tional force is chosen to be

vz(Z)= —aZi 4e +v~
o.

—z/z
FI =Cvz(Z)e

Substituting the expression in the MGR model for the
ion survival probability, we get for a =y

—2bp
P(ao )=exp

Qvg

' 3/4
4a —yz,

/vs

4a

fvg
(22}
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For small a, we expand
3/4

1+ e

1.2

1.0—
0-V

to second order in a

3
~0 —az

&
ge

P( Oc ) =exp ——', e '
1 —

—,
'

Qvg
(23)

0.8—

0.6—
0

A plot of —[lnP( ~ )] ' versus vt, using Eq. (23) will de-

viate from linearity at the low-velocity regime. If a is
negative, i.e., the nonconservative force is such that the
ion gains energy from the system, ' then the plot will de-
viate upward similar to that observed by Yu.

IV. APPLICATION TO SPUTTERING OF 0
FROM Va/Nb SURFACES

0.4

0.2

0
0

Emission Angle

~ 55
o 45
~ 15

1.0 2.0

vcose ('lO cm/sec)

3.0

=0 t(0, (24)

Z(t ) being the normal component of the classical trajec-
tory of the atom. Using Eq. (24) the ionization probabili-
ty, derived in Ref. 9 is,

In this section we review the results of time-dependent
perturbation theory for the ionization or reneutralization
probability by Blandin, Nourtier, and Hone, Norskov
and Lundquist, and Brako and Newn. ' This theory was

applied to the sputtering of oxygen from vanadium and
niobium surfaces by Lang' which we will extend to in-
clude dissipative or optical potentials. The metal is treat-
ed as a noninteracting Fermi gas. The electronic state
~a ) of the desorbing atom interacts with the state ~k ) of
the metal via the matrix element U, k

= ( a
~
U

~
k ) where

U is the time-dependent perturbing potential representing
the atom-surface interaction. The charge transfer be-
tween the broadened level ~a ) and the level ~k ) is as-
sumed to be essentially resonant. Following previous
workers we approximate the level broadening function
b (t ) with an exponential dependence, namely,

FIG. 1. Dependence of so [for 0 sputtered from oxygenated
(1 L) vanadium surface] on the normal component v, of the
emission velocity as measured by Yu.

locities greater than 1 X 10 cm/sec, (c) so versus v~ has a
positive intercept, (d} so versus vt shows a minimutn for

vt around 0. 5 X 106 cm/sec, (e) both the intercept and the

minimum have polar angle dependence. Lang' attempts
to explain the anomalous behavior of co for low velocities

by correcting the classical ion trajectories for potential
effects. He models the sputtering of 0 using a two-body
Morse potential existing between the oxygen atom and
the Nb or Va atom. Numerical calculation of co would

extrapolate to a u~ =0 intercept and there is also a slight

appearance of a minimum, Fig. (3). The problem of this

model is the presence of a cutoff in the velocity so that
the low-velocity features are obscured, as well as the lack
of significant turn up of the co versus v~ curve.

In our previous work on this problem it was shown

0.8

P( ac ) ~ exp[ —(P —A )/so(vt)], (25)
0.7— Q Nb

Eo= —(b, lnP/hP)
d 1nP

d
(26)

where P is the work function of the metal, and A the
aSnity level of the atom and co~ u~, where v~ is the nor-
mal component of the velocity of the desorbing particle.
The derivation of Eq. (25) assumes Z, =vjt and terms—5O/yv&O(e ' ') are neglected.

From the experimental viewpoint the validity of Eq.
(25) has been tested by Ming Yu for 0 from Va and Nb
surfaces. The metal work function is changed by deposit-
ing a sublayer of lithium. Changes in the work function
up to 3 eV are achieved by the method. Experimental ex-
traction of so entails measuring b, (lnP)/AP, and there-
fore,

0.6—

0.5—

I 04-
0

0.3—

0.2

0.1

0 0.5

Emission Angle
~ 15
a 45
~ 55

1.0 2.51 ~ 5 20
6vcos8 (10 cm/sec)

Important features of the experimental data in Figs. 1

and 2 are (a) lnP is linear in P, (b} so is linear in vt for ve-

FIG. 2. Dependence of Eo [for 0 sputtered from oxygenated
(I L) niobium surface] on the normal component u, of the emis-
sion velocity as measured by Yu.
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1.2-

1.0—

If the work function dependence (E= —P) of P( oo )

comes from Z, (P) then so can be written as

0.8—
so=( —viZ'/2bo)[1+(c/yvi )c ']/e (29)

0.6—O
0

0.4—

0.2—

0

Expt. {55 )—Theory {55 )

& Expt. {15 )—Theory {15 )

1

1.0
I

2.0
6

vcose (10 cm/sec)

3.0

where Z'=dZ, /dP and is negative. As seen Eq. (29) will

give an intercept for the co versus U~plot but will not pro-
duce the observed nonlinearity.

P( oo ) calculated earlier is an approximate way of in-
troducing the velocity correction to the ionization proba-
bility. One can obtain a better expression for P( oo ) from
the Blandin, Nourtier, and Hone expression for n, ( oo ).
Knowing uz(Z) a trajectory expression for Z(t) can be
obtained. Neglecting terms of 0(e ) or higher' and
after some calculation we obtain the expression for P( oo )

FIG. 3. Lang's theoretical values of eo compared to Yu's ex-

perimental co values for 0 from vanadium.

P( oo ) oo exp[ —(25(Z, )/yui )(1+Ci/ui )],
where

(30)

Ci =c/y, A=ho/yui .

that if u~ in Eq. (25) is replaced by the quantum expecta-

tion value of the velocity operator, a good fit to the ex-

perimental data of Yu is obtained. In order to explain

the nonlinearity of co versus Uj, however, a large unrealis-

tic optical force was required. The necessity of a quan-

tum model for the trajectory was therefore viewed as

questionable. However, the existence of a classical non-

conservative force remains a possibility.
In this section we would like to focus on the effect of a

velocity-dependent friction force on P( oo ). From Eq.
(20) the equation for the velocity is given by

vz(Z) =ui+c/ye

In order to obtain Z, we take the same route of Lang,
namely,

Ef E, (Z, )=(—P —A+Eo)e ' —(P —A ), (31)

where A is the affinity level of Oat z=ao and is equal to
1.5 eV. The above expression assumes that E,(Z) follows
the surface barrier potential. The inverse decay length a
for the potential is calculated for a high-density metal
substrate as being equal to 0.4 bohr ' and photoemission
data gives the value of Ef=E.(0)=Eo for 0 as 6 ev 16 i7.
From Eq. (31) the Fermi crossover distance is given as

Z, = —in[(P —3 +Eo)/(P —A )] .
1

(32)
where u~ ——vz( oo ) or the velocity measured by Yu. The

above equation assumes a hard wall for the surface poten-

tial. Any image correction to the potentials are ignored

on the ground that most of the ionization occurs very

close to the surface within a characteristic time of 10
sec and therefore effects of all long-ranged potentials in

the calculation of P( oo ) are small.
As has been shown by Brako and Newn' and Lang, ' if

1.2

V-0

E, (Z) =Ef +b(Z —Z, ),

then

P( oo ) =e"p[ 2hoexp( yZo)/yu

(27)

(28)

0.6—
0 Ang le 15

Expt.—Theory

where Z, is the distance and where E„(Z) crosses the
Fermi energy. This expression is no different than that
obtained for the MGR model provided the trajectory is
written as Z(t)=Z, +v~t, or the effective distance at
which most of ionization occurs is the Fermi cross-over
point. %e can thus introduce the velocity correction to
this model and obtain a new expression for P(oo ), i.e.,
that of Eq. (21).

0
0

1

1.0
I

2.0 3.0
6

vcos8 (10 cm/sec)

FIG. 4. Theoretical fit to the sputtering data of 0 from
vanadium surface. /=5. 2 eV, Eo=6.0 eV, A =1.5 eV, a=0.4
bohr ', @=0.5 bohr ', DO=1.59 eV, cl =0.0146X10 cm/sec.
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0
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I
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vcost) (1Q cm/sec}
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Equation (31) is linearized around Z, and substituted into
the expression for P( ~ ). From Eq. (30) and Eq. (26)

(t|)—A+E )~
vi[1+C&/vi]

E (y a)&— (33}

FIG. 5. Theoretical fit to the sputtering data of 0 from niobi-
um surface. /=4. 4 eV, Eo=6.0 eV, A =1.5 eV, a=0.4
bohr ', y=0. 5 bohr ', ho=1.7 eV, c& =0.007X10 cm/sec.

which is seen to be nonlinear in u~.
In order to fit the experimental data P and y need to be

known. The work function of polycrystalline vanadium
and niobium is 4.3 eV (Ref. 9) but the change in P intro-
duced by 1 L of oxygen is 0.9 eV for vanadium and 0.1 eV
for niobium. Therefore /=5. 2 eV for Va and 4.4 eV for
Nb are taken. In Ref. (18) and (19), b,o is of the order of
1.5 eV and y =0.5 bohr '. For the purpose of fitting the
data we use ho=1. 59 eV for vanadium and 1.7 eV for
niobium. In our model C, is an experimental fitting pa-
rameter and C, = —0.0146X10 cm/sec for Va and
—0.007X10 cm/sec for Nb. The theoretical fit to the
experimental curves are shown in Figs. 4 and 5.

An interesting point to note is that C, which is re-
quired to reproduce Yu's data must be negative. This im-

plies that the nonconservative force is one in which an
ion gains energy from the substrate (similar to the contri-
bution from polarization of a plasma}. One may there-
fore conclude that our model of n, including a noncon-
servative force may well be the cause of the nonlinear be-
havior of eo versus Uj. This model can also augment that
of Lang, where the occurrence of a minimum in the po-
tential leads to an effective increase in the kinetic energy
of the ion near the surface at the expense of the Morse
weil. More experimental data in the low-velocity regime
is required for a better understanding of the ionization
probability.
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