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The novel effective bond-orbital model (EBOM) is used to calculate energies of shallow acceptors
in GaAs-Al, Ga, _, As quantum wells and superlattices. The model is tight-binding-like, and the in-
teractions between bond orbitals located at sites in the face-centered-cubic lattice are fitted to make
EBOM predict the right band structure close to the valence-band edge. Symmetry-adapted func-
tions consisting of proper linear combinations of bond orbitals located at sites in the vicinity of the
acceptor impurity are used as basis functions in variational calculations of energies of acceptor
states. First, we calculate energies of both I'¢ (heavy-hole) and I'; (light-hole) ground states and first
even-parity excited states for C and Be acceptors centered in the well material of single quantum
wells. When comparing EBOM results with results from previous multiband effective-mass calcula-
tions, we generally find good agreement for the ground-state energies and the corresponding binding
energies, while the estimates for the excited states vary substantially. Comparisons with recent ex-
periments, where two independent experimental techniques are used to measure energies of transi-
tions involving the excited states, favor the EBOM results. The deviations of the effective-mass re-
sults are thought to reflect inherent shortcomings in the effective-mass method, absent in the
EBOM, namely the calculational difficulty of properly incorporating position-dependent material
parameters and the practical limitations on the flexibility of trial wave functions in actual calcula-
tions. Finally, the EBOM is used to calculate binding energies of acceptors in superlattices. Up to
11 wells are included in the model for the thinnest superlattices in which coupling of adjacent wells
is essential. In order to compare with recent photoluminescence experiments on C acceptors in
narrow-barrier superlattices, the corresponding EBOM calculations for both well- and barrier-
centered acceptors in superlattices are performed.
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I. INTRODUCTION

The recent advances in crystal-growth techniques such
as molecular-beam epitaxy (MBE) and metalorganic
chemical vapor deposition (MOCVD) have triggered ex-
tensive studies on artificial superlattices and quantum
wells. The ability of controlling material composition
and intentionally incorporating impurities on the atomic
scale has led to numerous experimental studies of elec-
tronic energy levels for shallow impurities embedded in
heterostructures. These measurements, which include
photoluminescence,! ~°> Raman scattering,*®’ magnetos-
pectroscopy, >® and far-infrared absorption,® have so far
mainly focused on impurities in GaAs-Al, Ga,;_, As sys-
tems.

All previous theoretical calculations have been within
the framework of effective-mass theory. In a pioneering
paper Bastard!® calculated energies of donor states in
quantum wells assuming infinite barrier height. The
binding energy, defined as the difference between the
ground-state energies with and without a donor centered
in the well, was found to increase monotonically with de-
creasing well width. In more realistic calculations which
included finite barrier heights, the binding energy was
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found to have a maximum at a finite well width.!"!2 For
the well width corresponding to the maximum, the
confinement energy for the pure quantum well is substan-
tial, while the impurity, to a large extent, manages to lo-
calize the wave function within the well material. As the
well width approaches zero, the impurity wave function
leaks more and more into the barrier, and the binding en-
ergy will eventually go to the bulk value for the barrier
material.

Acceptor calculations are generally more difficult due
to the complicated valence bands. Masselink ez al.'* cal-
culated the energy spectra for acceptors in GaAs-
Al Ga,_,As quantum wells with finite barrier heights,
taking the top four valence bands of both the well and
barrier material into account. The resulting binding en-
ergies showed the same characteristic dependence on well
width and were also found to be in good agreement with
available experimental data.

In practice, quantum-well measurements are done on
GaAs-Al,Ga,_,As superlattices with sufficiently high
and wide barriers to avoid coupling between adjacent
wells. For superlattices involving low (i.e., small fraction
of aluminum in the barrier alloy) or narrow barriers, in-
terwell coupling may be substantial and cannot be
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neglected in calculations. To allow for interwell cou-
pling, Chaudhuri'* included the two neighboring wells in
a calculation of donor energies. Setting the barrier width
and well width equal, the binding energy as a function of
well width was found to have two maxima. The primary
peak was found to be shifted towards larger well widths
compared to the binding-energy curve for single quantum
wells. The secondary peak, corresponding to very nar-
row wells and barriers, was attributed to the breakdown
of the approximation of including only three wells in a
model for short-period superlattices.

While effective-mass theory is on a solid footing for im-
purities in bulk semiconductors,!® the extension of the
theory to heterostructures is nontrivial, with complica-
tions arising from the position-dependent material pa-
rameters. The theory is not asymptotically exact in the
limit of infinitely shallow impurity potential for hetero-
structures with nonzero offsets (i.e., band edges are not
aligned), '® but this does not exclude the possibility that
effective-mass theory may give good results. For donor
problems, where one-band effective-mass theory is ap-
propriate, the boundary conditions for the matching of
envelope functions at abrupt material interfaces seem to
be well established.!®"?! Boundary conditions based on
continuity of probability current have been worked out
for degenerate-band effective-mass theory (l(-p),22 but
they are complicated and hard to include in acceptor cal-
culations. To our knowledge, no calculations on accep-
tors in heterostructures which take into account the full
valence-band degeneracy and match the envelope func-
tions at the interfaces have been done. In fact, most re-
ported calculations on the much simpler donor problems
have been on models where the position dependence of
material parameters is ignored or treated in an approxi-
mate way. So, even in the cases where proper effective-
mass treatment, in principle, gives good results for im-
purities in heterostructures, the complicated implementa-
tion of the method severely reduces its feasibility.

In this article we use the novel effective bond-orbital
model (EBOM) to calculate energies for acceptors in
quantum wells and superlattices. Harrison?® introduced
the bond-orbital model to describe properties of covalent
and polar solids and obtained the interaction parameters
using atomic properties and the value of the static dielec-
tric constant. The model was reformulated by Chang?* to
be used in calculations on electronic states involving
small wave numbers in semiconductors and semiconduc-
tor heterostructures. Instead of trying to estimate the in-
teraction parameters from microscopic considerations,
these parameters were fitted to predict the experimentally
observed bulk band structure close to the Brillouin zone
center. The first applications of the method were in cal-
culations of superlattice band structures for both
large-band-gap and small-band-gap  heterostruc-
tures. 242’

In a recent paper’® the authors introduced the model
as a new framework for calculating properties of local-
ized states and used the method to calculate energies for
acceptors in bulk semiconductors and acceptors embed-
ded in GaAs-Al,Ga,_, As spherical quantum dots. The
term effective bond-orbital model was introduced to avoid
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confusion with Harrison’s version and to stress that the
real bond orbitals are not expected to interact like these
effective bond orbitals. The usefulness of the effective
bond orbitals lies in their ability to describe both extend-
ed and localized electronic states with wave functions
with slowly varying envelopes.

The EBOM may be viewed as a discretized version of
the effective-mass theory with the grid spacing given by
the lattice constant. In the EBOM the positional depen-
dence of material parameters is straightforward to in-
clude in the calculation, and this feature makes the
method more applicable to problems involving impurities
in heterostructures than effective-mass theory.

In Sec. II we first quickly review the EBOM formalism
before we show how group theory is utilized to obtain an
appropriate set of basis functions suitable for variational
calculations. The group-theory treatment is similar to
the treatment in Ref. 26 for acceptors in bulk semicon-
ductors and spherical quantum dots, but the presence of
a quantum well (or superlattice) has lowered the symme-
try of the problem. At the end of the section a very use-
ful scaling approximation which reduces the computer
time needed in the calculations is described. In Sec. III
we apply the method to acceptors located at the center of
single GaAs-Al, ;Gay ;As quantum wells. Ground-state
energies, corresponding binding energies, and energies of
even-parity excited states are calculated and compared
with experiments and previous multiband effective-mass
calculations. In Sec. IV we first study acceptors in
short-period GaAs-Alj ;Ga, ;As superlattices where cou-
pling between adjacent wells become important, includ-
ing up to 11 wells in the calculations. Comparison of
qualitative features of energy spectra with previous donor
calculations are made. In order to compare with recent
photoluminescence experiments by Skromme et al.,>?’
where coupling of wells is important, we also perform
calculations of binding energies for acceptors centered in
the barrier and well material, respectively, for a set of su-
perlattices with compositions according to the samples
used in the measurements.

II. THEORY

This section is divided into three subsections. In the
first subsection we swiftly describe the bond-orbital for-
malism and provide the formulas for the interactions
needed in the calculations. For more details, we refer to
Refs. 24 and 26. In the second subsection we utilize the
theory of point groups to construct basis functions to be
used in variational calculations. A scaling approximation
is described in the last subsection. For more discussion
on this approximation, we refer to Ref. 26.

A. Bond orbitals

Diamond- and zinc-blende-structure crystals consist
of a unit cell containing two atoms located at the sites of
the face-centered-cubic (fcc) lattice. For acceptors in
large-gap band-semiconductors or heterostructures made
of large-gap band-materials, a bond-orbital model which
includes only the topmost valence bands is sufficient. A
bond orbital is, in this context, defined as the proper



linear combination of atomic orbitals in a unit cell which
best describes the experimentally observed band structure
close to the zone center. If spin-orbit coupling is negligi-
ble, the bond orbitals are p-like (labeled x,y,z). They are
assumed to be sufficiently localized so that only on-site

(R’a]H'Rl’al ) ZEPSR,R'Sa,a'+ E 8R'—R,r{ ExyTaTa’( 1—
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and nearest-neighbor interactions have to be considered.
We use the notation |R,a) for an a-like (a=x,y,z) bond
orbital located at lattice site R. The general form of the
interactions between two bond orbitals is known from
symmetry considerations to be?®

Sa,a')+[ExxTzzz+Ezz(1—7%)]811,(1'] . (1)

E, » denotes the interaction between an a-like orbital at the origin and an a'-like orbital at (1,1,0)a/2. Ep, E_,FE

xx> “xys

and E,, are four independent interaction parameters, and the sum over 7 covers the 12 nearest-neighbor position vec-

tors. 7, denotes the a component of 7 in units of a/2.

With a non-negligible spin-orbit coupling present, which certainly is the case for GaAs-Al,Ga;_, As systems, the
spin-orbit-coupled bond orbitals (SOBO’s) represent a more practical basis. In the angular-momentum convention the

SOBO’s have the form

IR,uy; )= Cla,0;J,M)|R,a)x, , )
a,o
where J=3,1, M=—J,—J+1,...,J, and x,, 0 =1, —1, denotes the electron spinors. The coupling coefficients

C(a,0;J,M) are known from group theory and can be found, e.g., in Ref. 26. With the spin-orbit coupling included,

the interaction between two SOBO’s is given by

(Ryup[HIR  ufp )=(J = 3)A8 y ypdpg g+ 3 C*a,03J,M)C(c,0;J',M"){R,a|HIR",a’') , 3)

a,a',o

where A is the spin-orbit splitting.

The interaction parameters in Eq. (1) are determined
by doing a Taylor expansion of the tight-binding Hamil-
tonian in the SOBO basis to second order in k and requir-
ing equivalence with the effective-mass (k-p) Hamiltoni-
an.'> A one-to-one correspondence between the Lut-
tinger parameters’”® and the interaction parameters is
thus established, namely

E,,=6v3R, ,

E. =y +472)R, ,
E.=(r1—873)Ry,
E,=E,—12y,R, .

4)

E, refers to the band edge of the heavy- and light-hole
bands and R,=#’/2ma?, where m is the free-electron
mass.

The contribution to the interaction from a shallow im-
purity located at the origin is taken to be

—e?
€or

7
R’,uM/>

<R,u,{4

—e?
= S;mrmOr s IR|IF0  (5)
€| R| /M MORR IR|

where —e?/¢yr is a screened Coulomb interaction. The
impurity interaction between two identical SOBO’s on
the impurity site, U, is treated as an empirical fitting pa-
rameter. A recent report>C has indicated that the effect of
spatially dependent screening, where € is a function of the

distance from the impurity, cannot be neglected in
effective-mass calculations for acceptors in GaAs-
Al ,Ga,_,As quantum wells. In the EBOM, however,
the effect will be absorbed in the parameter U,, and we
use the static value for the dielectric screening €, in Eq.
(5).

In the application of the EBOM to heterostructures,
we take interactions between any two bond orbitals locat-
ed in the same material to be the same as the bulk values.
For two bond orbitals in different materials, i.e., on each
side of an interface, we take the interaction to be the
average of the interaction in each material. For the static
dielectric screening in Eq. (5), we use the bulk values for
€0 which are different in the well and barrier material,
and neglect image-force effects due to abrupt changes in
€, at material interfaces. !

We choose the z direction to be the confining direction,
i.e., normal to the quantum-well or superlattice inter-
faces. When discussing acceptor states, it is practical to
use the hole picture, and throughout this paper we use
this convention. The energy scale is inverted, with the
zero of energy chosen to be at the bottom (in the hole pic-
ture) of the bulk valence bands of the well material, and
the interactions between holelike SOBO’s correspond to
the electron interactions listed in Eq. (4) multiplied by
—1.

B. Basis functions

Bulk GaAs has the symmetry of the tetrahedral point
group T,;. In T, the p-like valence-band states transform
like T's and the s =7 spinor like I, and group theory
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gives that FSXF6 I';+T5. An acceptor in bulk GaAs
will thus give rise to two series of bound states, a I';
series associated with the twofold-degenerate split-off
band and a I’y series associated with the heavy- or light-
hole bands which are fourfold degenerate at k=0.

The presence of a quantum well (or a periodic superlat-
tice) reduces the symmetry from 7, to D,;. In D,, the
p-like valence-band states transform like the I'y and I's
representations, while the s =% spinor still transforms
like T'q. Group theory gives (['y+Is)XT¢=T¢+ 'T,
+ ;. We use the Koster-Dimmock-Wheeler-Statz
(KDWS) convention (u7) in Ref. 32, which is different
from the angular-momentum convention (uj) used in
the precedmg subsectxon To stress the difference, we la-
bel the s =1 spinors ¢ instead of y. In the KDWS con-

vention we have the following SOBO’s:

1 r
IR, “1/2 - IRx)¢—1/2 E‘R’y)ﬁbfl/z ’
r i r 1 (©)
IR,u Sin )=7§|R,x )¢152_T/‘§"R y >¢1/2 ’
and
r . r
IR, 'uy),)=—ilR,z)¢,5 ,
r r
IR, ]u771/2):i|R,Z>¢_61/2 , o
r i r 1
IR, *u 152 )= TIR’X >¢—61/2_‘/—§|R,y >¢“1/2 ’
r 1 r
IR, %u’, ;)= |R x )¢1/2+ V3 IR,y )¢}, -

The large spin-orbit coupling of GaAs and Al,Ga,_,As
alloys suggests the replacement of the above I'; SOBO’s
by two new sets of F7 SOBO’s, namely

r
‘R’“1/72>: |Rx>¢~1/z+ |R,y >¢—1/2
FiZ|R,z)eMe
‘/3 ’ 1/2 5
- ) - (8)
|R,u_71/2)— iRX)d’l/z 3|R:.V>¢1?2
. ¢
+IV__6|R’Z>¢_1/2 ’
and
r i r 1 r
IR, **u 12 )= ‘T/_B“QR,X >¢—61/2+7§“|Rsy >¢—61/2

r
_‘/;S!Ryz>¢]?2 ’
1 - 9)
\/—SlR,y)¢l?2

r l r
|R, 5.0.4, _71/2 ) = _7§1R,x )¢152_

i r
+‘/—§|R,Z >¢__61/2 .

The spin-orbit coupling lifts the energies of the TI';
SOBO’s in Eq. (9) with A compared to the I'g SOBO’s in
Eq. (6) and the I'; SOBO’s in Eq. (8). For GaAs-
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Al Ga,_,As systems where A is ~0.3 eV, it is a good
assume that |R,%%u r}z ) and
IR, %°u 1:71 2 ) in Eq. (9) are decoupled from the rest, and
we will neglect them in the present calculations. The I'¢
SOBO’s are equivalent to heavy-hole SOBO’s (J =2
M =42,—3) in bulk (see, e.g., Ref. 26), and states with
this symmetry are thus often said to be heavy-hole-like.
Correspondingly, the I'; SOBO’s in Eq. (8) are equivalent
to light-hole SOBO’s (J M= ‘, —1) in bulk and are
said to be light-hole-like.

Energy eigenvalues and corresponding wave functions
for acceptor states can now, in principle, be found by ex-
panding the wave function as a linear combination of
holelike SOBOQ’s of the form in Egs. (6) and (8) located at
sites on the fcc lattice in the vicinity of the impurity, i.e.,
lY)=3,;Cil,)=3, C;IR(i),ul(i)). Using the stan-
dard variational method, we obtain a set of coupled linear
algebraic equations,

approximation to

3 (el Hlw) + (W, U, ) —ECylg0)C =0, (10)

where H represents the unperturbed Hamiltonian and U
represents the impurity potential. The matrix elements in
the generalized eigenvalue problem in Eq. (10) are given
by Egs. (1), (4)-(6), and (8). The numerical values for the
interaction parameters in Eq. (4) naturally depend on
wherein the heterostructure the bond orbitals are located.
The dimension of the matrices in Eq. (10) is governed by
the number of sites necessary to include in the calcula-
tions, which, in turn, depends on the spatial extension of
the wave function for the acceptor state. For shallow ac-
ceptor impurities, where effective Bohr radii in bulk semi-
conductors are typically 20-50 A the required number of
sites in the cluster implies matrix sizes in the generalized
eigenvalue problem which drastically exceed the capacity
of present-day computers. The task is therefore to find a
smaller, but sufficient, set of basis functions to be used in
the variational calculations, and this is most easily done
utilizing the theory of point groups.

In the EBOM calculations for acceptors in bulk semi-
conductors and spherical quantum dots, ?® the sites in the
cluster was grouped into shells consisting of sites con-
nected by the symmetry operations in 7. Projection
operators were then used to generate coefficients for sites
in a shell representing desired spatial symmetries, and
these sets of coefficients were then coupled to SOBO’s to
give the desired total symmetry, namely the symmetry of
the acceptor states. By using these composite functions,
called shell functions, in the basis, a reduction of the
number of basis functions by a factor 12 was achieved
compared to the naive method of letting each SOBO be a
separate basis function. Even with this reduction, howev-
er, the number of shell functions needed in the basis was
too high, and cubic harmonics®® were introduced as an
approximation. In the actual calculations sites close to
the impurity were represented by independent shell func-
tions, while cubic harmonics multiplied with radial ex-
ponentials were used as basis functions for the long-range
part of the acceptor wave functions. It turned out that
while inclusion of independent shell functions in the basis
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may be important for acceptors in bulk Si, they can, as a
good approximation, be left out of the basis for acceptors
in bulk GaAs.

The presence of a spherically symmetric impurity po-
tential due to an acceptor centered in the well material
(or barrier material in superlattices) does not change the
point group of the model. Centered acceptors will thus
give rise to both I'¢- and I';-like bound states. A conceiv-
able procedure would therefore be to construct shell
functions with the appropriate I'¢ and I'; symmetries to
use as basis functions. The construction of these shell
functions in D,; follows the recipe outlined for T, in Ref.
26. Since we are dealing with acceptors in GaAs-
Al ,Ga,_,As systems, however, no independent shell
functions will be included in the basis. Note also that
since D,; contains only one-third of the elements in T,
the benefits from using shell functions instead of separate
SOBO’s will be correspondingly smaller.

The EBOM introduces an artificially high symmetry by
ignoring the structure within the unit cell and corre-
sponds to the larger point group D,,. D,, contains in-
version, and parity is a good quantum number. We
prefer to use the notation of D,, in the group-theory dis-
cussion below and add labeling for the parity of the state
afterwards. To be consistent with the notation used in,
for example, previous effective-mass calculations, we la-
bel the states by the parity of the envelope function.

In this article we focus on acceptor states with even-
parity envelopes (e.g., ground states). As an approxima-
tion we include only s- and d-like angular functions in the
construction of the set of basis functions.'>?® The spheri-
cally symmetric s-like envelope is trivial, but the d-like
contributions are more complicated since a d state splits
into I'|+TI';+I'4+5in the group D,,.

We first consider the twofold-degenerate I'y™ acceptor
states (the label + stands for even-parity envelopes). The
I‘l/2 and I‘_1 series are equivalent, and we choose to
focus on states with I'}’> symmetry. By considering the
appropriate product of SOBO symmetries and envelope
symmetries ([¢+I;)X(I'+T3;+T,+T5), using the
tables in Ref. 32, we find six distinct angular functions,
namely

r
W’l/z a=|R’u1$2) )
r Z = LX*+Y?) r,
|¢1/2(R))b:‘7'—”m)“1/2) )
V3 x*-y?
|¢1,2(R )= 2 72 ~———1IR, u1/2> (11)
r; XY r
"ﬁl?z(R))d:_l—z_lR,ul}z) N
re 1 iYZ—XZ
1R, == Tt E R )
and
re& 1 iYZ+XZ r
|¢1;’2(R))f=‘/__§'—‘7{.5_.—_'R’u_61/2> . (12)
X, Y, and Z are the components of R, and

R2=|R|*=X2+Y?+Z2 The first entry in Eq. (11) (la-

beled a) is s-like, the rest are d-like. |¢1/2 )); in Eq.
(12) turns out to be decoupled from the dominant terms a
and b in Eq. (11) and can, as a good approximation, be
left out of the basis for the 'y states.

Similarly the necessary angular functions for I'; /2 a
ceptor states are found to be
rf r
{¢—71/2(R))a=IR’u—7l/2) ’
2_1(y2 2
e Z°—HX"+Y°) r
i",b_.71/2(R))b=2—2|R’u_7]/2) ’
R
V3 x—
W’ 1/2(R ))e= 2 T{R u—l/Z)
(13)
r iXy r
[ p(R)) = 72 IR,u %),
ry iYZ +XZ r
l¢_71/2 R)) —%TIR’ul;é) ’

r 1 iYZ—-XZ
W0 aR ) = TR R

For the T'; states the d-like contributions are more im-
portant, and we keep all angular functions listed in Eq.
(13) in the basis.

In the calculations we use a cylindrical cluster of sites
on the fcc lattice with the cylinder axis in the z direction
(the growth direction). The basis functions for the I'}/2
states (I'; /2 states are completely analogous) have the
form

r+ Z T (X2+Y2)1/2
|¢1?2) ZCOS 2 Z ET
xe—a(X2+Y2+/.LZZ)l/2|¢[1‘§;(R)) , (14)

where 2Z ,, and R, are the height and radius of the cy-
lindrical cluster, respectively, and the sum over R covers
all the sites in the cluster except the impurity site. The
slowly varying cosine functions are included to avoid a
discontinuity in the wave function at the cluster bound-
ary. The a’s are chosen to cover a broad range, and for
each a we select an appropriate value for the anisotropy
parameter u. The parameter p allows for compression
(or elongation) of the wave function in the z direction.
Proper values for the a’s and p’s are found for each ac-
ceptor state separately. For wide quantum wells the ac-
ceptor wave functions are qualitatively similar to the ex-
ponential functions characteristic for acceptor states in
bulk. In narrow wells, where confinement effects are sub-
stantial, the wave functions resemble the cosinelike wave
functions for pure quantum-well states. For strongly
confined states the extension of the cluster in the z direc-
tion, which affects the shape of the wave function via the
cosine factor in Eq. (14), is manually adjusted to obtain
the best (i.e., lowest) estimates for the acceptor energies.
In addition to seven sets of a’s, which give 35 basis func-
tions for I'{" and 42 basis functions for I';, the appropri-
ate bond orbital on the impurity site is included separate-
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ly to give a total of 36 and 43 basis functions, respective-
ly.

In order to make the method computationally feasible,
we base the algorithm of the computer program on shells,
i.e., sites connected by symmetry operations of the point
group, instead of single sites. The basis functions of the
form in Eq. (14) can equivalently be written as a much
smaller sum of shell functions. By considering shell func-
tions instead of single SOBO’s when calculating the con-
tents of the matrices in the generalized eigenvalue prob-
lem, only one site in each shell has to be included in the
double sums. Another crucial simplification follows from
the fact that the interaction between two SOBO’s does
not depend on their absolute positions, only their position
relative to each other. Due to this feature, there are a
limited number of possible values of interactions between
shell functions. In the computer program these interac-
tions are calculated once and stored for reuse. These ma-
jor simplifications allow for the large cluster sizes re-
quired in shallow-acceptor calculations, and up to
630000 sites for well-centered and 1.9X10° sites for
barrier-centered acceptors are included in the calcula-
tions reported in this article.

C. Scaling approximation

With a maximum of 43 functions in the basis, the solu-
tion of the generalized eigenvalue problem is a minor
task. Even when applying the tricks described above,
however, the evaluation of the matrix elements in Eq. (10)
generally requires much computer time. To reduce the
sizes of the clusters needed in the calculation without
substantial loss of accuracy, we use a scaling approxima-
tion. The implementation of the approximation in the
EBOM method is outlined below (see Ref. 26 for more
details).

The effective-mass equation for an acceptor in a single
quantum well'® or superlattice (without any phenomeno-
logical short-range potential) has the property that reduc-
ing the length scale by a factor s, i.e., r'=r/s, and mak-
ing the substitutions

2 2
Ee———»i, AE,s’>AE, ,
€ €

Es’—E,

(15)
Ly/s—Ly, Lg/s—Lg,

give an equivalent equation with r’ as independent vari-
able. AE, is the confining well potential due to valence-
band offset and Ly, and Ly is the well width and barrier
width, respectively. Note that the scaling behavior of the
spin-orbit coupling is irrelevant since we have assumed
the split-off states to be decoupled.

Due to the underlying lattice, this scaling behavior is
not an exact property in the EBOM, but may be taken as
an approximation. In EBOM calculations for acceptors
with a scaling factor s> 1, a smaller cluster will suffice
since the wave function is more localized in space. Given
the solution for the scale acceptor problem, the energies
(and corresponding wave functions) for the original prob-
lem may be determined using the relations in Eq. (15).
The approximation is expected to be best for bound states
with slowly varying envelopes.

Alternatively, the scaling procedure may be viewed as
choosing a larger (and unphysical) lattice constant (sa)
and using basis functions consisting of SOBO’s located at
sites in this coarser lattice in the calculations. From the
listing of the interaction parameters in Eq. (4), we see
that the interactions between the new SOBO’s are in-
versely proportional to the square of the scaling factor s.

The scaling approximation with s=2 is used in most of
the calculations of acceptor states in quantum wells and
superlattices in the next two sections. For some of the
narrowest heterostructures (narrow wells and/or bar-
riers), however, unscaled calculations (s=1) are done to
achieve a desired higher accuracy.

III. ACCEPTORS IN QUANTUM WELLS

In this section we study C (carbon) and Be (beryllium)
acceptors located in the center of the well material in
GaAs-Alj ;Gaj ;As single quantum wells. We calculate
energies of the ;" (heavy-hole) and I'; (light-hole)
ground states and first even-parity excited states for a
wide range of well widths. Energies of the I'y and I'; sub-
band edges, which are required to find estimates for bind-
ing energies, are provided by a separate band-structure
program within the EBOM formalism. We compare with
previous effective-mass calculations and available experi-
mental data. For illustration purposes, we also show
some plots of wave functions along high-symmetry direc-
tions within the quantum-well plane. At the end of the
section we briefly discuss the validity of the choice of
boundary conditions at the material interfaces.

The Luttinger parameters and dielectric constants are
taken to be

Y1=17.65, v,=2.41, y;=3.28, €,=12.35
for GaAs, and
y:1=4.04, v,=0.78, y;=1.57, €,=9.80

for AlAs.** For the Al, ;Ga, ;As alloy we use a linear in-
terpolation between GaAs and AlAs parameters. The
lattice constant a is set to 5.65 A for both the well and
barrier material. The depth of the quantum well is deter-
mined by the offset between the valence-band edges E,,
and we use the formula AE, =O.35AEg(x),]3 where
AE,(x) is the difference in band gaps at k=0 between
GaAs and Al,Ga,;_,As. AE,(x) is taken to be 1247 Xx
meV, 3 with x set to 0.3.

In the calculations of the 1Ty, 1T, 2I'{, and 2" (1
and 2 denote the ground state and first-excited state, re-
spectively), a scaling factor of 2 (s=2) is generally used.
The only exceptions are for the ground states for the nar-
rowest wells (L, <40 A), where scaling is not applied.
Large cylindrically shaped clusters containing up to
380000 sites are used in the calculations. The computa-
tion for this cluster size takes approximately 3 min on a
Cray Research Inc. X-MP/48 (UNICOS) supercomputer
for a T'{ state. U, is fitted to make the EBOM predict
the right ground state (1T'y ) energies for the acceptors in
bulk GaAs, i.e., in an infinitely wide quantum well. 3’

The experimental bulk values are E, .+ =—26.0 meV for
8
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Cand E, ., =—28.0 meV for Be.
8

As a check on the validity of the scaling approxima-
tion, we calculated the IT¢ and 1T energies for
Ly =28 A, i.e., inside the well-width interval where scal-
ing regularly is not applied, using a scaling factor of 2.
Deviations of ~0.9 meV for 1T’y and ~0.6 meV for 1T
were found upon comparison with results obtained from
calculations without scaling. The error due to scaling de-
creases with increasing well width, and for Ly, =59 A we
found the differences for the 1T energies to be reduced
to ~0.3 meV.

The energies of the 1Ty, 1T'S, 2I'{", and 2I'; acceptor
states for well widths up to 300 A are shown in Figs. 1(a)
and 1(b) for the C and Be acceptors, respectively. To
make comparison with future experiments easier (for not
overly narrow wells), we use a smaller energy interval
when displaying the Be spectra in Fig. 1(b). The zero of
energy is chosen at the bottom of the well, i.e., the GaAs
bulk valence-band edge. Since the well width, Ly, is a
discrete variable in the EBOM, the results for a set of
widths are interpolated to give the curves. Zero well
width corresponds to acceptors in the barrier material
Aly ;Ga, ;As, for which, to our knowledge, no experi-
mental data exist. By assuming the same values of U, as
for GaAs, binding energies of 33.3 meV for C and 37.7
meV for Be, respectively, are found.?® These values are
used in the extrapolation of the curves to zero well width.
From Fig. 1 we see that for well widths larger than ~200
A the ground-state wave functions are essentially
unaffected by the presence of the barrier, and both the
I'{ and T'; ground states have energies close to the bulk
value. The more spatially extended wave functions of the
excited states “feel” the barroier, even for the widest wells
included in the spectra (300 A).

In Figs. 1(a) and 1(b) we also plot the I'y and I'; sub-
band edges, which are needed to estimate binding ener-
gies. The subband edges are calculated in a separate
EBOM program for band structures in quantum wells
and superlattices described in detail elsewhere.?* The Iy
(I'}) acceptor binding energy is defined to be the energy
difference between the I'g (T';) subband edge and the Ty
(T';) acceptor ground state. Figure 2 shows the I’y and
I'; binding energies for C and Be, respectively, as func-
tions of well width. The curves, with their chal;acteristic
single-peak shapes, have maxima for Ly ~12 A for I'§
and Ly ~32 A for I';. Compared to the analogous cal-
culations for GaAs-Al,;Gag,As spherical quantum
dots,?® the maxima are lower, and this is plausible since
the confinement effects are expected to be stronger in het-
erostructures with confinement in more than one direc-
tion. As expected, we find the central-cell shift, i.e., the
difference between ground-state energies of Be and C ac-
ceptors, to increase due to confinement. The shift is
found to be largest for well widths close to the maxima of
the binding-energy curves. A shift of up to 5 meV is ob-
served, and this value should be compared with the bulk
value of 2 meV.

Our EBOM results are generally in very good agree-
ment with the equivalent effective-mass calculations of
Masselink et al.!® for the ground states and binding ener-

1453
g
C Acceptor in Quantum Well
8
g
3
>
£3
>
2
=]
5|
8
o
§
Ground States
?‘ 1 4 1 1 L
0 50 100 150 o 200 250 300
Well Width ( A)
o
<+
Be Acceptor in Quantum Well
o | — I (b)
Qb
Bl
E """""
oo by N N, T~ A T
20
aer Subband Edges
o T U S e N S
? L Excited States
S L
|
Ground States
8’ L 1 . 1 1
0 50 100 150 200 250 300

Well Width ( A)

FIG. 1. Energies of the ground states (1'¢", 1T'7"), first even-
parity excited states (2I'¢’,2T';), and subband edges as func-
tions of well width for (a) C acceptors and (b) Be acceptors cen-
tered in GaAs-Alj ;Gag ;As quantum wells. The valence-band
edge of bulk GaAs is chosen as the zero of energy. The arrows
in (b) indicate the transitions measured by Holtz et al. (Ref. 4).
Solid squares represent Raman data, while open circles
represent results from two-hole—transition measurements.
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FIG. 2. Binding energies for C and Be acceptors centered in
GaAs-Aly ;Gag ;As quantum wells as functions of well width.
The T'{ (I'f) binding energy is defined as the energy difference
between the I'y (I';’ ground state and the I'q (I';) subband
edge.

gies. Small deviations are found when comparing binding
energies for the narrowest wells, however, and the EBOM
predicts lower maxima in the binding-energy curves com-
pared to effective-mass results. The differences are found
to be much larger for the excited states, especially for
2T';, and they increase with decreasing well width.
While the EBOM estimates for 2I'¢ are typically 3-5
meV lower than corresponding effective-mass results for
Ly <150 A, the EBOM predicts energies 4, 7, and 15
meV lower than effective-mass theory for 2I'; for
Ly, =141,96,and 51 A, respectively.

Upon comparison with photoluminescence experi-
ments for I’y binding energies, Masselink et al. found
their results to be in good agreement, and this applies for
our EBOM results as well. More recent data from photo-
luminescence experiments by Liu et al.’ are similarly
close to the EBOM (and effective-mass) results.

Although experimental investigation of impurity levels
in heterostructures should, in principle, not be more
difficult than in bulk, spectra from quantum wells have
generally been harder to interpret and predictions of en-
ergy levels have often been less accurate. In a recent re-
port, however, Holtz et al.* applied two different experi-
mental techniques (Raman scattering and selective photo-
luminescence) to measure energies in Be-doped GaAs-
Aly 3Gag ;As quantum wells 70 A wide. Two transitions,
interpreted as 1T} -2} and 1T -2, were observed in

both methods. Raman-scattering measurements gave
transition energies of 29.0£0.5 and 36.5£0.5 meV, re-
spectively, while two-hole transitions observed in selec-
tive photoluminescence gave 28.5t1 and 37.5+1 meV.
EBOM calculations predict slightly lower transition ener-
gies, namely 27.6 meV for 1T -2I'{ and 34.8 meV for
ITS-2I'. We have, for illustrative purposes, indicated
the transitions in Fig. 1(b) and marked Raman data by
solid squares and two-hole-transition data by open cir-
cles. The corresponding results from effective-mass cal-
culations by Masselink et al.!® are given for a so-called
ideal acceptor (pure Coulomb impurity potential) with a
bulk binding energy of 27.1 meV and must be corrected
before comparing with experiments on Be acceptors. By
assuming the same central corrections as in the EBOM,
transition energies of ~32 meV for 1T¢-2I'¢ and
~44 -45 meV for IT'{-2T'; are obtained. Comparisons
with the experimental values favors the EBOM, and we
thus generally expect the EBOM estimates for the excited
states to be better than the effective-mass results. The de-
viation in the latter may be due to the following. In this
paper we use exponential trial wave functions with
different values of u for different a’s, whereas in Ref. 13
Gaussian trial wave functions and a single value of u for
all a’s are used. Furthermore, in the present EBOM cal-
culations the extension of the cluster in the z direction is
manually adjusted to minimize the acceptor energies for
narrow wells. Since the matrix elements in Eq. (10) are
not evaluated analytically in the EBOM, there are no
practical restrictions on the form or complexity of the tri-
al wave function, in contrast to effective-mass calcula-
tions. For the I'J states a small fraction of the deviation
is due to the absence of the angular function labeled f in
Eq. (13) from the basis in the calculations in Ref. 13. In
addition, the approximate way of incorporating position-
dependent material parameters necessitated by the com-
putational complexity of the effective-mass method may
account for part of the difference.

When solving the generalized eigenvalue problem in
Eq. (10) to estimate acceptor energies, the wave functions
are found as a by-product. The normalization constant
has the form

(¢ly)=F F(R), (16)
R

where F(R)=F, ,(R)=F_, ,,(R) and the sum covers all
sites in the cluster. The quantity F(R) is analogous to
the square of the envelope function in effective-mass
theory. To illustrate the in-plane anisotropy, i.e., the de-
viation from cylindrical symmetry, we plot the quantity
IRNIF(RH, Z =0) (R;=[X,Y]), here called the in-plane
hole density, for different states of C acceptors centered in
quantum wells. The plots are made by interpolating
values of the in-plane hole density at points along specific
directions, assuming the SOBO’s to be nonoverlapping.
The validity of the assumption of highly localized
SOBO’s is uncertain, so care must be taken if the plots
are used in quantitative discussions. The in-plane hole
density in the [100] and [110] directions for the 1T,
1I“7+, 21“;, and 21‘;r states for a C acceptor centered in a
73-A-wide quantum well are shown in Figs. 3(a), 3(b),
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FIG. 3. The in-plane hole density [IRN[F Ry, Z =0)] in the [100] and [110] directions for (a) the 1T state, (b) the 1T state, (c)
the 2T'¢ state, and (e) the 2I'; state of a C acceptor centered in a 73- A-wide GaAs- Alp 3Gap ;As quantum well. The curves are based
on calculations with a scaling factor of 2 and are made by interpolating values of the in-plane hole density at points in the given direc-

tions.
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3(c), and 3(d), respectively. This well width, which arises
from scaling with s=2 according to Eq. (15), is, strictly
speaking, unphysical, but the qualitative behaviors of the
corresponding hole densities for similar physical wells
(e.g., Lyy=71 or 76 A) are expected to be the same. A
notable feature is the stronger anisotropy of the I'; wave
functions compared to I'y. The anisotropy, which
reflects the importance of d-like contributions is strongest
for the 'y excited state. Note, also, the larger spatial ex-
tension of the wave function of the 2I'; state compared
to 2I¢". For the ground states we find the hole, on the
average, to be closer to the acceptor than for a C accep-
tor in bulk ((|R|)~31 and ~29 A for 1T} and 1T, re-
spectively, compared to ~36 A for bulk?®). When com-
paring the excited states with the corresponding 2Ty
bulk state ({|R|) ~107 A), we find the hole, on the aver-
age, to be closer for 2I'¢" but farther away for the 2I';
state.

To check the sensitivity to the choice of boundary con-
ditions, we calculated, without scaling, the I'{ ground-
state energy for a C acceptor in a 59-A-wide quantum
well using a set of different boundary conditions. With
pure GaAs parameters for the interactions across the
boundary, the ground-state energy is lowered by 13 meV
when compared to the average-boundary-condition value
of —17 meV. Similarly, this energy is raised by 5 meV
when pure Al ;Gaj ;As parameters are used. The good
agreement found earlier in this section when comparing
EBOM results with experiments indicates that the aver-
age boundary conditions probably are close to the right
boundary conditions for high-quality quantum-well or su-
perlattice interfaces.

IV. ACCEPTORS IN SUPERLATTICES

In this section we first study acceptors in superlattices
incorporating several wells in the model. The effect of
the coupling of adjacent wells is studied and the calculat-
ed energy spectra are discussed and compared with re-
sults from similar donor calculations within the effective-
mass framework. Finally, EBOM calculations are com-
pared with data from recent measurements on a set of
samples where acceptors are embedded in both well and
barrier material, and the barriers are sufficiently thin to
make coupling of adjacent wells important.

First, we focus on C and Be acceptors centered in the
well material of GaAs-Al,;Ga,,As superlattices with
equal well and barrier widths (L, =Lz =L). We calcu-
late the energies of the I'y and I'; ground states using
the same material parameters as in Sec. III. As in the
quantum-well calculations, a scaling factor of 2 is used
for Ly >40 A. Coupling between adjacent wells in-
creases as the well and barrier widths decrease, and up to
11 wells are included in the calculations on the superlat-
tices with the shortest periods. To calculate the I'{ and
I'; binding energies, the I’y and T'; subband edges are
needed, and, as for the single quantum wells, they are
provided by a separate EBOM program.

Figure 4 shows the I'{ and I';" ground-state energies
for a C acceptor and corresponding subband edges as
functions of the thickness of the well (or barrier). In the
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FIG. 4. Energies of the ground states (1I'§",1I';) for C ac-
ceptors centered in the well material of GaAs-Al, ;Ga, ;As sin-
gle quantum wells and superlattices, respectively, as functions of
well width. The I'q and I'; subband edges are also shown. For
the superlattices the well widths and barrier widths are equal.
The valence-band edge of bulk GaAs is chosen as the zero of en-

ergy.

extrapolation to zero thickness for the ground-state ener-
gies, we use the average of the energies for the acceptor
in bulk GaAs and Al ;Ga, ;As. For the zero-thickness
value for the subband-edge energies, we use half the value
of the valence-band offset, i.e., the offset between GaAs
and Alj ;5GajgsAs. The corresponding energy spectra
for a single quantum well are shown with dashed lines to
illustrate the importance of coupling of adjacent wells.
The interwell coupling is strongest for the I'; states.
Since the acceptor confines the hole to the vicinity of the
impurity, we expect the interwell coupling to be relatively
less important for acceptor states compared to the ex-
tended Bloch states corresponding to the subband edges.
This is indeed observed. For the acceptor ground states,
we see from Fig. 4 that the wells are essentially decou-
pled, i.e., there is no difference between energies for the
superlattice and quantum well, for widths larger than
~30 A. For the I'; subband energy, however, the effect
of coupling is seen in superlattices with well (or barrier)
widths up to 75 A.

The corresponding I’y and 'S binding energies for C
and Be acceptors are shown in Figs. 5(a) and 5(b), respec-
tively. For comparison, we show with dashed lines the
binding-energy spectra for the same acceptors centered in
a single quantum well. The maxima in the superlattice
spectra are seen to be lower and shifted towards higher
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lattice). The plots are made by interpolating calculated values
of F(R) at points on the z axis.
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TABLE 1. T'{ (heavy-hole) binding energies for C acceptors centered in the well material in GaAs-
Al,Ga,_,As superlattices. x is alloy composition, Ly, is well width, Lg is barrier width, Ey, is the r¢
binding energy for well-centered acceptors, and Exhh is the estimated binding energy for heavy-hole

(T) excitons. The experimental values of Ey, are found by adding the estimated values of EXhh to the

measured values of EW——EXhh. All samples are grown by MOCVD, except sample 3, which is grown by

MBE. For samples 1-4 the listed EBOM results are found by linear interpolation between values for
E,, from calculations with L, =76 and 82 A. All energies are in meV, and all widths are in A.

Sample EW_EXhh Ey Ey
no. x Ly Ly Expt. Exhh Expt. EBOM
1 0.1 80 20 26.8 4.1 30.9 29.9
2 0.3 80 20 27.1 4.5 31.6 31.7
3 0.3 80 20 27.9 4.5 324 31.7
4 0.5 80 20 25.8 5.1 30.9 31.9
5 0.3 180 20 23.8 52 29.0 28.4
6 0.3 280 20 20.8 5.1 25.9 27.2

well widths. When comparing with Chaudhuri’s (single-
band) effective-mass donor calculations,'* we find the
same qualitative behavior, except for the thinnest struc-
tures. As expected, the sharp maximum for small widths,
which is found in the donor calculations involving only
three wells, is nonexistent in our extended model involv-
ing 11 wells.

To further illustrate the coupling of wells, we plot the
quantity F(R), as defined in Eq. (16), along the z axis
(growth direction) for the ground states of a C acceptor
centered in the well material of a superlattice with
Ly,=Lgz=8.5 A and a single quantum well with the same
well width, respectively. F(0,0,Z) for the T'{ and I';
ground states are shown in Figs. 6(a) and 6(b). As in Sec.
III, discrete values of F(R), assuming pointlike SOBO’s,
are interpolated to give the smooth curves shown in Fig.
6. The superlattice wave functions are observed to be
more extended in the z direction than the quantum-well
wave functions, due to interwell coupling. Note, also, the
larger extension in the z direction of the '] wave func-
tions compared to I'¢".

Recently, Skromme et al. made photoluminescence
measurements on a series of superlattice samples,
predominantly MOCVD grown, with thin barriers.>?’
Peaks interpreted as transitions involving bound states of
residual C acceptors centered in the well and barrier ma-
terial, respectively, were observed in the spectra. We

have performed calculations of binding energies for well-
and barrier-centered C acceptors in these superlattices.
The parameters describing the superlattices in the calcu-
lations are naturally chosen according to the composition
of the samples used in the measurements. In the experi-
ments the difference between the Iy acceptor binding en-
ergy and the binding energy of I'y (heavy-hole) excitons is
measured, and estimates of the binding energies of these
excitons are thus needed to facilitate comparison with the
EBOM results. These estimates are found using the k-
space-sampling method, introduced by Chu and Chang,
on an axial effective-mass model including only one con-
duction subband and one valence subband.?’ The result-
ing exciton binding energies are listed in Table I (and II).
Due to the neglect of coupling to other subbands, we ex-
pect the predicted values for the exciton binding energies
to be slightly too low. The deviation is presumably larg-
est for the samples with the widest wells, where separate
subbands are energetically close.

In the calculations for acceptors located in the barrier
material, we assume the same value of U, as in the well
material. For most of the superlattices used in the mea-
surements, the EBOM results are insensitive to (reason-
able) variations in U, so the correctness of the choice of
this parameter is generally not important for barrier-
centered acceptors. The only exception is sample 1 in
Table I (and II), where the central-cell shift is roughly

TABLE II. Same as Table I for C acceptors centered in the barrier material in GaAs-Al,Ga,_,As
superlattices. Ej is the I'{ binding energy for barrier-centered acceptors.

Sample Ep;— Exhh Eg E;
no. x Ly Ly Expt. Exhh Expt. EBOM
1 0.1 80 20 9.5 4.1 13.6 17.4
2 0.3 80 20 8.7 4.5 132 11.2
3 0.3 80 20 83 4.5 12.8 11.2
4 0.5 80 20 2.9 5.1 8.0 10.1
5 0.3 180 20 42 5.2 9.4 8.2
6 0.3 280 20 0.4 5.1 5.5 7.1
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half of the corresponding bulk value.

The scaling approximation is not used in the calcula-
tions. Larger clusters are generally needed in EBOM cal-
culations for acceptors centered in the barrier than for
acceptors centered in the well. The maximum number of
sites included in these calculations is 1.9 X 10° sites for
barrier-centered and 630000 for well-centered acceptors.
For well-centered acceptors in samples 5 and 6, the
confinement effects are minimal, and the single-
quantum-well results in the preceding section apply.

For the valence-band offset we use the same formula as
in Sec. III for the alloys x=0.1, 0.3, and 0.5, i.e.,
AE,=0.35X1247 X x meV, although this formula, strict-
ly speaking, is only recommended for x <0.45.%

The experimental data and the corresponding EBOM
results for the I’ binding energies for well- and barrier-
centered acceptors are listed in Tables I and II, respec-
tively. The agreement is found to be quite good for the
well-centered acceptors, where the deviations are less
than 1.5 meV for all samples. The agreement for the
barrier-centered acceptors is not as good. Deviations are
typically 1-2 meV, with the exception of sample 1, where
a deviation of 3.8 meV is observed. However, it is known
that due to the growth technique employed, the actual
sample parameters differed significantly from the nominal
values listed in the tables.*® This may affect the compar-
ison of EBOM results and the experimental data. Addi-
tional experiments are in progress to measure more accu-
rately the actual sample parameters to permit a better
comparison with theory.?’

VI. CONCLUDING REMARKS

We have studied acceptors in quantum wells and su-
perlattices using the effective bond-orbital model
(EBOM).?*?® The agreement with available experimental
data is generally good.

The EBOM method has several advantages in acceptor
calculations as compared to the effective-mass theory:
the positional dependence of the material parameters is
straightforward to incorporate in the calculations, more
flexible trial wave functions can be used in the variational
calculations, and more complicated heterostructures (e.g.,

several coupled quantum wells) can be handled. For ac-
ceptors centered in single quantum wells, the results from
the EBOM are in good agreement with previous
effective-mass results (and available experimental data)
for the I'¢ and 'y ground states, but the results for the
energies of the first even-parity excited states differ.
Comparisons with recent experiments, where two
separate experimental techniques are used to measure
transition energies involving these excited states, favor
the EBOM results. The discrepancies between the
effective-mass results are presumably mainly due to the
first and/or second shortcoming mentioned above. In the
calculations on acceptors in superlattices with thin bar-
riers and wells, we were able to include 11 wells in the
model without calculational difficulties. The inclusion of
only three wells in the analogous effective-mass calcula-
tions for donors was partly due to the calculational com-
plications of incorporating more wells in the model.

Since the EBOM assumes no lattice defects and perfect
interfaces, we expect the results to be in closest agree-
ment with measurements on high-quality samples. When
the EBOM is applicable, we also expect the appropriate
boundary conditions to be close to the average boundary
condition used in this article.
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