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Optical-phonon modes in a double heterostructure of polar crystals
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The equation of motion for the polarization vector for a double heterostructure of polar crystals
is solved exactly within the framework of the continuum model. There exist only two types of pho-
non modes, the interface modes and the confined bulk modes, whose eigenvectors are obtained ex-

plicitly. Dispersion relations are derived analytically for the interface modes, while the confined
bulk modes are dispersionless, a fact consistent with the model. It is also found that in Raman
scattering experiments the symmetric interface modes are predominantly longitudinal optical (LO)
and the antisymmetric interface modes transverse optical (TO). In the central region of the Bril-
louin zone, ho~ever, they both split into two branches oscillating at LO and TO frequencies, respec-
tively. Possible reinterpretation of various experiments is briefly discussed.

I. INTRODUCTION

There has been a great deal of interest in recent years
in the study of various vibrational modes supported by
semiconduct heterostructures. The patterns of normal
modes of vibrations that determine the electronic proper-
ties in such structures are evidently different from those
in the bulk. The presence of interfaces necessarily alters
the phonon modes, and possibly even their interaction
with electrons may be modified because of the reduced
dimensionality.

Experimental investigations of the spectra of possible
acoustic modes in superlattices' have shown fairly
good agreement with theory. On the other hand, the
longitudinal-optical (LO) modes in polar crystals are
much less well understood in these contexts. In all the
calculations, such as free-carrier absorption of light,
scattering rates, and polaronic effects, etc. , the usual
bulk Frohlich Hamiltonian is assumed for the electron-
phonon interaction in confined systems. The only re-
quirements are that the material elastic properties match
at the interfaces and that the dielectric properties are
equal. More recently, the surface-optical (SO) mode has
been included in the treatment of polarons confined in a
slab' or near the interface in semi-infinite systems. "'
For these surfaces and interface situations, the bulk
Frohlich Hamiltonian is still employed for treating the
LO-phonon contribution.

On the other hand, evidence of confined modes pecu-
liar to different types of layered structures has been no-
ticed in various experiments. Measurements of magneto-
absorption and cyclotron resonance in Ga, In„As/InP
superlattices' and GaAs/Ga&, Al As heterostruc-
tures' indicate that the electron —LO-phonon interaction
in these structures can be fundamentally different from
that in the bulk case. In a numerical study of possible
modes of the optical phonon in layered polar crystals, it
is found that phonon modes tend to be confined in each
layer and that the penetration of vibrations into the adja-
cent layer is negligible. ' ' Moreover, the existence of

confined phonon modes has been directly observed in a
GaAs single quantum well of GaAs/Ga~, A1„As hetero-
structures.

In theoretical investigations of the vibrational modes in
an ionic slab, Fuchs and Kliewer' have found the bulk
LO mode with the nodes at the surfaces as well as the SO
phonon modes of different symmetries. Interface modes
have been derived by Wendler' by considering the polar-
ization field in a double-layer system, and by Lassnig
using the energy-loss method in a double heterostructure
(DHS) of polar semiconductors. An alternative treat-
ment ' of the DHS predicts some peculiar phonon modes
that have not been borne out by observation.

In this article we present solutions for optical-phonon
modes in a semiconductor DHS using the continuum
model of Born and Huang. The method of solution has
been developed by various authors. ' ' ' Apart from
the long-wavelength limit in the model, no further ap-
proximation is made throughout our calculation. Disper-
sion relations and eigenvectors for all the normal modes
of lattice vibration are derived analytically. It is found
that there exist two types of phonon modes, the interface
modes and confined bulk modes.

While the existence of interface modes has been well
recognized experimentally, ' their eigen vectors and
dispersion relations in a DHS are solved explicitly for the
first time in this paper. Our results show that either the
symmetric or the antisymmetric interface modes have
two branches. Their frequencies at the center of the Bril-
louin zone are exactly the same as those of the bulk LO
and TO phonons is each material.

Experimental evidence of confined bulk modes has re-
cently been reported. ' ' ' We find that both the bulk
LO and transverse-optical (TO) modes are strictly
confined. Further investigation on implications of such
confinements is being carried out and will be reported
else~here.

In Sec. II, we outline the procedure for deriving the
equation of motion for the polarization vector. The cou-
pled integral equations are solved for the interface modes
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in Sec. III and the confined bulk modes in Sec. IV.
Consequences and implications of our results are dis-
cussed in Sec. V.

II. EQUATION OF MOTION
OF THE POLARIZATION FIELD

Consider a DHS of two different polar crystals as
shown in Fig. 1. A layer of material 1 with thickness a is
sandwiched between two thick layers of material 2. %e
take the z axis to be perpendicular to the interfaces which
are located at z =0 and z =a, respectively. Following
Born and Huang, we start in the continuum approxi-
mation with the equation of motion for the relative dis-
placeinent u (r, t) of the ion pair in material v (v= 1,2),

p„u„(r, t) = p~o, u—„(r,t)+ e „' E(r, t),
where p is the reduced mass of the pair of ions, @coo is the
short-range force constant not including Coulomb fields,
E(r, t) is the local electric field, and e' is the effective
charge of the ions. The subscript v labels the material
considered. The oscillating ions produce a polarization
field P(r, t) given by

)g X

FIG. 1. Geometry of the double heterostructure.

E(r, t)=Et(r, t)+4nfdr' I. (r —r') P(r'), (3a)

is not valid for such an effect. The local field in (2) is
related, in the long-wavelength limit, to the polarization
by

P(r, t) =n„e„'u(r, t)+n„aQ(r, t), (2) where

where n is the number of ion pairs per unit cell and a is
the polarizability. The first term in (2) represents the
contribution of the ion pair when the lattice vibrates, and
the second term is the electronic polarization of the ions
due to the electric field associated with the optical modes.
The part of the polarization produced by the electron it-
self as it moves through the crystal is, however, not in-
cluded in our consideration, since the continuum model

E,(r, t)= 4mP(r, t), (3b)

and I denotes the Green tensor with components

(3c)

The equation of motion for the polarization then fol-
lows by inserting Eqs. (2) and (3) into (1):

42

(1—43na n„)P(r, t)+ coo„4n a„n„co—o„+
3Pv

P(r, t)

42

=4na„n„fdr I (r —r') P(r', d)+4m a„n„coo„+
3Pv

dr'I r —r' P r', t (4)

The time-dependent part of the polarization can be
separated by assuming P(r, t) =P(r)e'"' which, after sub-
stituting into (4), yields the equation for P(r),

I

dimensional vectors» and p so that k = (», q) and
r=(p, z). The two-dimensional Fourier transforms can
now be written as

Aro

a n (A,„—A.o„)—1
P(r)

3

2

P(r) = f d» '"et (P»z),
277 00

=4m. f dr' I"(r—r') P(r'), (5a)

where we have defined the parameters

X„=4m'co /co

ko —4'7Th)0 /CO

(5b)

(5c)

with the ion plasma frequency co&„=4~n „(e„* )Ip„.
Since the translational invariance in the z direction is

destroyed by the interfaces, we introduce the two-

1 da
exp(i » p»~z~ } ..2' K

Differentiating (7) twice with respect to the coordinates,
we obtain

I = — dec'"~ 'KK/2mK,1

4m.

where

K=(», i B(z)»),
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4m 0 x. '(~)

y„'(~)e„(a~)

.P(K, z)

with the step function e(z)=+1 for z~&0. Substituting
(6) and (8) into (5a), and moving the term P—, from the
right-hand side to the left-hand side, we can write after
some algebraic manipulations the resulting equation in a
more symmetric form as

y„'(co )

defines an eigenvalue problem whose solutions describe
the interface modes and the confined modes. Equation
(15b) describes the s polarization, which is not of concern
in the present paper. The eigenvectors II(K,z) form a
complete orthonormal set. Here we just give without
proof the orthonormality relation

i /2( )
i /2( )f dz

" ', " ' lI,'( Kz)II;( Kz)=5;, , (17)
pv

f dz' e " ' 'KK P(K,Z'),
K

(10)
with ri„' (co, ) = 1/[1+a„n,(AO„—/(.,)]. The completeness
relation is given by

where y„(co) is defined by
2

y II;(K, z) Il, (K, z')= I5(z —z'),
1v

(18)

4m', '(co) =
a~ „(A,„—A,o„)—1

4m

3 where I stands for the unit matrix. Finally, we note that
the polarization vector must be real, and consequently

It turns out that y„(ro) is the isotropic dielectric suscepti-
bility and is related to the dielectric function by
y„(co)=e„(co)—1 with

P(K, Z) =P*(—K,z) .

Similarly, we have

(19a)

2 2
COL~ CO

ev(~ }=eao v
COT„N

e„„=1+4rra„n /(1 4na—„n„),

(12a)

(12b)

—1 0
Il(K, z) =

0 1
II"(—K, z) . (19b)

coL, =acro, + —,'co&„/(1+ ,'ma, n, )—, (13a)

(13b)

Since the interface phonons propagate in the x-y plane,
it is more convenient to express the polarization vector as
P=(II,P, ), where II is a two-dimensional vector defined

by II = (P„,P, ). Thus

where we have defined the LO- and TO-phonon frequen-
cies

III. INTERFACE MODES

det
(~)e„(co)

%0. (20)

The resulting equations are

It is easier to solve the coupled integral equations (15a)
by first transforming them into differential equations.
This can be done by differentiating (15a) with respect to z
twice and at the same time requiring

g„'(co) 0

P(K, z) =P (K,z)K+P, (K,Z)z+P, (K,z)s, (14) P„(K,z) =i KP, (K,Z),
dz

(21a)

where the unit vector s is defined by s =z Xx. Substitut-
ing (14) into (10), we can separate the s component and
decouple (10}into two equations:

d2
Il(K, z)=K II(K,z) .

dz

The solutions to (21) take the form

(21b)

g„'(ai)

g„ (~)e,(~)
.Il(K, z )

a)
dz M(z —z ) 11(K,z )

4m
(15a)

iA2e"', z &0

P (Kz)= ~ i(A, e"'—Be "'), 0 z&a
—iB2e "', z &a

(22a)

for the so-called p polarization, and

'(co)P, (K,Z) =0 (15b)

A2e ', z&0

P, (K,z) = A, e"'+B,e "', 0&z & a (22b)

for the s polarization, where M is a Hermitian matrix
given by

82e "', z&a .
L

M(z —z')=M (z' —z)

2~~e
—Klz —z'l

i B(z —z')
ie(z —z')

Substituting (22) in the integral equation (15a}, one ob-
tains a set of homogeneous equations for the amplitudes
A„and 8 of the p polarization. The condition for the
existence of a nontrivial solution then leads to the disper-
sion relation

(16)

As we shall show in the following sections, Eq. (15a)

ei(ai) —e2(co)
+e KQ

e, (co)+ e2(co)
(23)
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y2(a1 )
A 2

= (1+e")A
+—

,2
( )

—
1 (24b)

The + and —signs on the right-hand side of (23} corre-
spond to the symmetric and antisymmetric modes of the
interface phonons, respectively. The polarization ampli-
tudes are found to satisfy the following relations:

(24a)

Equations (24) are equivalent to the boundary conditions
that the wave functions have to satisfy at the interfaces.
Thus the differential equations (21) yield naturally the
correct boundary conditions after substituting their solu-
tions (22) into the integral equation (15a}. On the con-
trary, the hydrodynamic terms introduced in Ref. 21 are
inconsistent with the boundary conditions. Combining
Eqs. (22)—(24), we find the eigenvectors for the antisym-
metric interface phonon modes to be

g2(co)
B2 = (1+e")B—,

y1(co )
(24c)

~a
C, e"( i, ——1)sinh, z (0

e1(co) 1 — '
2

II, = C, (i sinh[a(z —a/2)], cosh[1c(z —a/2)]), 0 z ~a (25a)

Ka
C, e " "(i, —l)sinh, z )a

e, (co) —1 2

and for the symmetric modes to be

e2(a1) —1

C, e "(i, 1)cosh(1ca/2), z (0
e1 et) 1

II, = . C, (i cosh[le(z —a/2}], sinh[1c(z —a/2)]), 0 z~a
e2(co) —1

C, e "" "(i, —1)cosh(~a/2), z ) a
e1(co)—1

(25b)

where, according to (17), the normalization constants are given by
' 2 —

1 1/2
K 91 I 1 1 +2

pl p2
sinh( 1ca ) c02, a12 e2

(25c)

A heterostructure composed of two media with dielectric functions given by (12) always supports four distinct inter-
face modes of vibrations, two from each medium. The dispersion relations for these modes can then be calculated ex-
plicitly from (12) and (23). The results are

~a e~2 ~T1+~L2}+ o. 1(a1T2+a1L1}
+ 2 2 2 2 Ka

2

2 2 2 2 2 2 2 2 2E~ 2(cg)T1 cgL2) +e~1(Q)T2 coL1) coth 2 2 2 2 2 2 2 2

2
+ eat: le ~ 2[ ( ~T1+~L2 ~T2+ ~L1 ( ~T2~L1 +~L2~T1

1/2 1/2 1/2

Xcoth
2

Ka
2 e„2+a„,cOth

2

+ 2 2 2 2 Ka
ci) = e 2(coT1+coL2)+e 1(a1T2+coL1)tanh

a

2 2 2 2 2 2 2 2 2e„2(coT,—coL2) +e„,(coT2
—coL, ) tanh 2 2 2 2 2 2 2 2

2
+ 2e„1e„2[(c0T1+COL2)(Q)T2+ CdL1 ) 2(coT2COL1+ Cd T1coL2)]

Ka
Xtanh

2

1/2 1/2
Ka

' 2 E 2+E 1tanh
2

1/2

{26b)

It is seen from (26) that the interface phonon energies depend explicitly on the dimensionless quantity xa.
Let us now look at the limiting cases. When a ~ ~, tanh(~a /2) = 1 and coth(lca /2) = 1. Therefore, both (26a) and
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(26b) approach the same limit, given by

1Llao (coo 1(~L1 ~T2) ~oa2(TI L2
2 2 2 2

—j ~ao 1(~LI ~T2 } ao2(L2 Tl

+ coo leao2[ ~T1+~L2)(T2+~L1) (T2~L1+~T1~L2 )I ) [ ~~1+eao2 j (27)

~;= I [~T2+~L1+(~T2—~L1)1/2I ' —~T2

g I [alT1 L2—( Tl L2)1/2 l Tl ~L2

(28a)

(28b)

which is identical to the result of a bilayer system with

only one interface, ' as it should be. In the limit a~0,
the system reduces to a bulk material, 2, with frequencies

alL2 and alT2. When 1~~0, tanh(aa /2) =0 and
coth(aa /2) ~ 00. We then find from (26) that

K

sinh(~a )

' 1/2

KQ KQ
g1cosh +y2sinh

Q 2

2 2 1/2
X1'91 X2'92 Ka

tan
Npl Np2 2

(30b)

That is, the limiting frequencies are given by the bulk LO
and TO frequencies of the two materials. It may be
worth mentioning yet another limit at this point. When
the characteristic parameters of the two dielectrics ap-
proach each other, or when e, ~@2, we find for a given
width that the amplitudes of the interface modes of vibra-
tion diminish continuously and become zero at @1=F2.

The interface phonon modes have no connection with
bulk polarization charges because V P=O. They are ac-
companied by the surface charges cr at the interfaces.
These charge densities can easily be determined by calcu-
lating the difference of the polarization eigenvectors in

the z direction on both sides of the interface concerned.
Thus we find from the z components of II, , in (25)

IU. CONFINED BULK LO AND TO MODES

P„(~,z)=iaP, (a,z),d
dZ

(31a)

and in layer v'Wv

For the LO modes, al=coL„and from (12a) we have

e„(alL„)=0 and e„(coL )%0 for v'Av. Thus D=0 in lay-
er v, and E= —P/eo. The differential equations satisfied

by the polarization field associated with the longitudinal-
phonon modes follow from (15a). In layer v we have

Os=
at z=O

at z=a, (29a)
d'

2P„(v,z)=lr P, (lr, z) .z' (31b)

for the symmetric mode and

—/a, /
at z =0

/o, /
at z=a,

Ka KQ
y, sinh +g2cosh

2
1/2

L

2 2
X191 +2 92 KQ

2
coth

Np1 Npl
"2

for the antisyrnmetric mode, where

1/2
K

sinh(a. a }

(29b)

(30a) p"(a) =p'(o) =o . (32)

Hence, Eq. (3la) is satisfied in layer 1 by the eigenvectors

The solution to (3lb) has the same form as (22) with the
coefBcients determined by the boundary conditions for
the field vectors. In layer v, D=o and E= P/eo. —
Frorn the continuity of D across the interface, we have
D=O in layer v'. Since e, %0, we must have E=o and
P=O. Therefore (31b) has a solution that is identically
zero everywhere in the layer v'. The boundary conditions
in layer v can be found from (15a) for e„=oand g„=—l.
After algebraic manipulations, we find from the coupled
equations that

0, z&0
II = C (i sin(mqrz/a), ( m/aqrx)cos(m z/qr))a, O~z ~z

0, z&a
(33a)

where m is an integer, and in layer 2 by
a

Cq"(i sin(qz), (q/Ir)cos(qz)), z &0

II = 0) O~z ~a

Cq (i sinq(z —a}, (q/a')cosq(z —a)), z & a

(33b)
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(34a)

1/2
1

Cq = K

(»2 +q
2

)
1 /2

(34b)

where q is real, with the corresponding eigenfrequencies
co„, and coL2, respectively. These modes are highly degen-
erate vibrations. We remark that the dispersionless na-
ture of the confined bulk modes is consistent with the
long-wavelength limit which is implied in the continuum
model. The bulk optical photons have constant energy as
k -0.

Equations (33) clearly show that the longitudinal-
optical phonons are completely confined by the inter-
faces. In the central layer (labeled 1), the confine-
ment leads to the quantization q =mala, where m
=0,+1,k2, . . . , while in the semi-infinite side layers (la-
beled 2) the wave number q remains continuous. The
state vectors are normalized according to (17) with the
normalization constants given by

' 1/2
2 K

g (» + in 2~2/122)1/2

The confined LO phonons are related to both bulk po-
larization charges and interface polarization charges.
The former can be found from p= V P and the latter fol-
lows from the boundary conditions at the interfaces. The
results are

p =C~(»+q /»)sin(qz),

( —1) at z=0
a» (

—1) at z=a,
C~(q/»} at z =0

L —C (q/») at z =a .

(3&)

(36a)

(36b)

We now turn our attention to the TO phonons for
which co =coT„. Equation (12a) then implies that
y„'(coT„)=0 and y, '(coT, )WO for v'Xv. Hence E=O
and D=P in layer v. The same consideration and pro-
cedures as described above for the LO phonons lead to
eigenfrequencies coT, and coT2 with corresponding eigen-
vectors

0, z(0
II = C (i(mn/a»)co. s(mmz/a), sin(me. z/a)), O~z ~a

0, z)a,
(37a}

where m is an integer, and

C (i(q/»)cos(qz), sin(qz)), z (0
II&= i0, 0 z a

C (i (q/»)cosq(z —a), sinq (z —a)), z & a,
(37b)

where q is a real number. We see from (37) that the TO
phonons are also strictly confined by the presence of in-
terfaces. Once more, these eigenvectors are normalized
according to (17), and the normalization constants are
given by the same expressions as (34) except for the re-
placement of coL, by cuT . The confined TO modes are,
however, not associated with any polarization charge,
neither bulk nor surface charge.

The s-polarization modes are given by the solution of
(15b) with g, (co) =0. This implies that the s-
polarization modes exist only when the eigenfrequencies
are those of the transverse-optical phonons in either
medium. Since these modes are completely decoupled
from the other vibrational modes, they are not involved
in the interaction with electrons and hence will not be
discussed further.

V. DISCUSSION

We have shown that there exist two types of phonon
modes in a double heterostructure consisting of two semi-
conducting materials, the interface phonons and the
confined bulk phonons. The interface modes may be ei-
ther symmetric or antisymmetric with respect to the
center of the system. They are dispersive in nature, and

their frequencies for given materials depend solely upon
the dimensionless quantity ~a. In the center region of the
Brillouin zone, these modes have the same frequencies as
those of the bulk LO and TO phonons in each material.
For this reason, we shall refer to them as "LO-like" and
"TO-like" interface phonons.

Since the bulk frequencies are determined by the posi-
tions of the zeroes and poles of the dielectric functions as
can be seen from (12), different compositions of the dou-
ble heterostructure can result in dift'erent frequency com-
binations. However, only three distinct combinations as
shown in Fig. 2 are possible, where we have assumed
coT2 & ~T, without loss of generality. It is observed that as
the width of the central layer increases, the four interface
modes become two degenerate modes. In the limit of
large a, these modes have the same frequencies as those
in a bilayer heterostructure. In case (a), the degenerate
modes are material-like, while in the other two cases they
are LO-like and TO-like. Experimentally, only case (a)
has been observed thus far. It is therefore interesting to
carry out experiments on samples with ~„,, ~L2
& AT„coT2, such as GaAs/Gaa 3A10 7As (GaAs-type) and
InP/A1Sb.

It should also be of great interest to note that the pecu-
liar mode observed in the 90 Raman scattering experi-
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FIG. 2. Dispersion relations of the interface modes in the double heterostructure for different compositions: (a) GaAs/A1As for
which coL2 & co+2 & coLl & uzi,' (b) GaAs/A10 3Gaa 7As (GaAs-type) for which coL2 & coLI & coq2 & cobol,'(c) InP/A1Sb for which

~L1 & ~L2 & ~T2 & T I '

ment may be understood, as has been pointed out re-
cently, in terms of the interface modes derived in Sec.
III. In other words, the novel slab modes reported in
Ref. 27 are in fact the interface modes. A detailed
analysis of this experiment will be published elsewhere,
and here we give only a qualitative account. Since Ra-
man scattering experiments involve only phonons of very
small ~, the dominant component of the polarization vec-
tor II, is P, according the (25a). Therefore, the antisym-
metric interface modes are predominantly TO modes. In
the central layer, this TO mode oscillates at the LO fre-
quency of GaAs, in agreement with the experimental re-
sult in the right-angle scattering configuration. Similarly,
(25b) shows that the polarization II, has a dominant P,
component, or the symmetric interface mode in the cen-
tral layer is predominantly longitudinal and oscillates at
the bulk TO frequency of GaAs.

In addition to the Raman scattering experiments, the
interesting pinning phenomenon has been reported in re-
cent measurements of cyclotron resonance. That the elec-
tron interacts with optical phonons at the bulk TO fre-
quency has been observed in the measurements of the
magnetopolaron frequency in semiconductor quantum
wells, ' and it has been attributed to the classical
dielectric effect. This is essentially a polariton effect

rather than a polaronic one. When the 1s-2p transition
energy of a hydrogenic impurity atom in a GaAs quan-
tum well is measured in strong magnetic fields, ' the pin-
ning is found at frequency about 40 cm ' below ~L (-20
cm ' below cur). To our knowledge, there is no theory
up to the present time that can account for this result.
The existence of traveling LO phonons and the zone-
folding effect has been suggested as a possible source of
this phenomenon. ' We have solved the interface pho-
non modes in a superlattice, and our preliminary results
indicate that probably the interface modes are responsible
for this strange pinning phenomenon. More careful
study is necessary, however, before any definite con-
clusion can be made. Work along this direction is also
underway and will be discussed in forthcoming publica-
tions.
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