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Additional-boundary-condition-free theory of an exciton polariton in a slab
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The electric field associated with an exciton polariton in a slab of spatially dispersive medium has
been calculated "from first principles" according to the general framework by Cho in which the ar-

gument of additional boundary condition (ABC) is completely avoided. As the exciton wave func-

tion, we have con".idered, in addition to the bulk component, the distortion of the type. exp( —PZ)
near the surfaces according to the analytic model of D'Andrea and Del Sole, and the slab thickness
d has been assumed to satisfy exp( —Pd) ((1. The result has been shown to be equivalent to that
obtained from the explicit use of ABC on the same model. In this way, it is demonstrated that the
ABC-free formalism is not only of conceptual, but also of practical, use.

I. INTRODUCTION

For spatially dispersive media specified by explicit
wave-vector (k) dependence of bulk dielectric function
e(k, co), the dispersion relation of transverse-mode polari-
ton in the bulk is given by the solution of the equation

e(k, co)=c k /co

This provides the solution k(co) as a multivalued function
because of the k dependence of the dielectric function.
Namely, when an external light with frequency co is in-
cident on this medium, there arise several modes of polar-
itons in the medium. Therefore, additional boundary
conditions (ABC' s) are usually required, in addition to
Maxwell boundary conditions (MBC's), to uniquely deter-
mine the relative amplitudes of the polariton modes.
This is well known as the ABC problem,

' and has been
studied from various viewpoints for about 30 years since
the first treatment by Pekar.

After careful consideration, it has become clear that
the solution of this problem is obtained solely from the
Maxwell equation of the (finite or semi-infinite) medium
in consideration,

rot rot C(R)—(co /c )C(R)
—(4irco'/c') f dR'y(R, R')C(R') =0, (1.2)

where the electric field 8 and polarizability y refer to fre-
quency co, and the integration is done over the medium.
As a first-principles theory, y must be calculated from
the eigenvalues and the eigenfunctions of the system
through the linear response theory. Thereby, the
quantum-mechanical boundary condition must be prop-
erly considered. Historically, there have been two types
of description of the solutions of Eq. (1.2); the traditional
one, which explicitly deals with the form of the ABC
(ABC theory), and a new one, which never refers to
the ABC (ABC-free theory).

In the ABC theory, bulk polaritons are found to be the
possible solutions of (1.2). At the same time, one finds
the condition(s) to be satisfied among the coefficients of
bulk polaritons, which play the role of the ABC. In or-
der to carry out the whole program, one must (i) calcu-

late the energies and wave functions of the system, with
explicit consideration of the boundary condition, (ii) cal-
culate y(R, R';co) in a closed form, and (iii) solve Eq.
(1.2). Before the full step [(i)—(iii)] calculations were
presented, it had been demonstrated in terms of (macro-
scopic) model susceptibilities, i.e., those without the step
(i), that Eq. (1.2) contains all the necessary information
including the ABC.

In the ABC-free theory, one makes use of the charac-
teristic form of y(R, R') to solve Eq. (1.2). Quite general-

ly from linear-response theory, one may write

X(R R ) =XXA(co)pi. (R)pi(R )

where A, refers to the quantum number of excited states.
This form of integral kernel allows us to solve Eq. (1.2)
without referring to the ABC. According to this formal-
ism, one need not calculate g in a closed form; that is,
step (ii) can be omitted. The summation over A, appears
in the final expression of C(R), and, after the summation,
bulk polariton modes emerge in the case of the semi-
infinite medium. Since the ABC-free theory is based on
the general form of g(R, R'), it can be applied also to
such systems as very thin films and quantum wells
(QW's), where no bulk polaritons are expected.

Although the ABC and ABC-free theories give physi-
cally equivalent results, their feasibility may not be al-

ways the same with respect to the model systems to be
considered. Therefore, it is of theoretical interest to see
the range of applicability of the ABC-free method. In
Ref. 7, one considers a very simple example, i.e., the case
of no-escape boundary conditions without distortion of
wave functions at the surfaces of a slab, and derives a re-
sult equivalent to Pekar's ABC. In this paper, we take a
more realistic model for excitons, i.e., the analytic model
of D'Andrea and Del Sole (DA-DS) (Ref. 4) applied to a
slab. In this model, exciton wave functions are allowed
to be distorted near the surfaces according to a single
evanescent wave of the form exp( PZ). The same m—od-
el has been treated by Cho and Kawata and Cho and
Ishihara, at progressive levels of approximation, from
the viewpoint of the ABC theory. The later work, with
which we want to compare the present result in a
later section, is based on a single approximation,
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II. OUTLINE OF THE ABC-FREE THEORY

As we mentioned in Sec. I, the starting point of the
ABC-free theory is the same Maxwell equation, (1.2), as
in the ABC theory. The essential point of this formula-
tion is based on the general form of polarizability
y(R, R', co) in site representation which is to be used as
the kernel in this integro-differential equation, (1.2).
Generally y(R, R', co) can be written in the form of (1.3),
i.e., a sum of the products of functions of R and R' re-
spectively. This is clear from linear response theory, ac-
cording to which the polarizability (at 0 K, for simplicity)
is expressed as

& ole(R) lA, & & A lP(R') lo&

Ng N E I

+ &ole(R') lx& & ale(R) lo&

Ng+ co+1I

(2.1)

where A, stands for the quantum number of the system
with excitation energy Ace&, V0 is the volume of one of the
small cells into which the whole medium is divided, e(R)
is the polarization density operator for electrons integrat-
ed over the cell at R, and I is a phenornenologically in-
troduced damping constant. [In Eq. (2.3) of Ref. 7, Vo
must be replaced with Vo.] All the information about the
bulk and surface are included in tficoi„lA. &]. Putting
aside the nonresonant terms as a background constant,
we can rewrite y(R, R';co) in the form of (1.3) with the
following definitions:

j' (~)=(p, /ev )/(~ —~—ir),
p (R)= & A lP(R) lo & /p v,'",

(2.2)

(2.3)

where p is a constant with the dimension of dipole mo-
ment. All the information of the bulk and surface wave
functions is included in pi(R).

Considering the case of the normal incidence of exter-
nal light to a slab of thickness d, we have only to deal
with the surface-normal (Z) components of R and R', so
that (1.3) can be replaced by

exp( P—d) «1, where d is the thickness of the slab. It
would be useful to show the ability of the ABC-free
theory by demonstrating an equivalent result to that of
the ABC theory. With this result, the ABC-free theory
proves itself to be not only a useful concept, but also a
practical method.

Before we show the details of our calculation, a brief
explanation of the ABC-free theory is given in Sec. II. In
Sec. III, a detailed calculation, based on the DA-DS
model applied to a slab, is carried out according to the
ABC-free formalism, and it is shown that the final result
is physically equivalent to our previous one obtained
from the ABC theory. Section IV is allotted for discus-
sion.

A brief summary of the ABC and ABC-free theories
for a slab of DA-DS-type model is reported in Ref. 11.

X(Z, Z') =g y„(co)p~(Z)pi(Z') . (1.3')

where
dEg= pg Z Z Z,

0

q =a~ /c, Q =4am /c

(2.5)

(2.6)

where s0 is the background constant to which the non-
resonant terms of polarizability contributes. In this one-
dirnensional formulation, pi(Z) should be redefined as
(2.3) multiplied by a certain length. Thus, the probletn is
just to solve the second-order differential equation (2.4) in
a consistent way with (2.5). Since we may regard t Fz j as
given constants, the general solution of (2.4) can be writ-
ten as

8( Z)=h, e" +6,e" —g Gg(Z)F~, (2.7)

where

G&(Z)=(Q yi(cu)/2iq) f e ~l — 'Ip (Z')dZ',
0

Z d Z

(2.8)

(2.9)

8i and 8z are arbitrary constants, and we have used the
identity

(d /dZ +q )e'~ '=2iq5(Z —Z') . (2.10)

Substituting (2.7)—(2.9) in (2.5), we obtain the linear
simultaneous equations to determine the expansion
coefficients (Fi j of the electric field as

Fi, =@,fp (Zi)e'~ dZ+8~ fp (Zi)e'~ dZ

XFV f Gi.'(Z)pdZ)dZ . (2.11)

Evidently, the solution of this equation has the form

Fi.=&i.@i+ &i.@2 (2.12)

From (2.7) and (2.12), it is clear that the final expression
of 6 (Z) contains only two arbitrary constants, 6', and 8z.

Thus, according to the ABC-free theory, the electric
field A'(Z) in the slab can be directly calculated in the
form which contains the minimum number of arbitrary
constants. Therefore, just a set of MBC is enough for the
unique connection of the external and internal fields
across the surfaces; that is, no discussion of ABC is
necessary in this theory. In the limit of the semi-infinite
slab (d ~ ~ ), the summation over A, yields bulk polariton
waves in (2.7) as shown in Ref. 7, and in that way, we can
compare the result of this theory with that of the ABC
theory. However, for finite d, the suinmation in (2.7)
leads, not to bulk polaritons, but to the eigenmodes of the
finite d slab. In this way, this approach can be used for

Substituting (1.3') in Eq. (1.2) [where (R,R') are replaced
with (Z, Z )], we can reduce this integro-differential
equation to the following second-order differential equa-
tion:

d 8(Z)/dZ +q 6'(Z)+Q gyi(co)pi(Z)Fg=O, (2.4)
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III. CALCULATION OF ELECTRIC FIELD IN THE SLAB

The model of DA-DS for the first-principles calcula-
tion of ABC in the case of a semi-infinite medium is as
follows: (i) Both conduction and valence bands are non-
degenerate and parabolic. (ii) The crystal surface acts as
a hard wall to both electrons and holes. (iii) The image
potential for an exciton near the surface is neglected. (iv)

Only the 1s exciton is explicitly treated as a resonant
term of y(R, R', co). The contribution from other excited
states of the exciton is considered as a constant back-
ground polarizability. (v) The distortion of the exciton
wave function near the surface is explicitly taken into ac-
count. For the analytic treatment, its translational part
is approximated by a single evanescent wave of the form
e . For a slab, a similar distortion is supposed to
occur on both surfaces.

In the application of the ABC-free theory outlined in
Sec. II to the above model, we take for the quantum num-
ber A, the translational wave vector K of the exciton. In
the following, we confine ourselves to the case of normal
incidence of light. It is easy to extend the treatment to
the oblique incidence (s polarization). Then, the quanti-
ties gx(co), px(Z) to define the polarizability (1.3) are
given as

x«~) =& /[Q'«' —q0)] (3.1)

I

any thickness of the slab, including QW's. Moreover, the
fact that the closed form of g(Z, Z', co) is not necessary in

this formalism could, in some cases, be more advanta-
geous than the ABC theory.

A problem to be encountered in practice is how to
solve the equations for IFi I, (2.11), especially when the
number of [Fz ) is infinite. In general, we can simply say
that we should take a method suitable for each specific
model. In the case of the DA-DS —type model for a slab,
it is shown that Eq. (2.11) can be rewritten into two
simultaneous linear equations for two different linear
combinations of [Fi I, with which the field expression
(2.7) is given completely. This allows us to evaluate the
field in the slab, which turns out to be equivalent to that
of our previous work according to the ABC theory.

4 P —K
N(K) = 2d ——

P P'+K' (3.3)

is the normalization factor of the wave function,

qo=[2M(fico E„—+ilail )]'~ /fi [Im(qo)) 0], (3.4)

the wave number of the exciton with total energy %co, M
the translational mass of the exciton, and

8 =4irco aocooM/c fi,

ao=4e ~P„~ ~y„(0)~ /m, co ficoo,

Atop —E )

(3.5)

(3.6)

(3.7)

In the above expressions (3.4) —(3.7), A'I is the damping
constant of the exciton, P„, the matrix element of the
momentum operator between the Bloch states of
conduction- and valence-band extrema, and y„(0) the
ground-state wave function of the relative motion with
r=0.

The no-escape boundary condition (ii) for electron and
hole on both surfaces leads to

—P+iK
P+iK

and to the quantization condition of K,

Kd —2tan '(K/P)=irX(integer) or Ax =e

(3.8)

(3.9)

as long as the following condition holds:

Pd (( (3.9')

Solving the second-order differential equation after the
substitution of (3.1)—(3.8) in (2.4), we obtain a similar
form of solution as (2.7), where Gi(Z) has the form
(A, ~K):

pic(Z)=N(K)[e ' + Aze'Kz (—1+ Ax)e

( e
—&Ed+ A e iKd )e

—Pz] (3 2)

where
—1/2

Gx(Z)= Qgr(co)N(K)—t(e' + Axe ' )/(K —
q )

—[(1+Aic)e +(e'""+Aice
' )e ]l(P +q )I . (3.10)

Substituting this solution in the definition of FK, (2.5), we obtain

Fic =CKN(K) Dcc—
( 1+ A )g +(e —iKd+ A eiKd)g

(P +q )2P
(3.11)

where

Cx =
[ 1 [N(K) ] Q ycc ( co )—

B2=+Q N(K)yx(co)(e' + Aire ' )F„.
K

(3.14b)

X[2d 4P/(P +K )]l(K—q)I—
Dlc= I [N(K)] 'p (xZ)(6', e'~ +hie'~ )dZ,

&i =QQ N(K)pic(co)(1+ Ax )Flc,

(3.12)

(3.13)

(3.14a)

In deriving (3.11)—(3.14), we have taken advantage of the
following relation which is characteristic of this model:

( e
—iKz+ A e (Jcz)( e ilc z+ A e e

—'i& z)dZ'
K K'

=&x ic [2d 4P /(P +K ) ] . (—3.15)
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B, =(ay, —Py, )/(a' —P'),
B2=(ar2 Pr—i }l(a' P'—},

where

(3.16a)

(3.16b)

a=1+
2 2 QClr[N(K)] Q jx(ci))

(P +q )2P

X(2+ Air+ Air),

1

(P +q )2P

Xg Cx[N(K)] Q jir(co)
K

(3.17a)

The simplicity of the present model is that Eqs. (3.14a)
and (3.14b), together with (3.11), provide a closed set of
linear simultaneous equations of B, and B2. These equa-
tions can be solved as

It is remarkable that the equation to determine the
poles of CK,

(K2+P 2)(K2 2 )(K2 2) B +P 2

1+~ (3.20)

is the equation to fix the dispersion relation of the polari-
tons in the slab. Since FK also has the same poles, we
see that these eigenmodes of the slab certainly appear in
the final expression of the electric field after the summa-
tion over K in (2.7). Beside these poles, the product
FAG+(Z) has another set of poles K=kq through D~.
These poles lead to the modes with wave number +q after
the summation over K, and they just cancel the back-
ground field, C,exp(iqZ)+ 62exp(iqZ), in (2.7); that is,
the extinction theorem holds true for this model. In
terms of B& and Bz, the field 8(Z) is expressed as

8(Z)=h, e' +62e' +S(Z)—B,T(Z)/[(P +q )2P]

B2 T( Z—) /[(P +q )2P ]

+B,e l(P +q2)+B e ~/(P +q ),
X ( e iKd+ e

—iKd+ A e iKd+ A e e
—iKd

)K K (3.17b)

(3.17c)

(3.17d) where

ri=&CKN(K)Q XK(~)(1+AK)DK
K (3.21}

y2=+ CION(K)Q yx(co)(e' + Aire
' )Dx .

K iKZ+ g e —iKZ

S(Z) =Q g Cx[N(K)] pre(a)) q q Dxg2 q2
From (3.10), (3.11), and (3.16), we see that the field 6'(Z),
(2.7), is expressed only in terms of the known quantities.
Now, if we note the definitions of j'ir(co), (3.1), and N(K),
(3.3), the factor Cir, (3.12), which is contained in Fx, can
be rewritten as

(3.22a)

(K2+P 2)(K2 2)(K2 2
)

iKZ+ g e —iKZ

T(Z)=Q QCx[N(K)] yx(a)) (1+Ax) .
K —

q

CK

where

v=2/(Pd) .

2

(K +P )(K —qo)(K q) B—+—P1+v

(3.12')

(3.18)

(3.19)

(3.22b)

The summations over K in (3.17) and (3.22) can be con-
verted to contour integrals in the complex K plane, where
the contour picks up all the quantized values of EC on the
real axis. Then, by deforming the contour, each of the in-

tegrals is evaluated at the complex poles of the integrand.
The evaluation of tS(Z), T(Z), a,p, y„y2) is shown in

Appendix A. Using the results of Appendix A, we obtain
the final expression of 8(Z), which contains just two arbi-
trary constants (8 and 8) as expected from (2.12), as

3
6'(Z)= g(I 8[IJ(P iq )+J (P+—iq )e ' ]—e[I (P+iq )e ' +J (P iq )]Ie—

—[@[I(P+iq )e ' +J (P —iq )]+@[I(P iq )+J (P+—iq ).e ' ]]e ' }

+(ÃU, —6'U2)e +(AU, —@U )e (3.23)

where

C,p @,p g,p @,pipd @— iqd+ 2

P —iq P +iq ' P +iq P —iq

J, =S,(q q, )(aH2+PH, )—,
aHi+pH2

a2 pz

(3.24c)

(3.24a) BP 2P
Pii+2 (P +q, )(P +q2)(P +q3)

I, =S [2P(P +q )(P +q )(a P)—
+(q, q)(aH, +PH2)], — (3.24b)

x
(P +q )P

(3.24d)
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uH2+PH,
U2=

~2 p2

BP 2P
Pd+2 (P +q, )(P +q2)(P +q3)

(3.24e)

3

H, = g A q cos[q/d —2tan '(qIIP)],
1=1

3

H2= g A, q, ,

(3.24f)

(3.24g)

(3.24h)

gp d(P +q)) —2P
A1=

Pd +2 sin [q, d —2tan '(q
~
/P ) ]

x
(P +q )P

S, = A, /[4iP'(P'+q')(q, '+P')(q, ' q')—(a' P')—],

The polariton wave numbers (q ) are the roots of Eq.
(3.20), and their signs are defined by Im(q ) )0.

IV. DISCUSSION

A. Equivalence of ABC and ABC-free theory

We have treated the same microscopic (DA-DS) model
for a slab by two di6'erent approaches: the ABC-free
theory in this paper, and the ABC theory in Ref. 6. Since
the solutions satisfy the same Maxwell integro-di8'erential
equation, (1.2), the two results should coincide. The solu-
tion of the ABC theory contains six parameters, and
there are four ABC's relating the six parameters. If we
eliminate four of them by using the ABC' s, the resulting
expression of 6(Z) contains two free parameters. This
should be compared with the present result, (3.21). Since
the two parameters in each expression can be chosen ar-
bitrarily, we need the following preparation to make the
comparison. In Ref. 6, the electric Geld is given in the
form

3

6(Z)= g (e e ' +E,e ' )+ge +ge
j=1

(4.1)

(3.24i)
and the four ABC's and the relations between Ig, g I and

t e, ,F~ l can be written as

a1

C1 C2

Q3

C3

b, h,

d1h1

b2h2

dzh2

b3h3

d3h3

A1 A2 A3 A, h, A2h2 A3h3 c3

b, h, b2h2 b3h3 Q1 Q2 Q3 0
(4.2a)

d, h,

A, h,

d2h2

A2h2

d3h3

A3h3

C1 C2 C3

A1 A2 A3

where

A, =
(q~ q) I(P +q )—,

hj=e '

aj = 1/(P —iq )+ (m, —iq, ) /(q —
q02 )

—m2/(P +q, ),

(4.2b)

(4.2c)

(4.2d)

(4.2e)

U( 2 2 2
—+vv —2

2
—

2P ~o

—
( 1 4+)1/2

U=BI[(P +q )(P +qo)] .

(4.21()

(4.21)

(4.2m)

We regard (4.2a) as relations to define I e, EJ ) in terms
of two parameters g and g. On the other hand, the elec-
tric field from the ABC-free theory, (3.21), can be rewrit-
ten as

c, =l/(P —iq )+(n, iq, )/(P —+q ) N2/(q, qo)—, —

(4.2f)

3

(,(Z)= g(f e'qj z+f e'~j )+he +he, (3.21')
j=1

d, =c, l. (4 2g) where

(4.2h)

(4.2i)

2~—v U 1 —~
~—v 2 1+~

1 —w+v v —2
(4.2j)1+v. v

m, = P+ U[(1 r)P +—qo]/2P(1+—r),
m 2

= r( 1 r)PU I2(1+r)—
1/2

f =gF —g F, , f =6'F, —6"F, , .

F =I (P iq, )+J (P+—iq, )e

F =I,(P+iq, )e ' +J,(P iq, ), —

h =8 U1 —6U2, h = 6 U] —6 U2 .

(4.3a)

(4.3b)

(4.3c)

(4.3d)
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F, F

—F3

FI

F2

F3

F3

—F2

h

h
8 (4.4)

where

Originally, 6 and 6' were introduced as free parameters
and If, ,f ), h, and h were given in terms of them. How-
ever, we can rewrite (4.3) by eliminating 6 and 8 as

is almost hopeless to check the validity of (4.6) analytical-
ly. Thus, we checked it numerically. As a numerical
check of Eq. (4.6), we studied two sets of material param-
eters for CuC1 and GaAs, which are the representatives
of the "heavy-mass, large-oscillator-strength exciton"
and the "light-mass, small-oscillator-strength exciton, "
respectively. For each material, we took several sets of
"P, d, and Ace" values. All the sets of parameter values
are summarized in Tables I and II. The matrix equation
(4.6) consists of 12 equations, among which six are in-

dependent, as is easily seen from the symmetry. In each
case we calculate the lhs, and see if it coincides with the
corresponding element of the rhs, (0, U„or Uz) X const.
For the two equations having U& and Uz on the rhs, we

calculate the ratio of the expressions on the lhs, which
should be equal to

U) —U2

—U2 U)
(4.5) U2/U, = —(aH, +pH2)l(aH2+pH, ) (4.7)

S

F
F3

F3
=const X—F1

—F2

0
0

0
0

U)

0 0
0 0

—U2 U)

—U2

(4.6)

At this stage, we can regard (h, h ) as free parameters.
In this way, the expressions of 8(Z) from both ABC and
ABC-free theories are given in a common form where the
two coefficients of evanescent waves act as free parame-
ters. In order for the two expressions to be equivalent, it
is necessary and sufficient to have the relation

from (3.24d) and (3.24e). This equality has been
confirmed for more than 20 figures for all the cases stud-
ied. As for the equations with 0 on the rhs, we need a
special criterion to check its validity numerically. Since
the lhs of such equations consists of a sum of several
terms, we compare the sum with the constitutent terms.
If the sum is very much smaller than the largest term in
the sum, we judge that the equation is valid. For all the
cases studied, the sum is found to be smaller than the
largest constituent term by at least a factor of 10 ' . In
this way we have checked the equivalence of the ABC
and ABC-free theories.

B. Limit of semi-in6ntie medium

Next we discuss the limit d ~~ of the result. In the
limit, the form of the electric field (3.21) reduces to

where S is the (6X6) matrix on the left-hand side (lhs) of
(4.2a). Due to the complex form of each term in (4.6), it

I

8(Z)=ff(Z)+If(Z),
where

(4.8)

P —ikf(X)=- k' q' P+ik, —
f/lx 1 P —~k2 R ik, x

e ' + — e
k2 —k ) kq —

q P+ik2

—2R
—PX

(P +k, )(P +k2)

1 B k2) p2 1 k22 p2
R= 1— +

(P +q )2P (P +q )2P k —k P+ik, k —k P+ik
2P(P +q )

(P +k, )(P +k2)

(4.9)

(4.10)
k, +k2

TABLE I. Material parameters for CuCl and GaAs.

Material

CuC1
GaAs

2.3
0.298

Acro

{eV)

3.2022
1.515

&o

5.7
12.6

4mao

2.029 X 10
0.22 X 10

I
(meV)

0.06
0.035
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TABLE II. "P, d, and fico" values for each material.

CUC1

P
A

0.3

d
(A)

15000 1 ~ 500, 2.300, 3.100, 3.200, 3.2030,
3.2060, 3.2090, 3.2120, 3.2150,
3.900, 4.700, 5.500

0.3 1500 1.500, 2.300, 3.100, 3.200, 3.2030,
3.2060, 3.2090, 3.2120, 3.2150,
3.900, 4.700, 5.500,

0.3 10 1.500, 3.200, 3.300, 3.400, 3.500,
3.600, 3.700, 5.500,

0.003 1500 1.500, 3.200, 3.2030, 3.2060,
3.2090, 3.2120, 3.2150, 3.500, 5.500

20000.0 1500 1.500, 3,200, 3.2030, 3.2060,
3.2090, 3.2120, 3.2150, 3.500, 5.500

GaAs 0.0154 20000 0.500, 1.100, 1.5110, 1.5124,
1.5138, 1.5152, 1.5166, 1.5180,
1.700, 2.300, 2.900, 3.500

0.0154 0.500, 1.100, 1.5110, 1.5124,
1.5138, 1.5152, 1.5166, 1.5180,
1.700, 2.300, 2.900, 3.500

0.0154 130 0.500, 1.100, 1.5140, 1.5164,
1.5188, 1.5212, 1.5236, 1.5260,
1.700, 2.300, 2.900, 3.500

0.0011 0.500, 1.5110, 1.5124, 1.5138,
1.S1S2, 1.5166, 1.5180, 2.000, 3.500

1000.0 0.500, 1.5110, 1.5124, 1.5138,
1.5152, 1.5166, 1.5180, 2.000, 3.500

The wave numbers of bulk polaritons, k, and k2, satisfy
the equation

er semi-infinite media with diferent microscopic charac-
teristics.

(k —
q )(k —qo) —8=0, (4.11)

C. Remaining problems from previous model calculations

where we take Im(kj)&0. Since f(X)~0 for X~~,
Cf(Z) and bf(Z) describe the field in the regions
Z-0 and Z-d, respectively. As expected, Cf(Z) is
equivalent to the result of DA-DS,

(4.12)

Note that the two parameters 6, and D2 for a slab are
combined to give 8 and 6, each of which separately de-
scribes the field near front and back surfaces. Although
the above argument is the proper way to see the situation
for d ~~, there is another way to get the same result,
for which we need much less calculation; we neglect
several terms of O(1/d) in the course of the ABC-free
calculation. Since this procedure contains somewhat del-
icate points, we show the details in Appendix B. We
hope that this simple version might be useful also for oth-

The first application of the ABC-free theory has been
made to simple models, i.e., a single QW and a slab with

simple exciton wave function equivalent to Pekar ABC.
Though the results were satisfactory within the models,
the following questions have been left as to the generality
of the results obtained from the simple models: (a) Do
the poles which give the solutions of bulk polaritons ap-
pear in F+Gz in the case of less-simple slab models, too?
In general, the solutions of polaritons in a slab deviate
from those in the bulk, so it is of interest to see how the
deviations of these poles appear in FAG+. (b) Does the
extinction of background waves [-exp(+iqZ)] occur
also in the case of less-simple slab models? The result of
this paper shows that (a') the poles in F~ are the same as
those which give the eigenmodes of a slab in the ABC
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treatment, two of which are bulk polaritonlike, and the
third is evanescent, and (b') the extinction of background
waves occurs also in this model. These conclusions are
again limited within the framework of the present model,
but we think that (a') would remain correct for more gen-
eral cases, while (b') possibly changes, especially when the
thickness of a slab becomes so small that the summation
over k is cut off at a certain finite value.
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APPENDIX A: EVALUATION
OF [S(Z),T(Z), a, P, y„yzJ

These quantities, originally defined as summations over
discrete E values, can be rewritten as the following con-
tour integrals, and evaluated by the residues at complex
poles. The function S(Z) consists of the sum of the fol-
lowing form:

S(Z)=6i[e'~ S'(Z, q)+S'(Z, —q)]
The authors are grateful to Professor A. Yoshimori for

useful discussions and support, and to Dr. H. Nagayoshi
for his advice in making the numerical comparison in
Sec. IV with high accuracy. This work was partially sup-
ported by Mitsubishi Foundation and a Grant-in-Aid for

I

+@ze'q"[e 'q S'(Z, —q)+S'(Z, q)]
—8T(Z) 8T(Z—) .

In (Al), S'(Z, q) and T(Z) are defined as

(Al)

BP 1 [d(P'+K') 2P] — i(K+ip}e'
2Pd+4 2mi c sin[Kd —5(K)] (Kz —qz )(K —

qz )(K —q, )(q —K }(K iP)—
1 I [d(P +K } 2P)—

2mi c sin[Ed —5(K)] (K —
q 1 )(K —

qz )(K —
q& )(q —K)

3

[P sin(q, Z) —
q, cos(q Z)]+ A [P sin(qZ) —

q cos(qZ)]
(q q)(q, +P. —) (q —q, )(P+iq)

BP 4p 2 —Pz

Pd+2 (P +q, )(P +qz)(P +q&)(P+iq)
(A2)

5(K)=2tan '(K/P), A = A, ~ q, (A3)

T(Z) = T, (Z)+ Tz(Z), (A4)

where

BP 1 cos[KZ —5(E)] d(P +K ) 2P-
2Pd +4 27ri c sin[Ed —5(K)] (Kz —qz )(Kz —qz )(Kz —

qz& )

3—
—,'g A,

Tz Z BP
2Pd +4

3—
—,'g A,
j=l

—cos[q, Z —5(q, )],1

1 cos(KZ) d(P +K ) 2P-
2vri c sin[Ed —5(K)] (K —qz)(K2 —qz)(K2 —qz)

1 — BP 4p 2 —Pz
cos(q Z)—

Pd+2 (K q, )(K —qz)(K ——q, )

(A5)

(A6)

The factors a, P, y, , and yz are defined and evaluated as follows:

cz = BP 1 cos[Kd —5(K)] (K q)E [d(P +K ) 2P—]-
dKd+2 ~ ~ » [«—5(K)] (K' —q', )(K' —q', }(K'—q', )(K —iP)

(P +q )2Pqcos qd —5q +J 2+p2 J J ~J Pd +2 (p2+ 2)(p2+ 2)(p2+ 2)
(A7)
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BP 1 p 1 (K q—)K[d(P +K ) 2—P)
Pd+2 2mi "c sin[Kd —5(K)] (K2 —q2()(K2 —q22)(K2 —q23)(K i—p) 1 q +P

r =@ {e"dr.(q)+rb(q) j+& e "[e "'r.( q—}+rb( q—}] —@a —&p

where

BP 1 1 (K —q)iK[d(P +K ) 2P—] — P iq-r.(q}=
Pd +2 2mi'c sin[Ed 5(K)] (K q 1

—)(K —q22)(K —
q3 )(K +ip) 1 q. +p2 2

rb(q}=
Bp 1 cos[Kd —5(K)] (K —q)iK[d(P +K )

—2P] dK
Pd +2 2mi c sin[Ed —5(K)] (E2 q21 )(—K —q2)(K —q3)(K —ip)

2P (P+iq)
1 2+p2 J J J Pd +2 (p2+ 2 )(p2+ 2 )(p2+ 2

)

y =26, [e' "yb( —q}+y, ( —q}]+( 2ec'~"[e 'q"yb(q)+y, (q)]—Ãa —8P .

(A8)

(A9)

(A 10)

(A 1 1)

(A12)

APPENDIX B: CALCULATION IN THE CASE OF d —+ 00

When d is large enough, we can neglect O(1/d), and
so, pk(Z) is given as

With this {FKj we can write the field g(Z) in the form
which contains the summation over K. Before we show
it, we make it clear that P vanish as d ~ oo. With (3.1)
and (3.8), P can be written as

p (kZ)=(1W2d )[e '" + AKe'" (1+AK—)e

(e
—iKd+ g eiKd)e —PZ] (B1)

P={2/[(P +q )2P]j
all

x g(8/2d)
As for yK(co), we take the same one as (3.1). Hereafter,
we follow the same procedure as in Sec. III, replacing
N(E) and (3.15) with 1/2d and

(e ' + A e' )(e' + A*e ' )dZ=5 2d,
0

X {(K q)iK—/[(K —k 1 )(K —k 2 )

X(P+iK)]je'
where the identity

(B8)

respectively. Then, CK, (3.12), is replaced by

CK = [1 Q'gK(~)/(K—' q'))—
which can be rewritten as

(B2)

(B3)

(K q)(K qo—)
—8 =(K——k 1 )(K k2)—(B9)

is utilized. The summation over K in (B8) can be per-
formed again by the method of contour integral in the
complex K plane. However, in this case, the quantization
condition of K must be regarded as

CK = (K q)(K q(1 )/—[(K q—)(K q(1 )
——& ] . —

(B4)
sin(Kd) =0 (B10)

From the fact that the solutions of

(K —
q )(K —qo) —8=0 (B5)

because the distance between two neighboring values of K
should approach m/d as d~oo. Therefore the integral
form of P can be written as

give the dispersion relation of the bulk polaritons, it is
clear that Fz has poles at the wave numbers of bulk po-
laritons (kl, k2} [Im(k~) &0]. {FKj can be determined in
the same way as in Sec. III with the replacement

{+1~2 a ~ r 1 } 2j {&(»2 i2 ~ Yl Y2j

where

1 B 1

(P2+q2)2P 2' c sin(Ed)

(K —kl)(K —k2) P+iK

(B11)

{~1~+2j
= {~l +2 j ~(. p,

{a0 yl j 2j {a13 r2 Y2jl, ,„(K)}2K K

(B6)

(B7}

The residues for the poles K =+a, , +k2, —iP are easily
seen to vanish for d ~ oo, if we note that Im(k ) & 0. So,
13 obviously vanishes as d ~ oo. In terms of the quantities
with tildes, we can write ( (Z) as

6(Z)=@(e'~ +6'2e'~ +S(Z) (y, /a)T—(Z)/[(P +q )2P]—(y2/a)T(Z)/[(P +q )2P)

+ (y 1/a)e /(P'+ q')+ (y2/a)e /(P'+ q'), (B12)
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where

IS(Z), T(Z) I
= IS(Z), T(Z) } ~ (B13)

The integral forms of IS(Z), T(Z), a,P, y„yz) and their values are given as

S(Z)= N, S'(Z}+8ze 'q S"(Z)—6 T(Z }—6'T(Z ),
where

(B14)

~ iKZ

Si(Z) iqd dK
2 2qri c sin(Kd) (K~ —k2i)(K2 —k2~)(E —q)

1 1 E'K —P e

2qri c sin(Kd) (K2 —ki)(K2 —k22)(K —q)(K —&'P)

1 1
~ —iKZ

2&l c S111 E

e igd

1 1 (iK +P)e'
2qri c sin(Kd) (K~—k2 )(K~—k~2)(K q)(E +—iP)

ik)Z ik)Z
(P iq )—e + (P iq )e-

(k i
—k22)(k i q)(P+i—k, ) (k2 —k2i)(k2 q)(P +—ik2)

+ (P —iq )e'q

(q —k i )(q —kz )(P +iq)
2Pe

(P +k, )(P +kz)(p+iq)

S"(Z)=—
2

ikl Z ik2Z
(P+iq)e (P+iq)e

(k i
—k2 )(k, q)(P +ik—, ) (k2 k i )(k2 q—)(P+ik—2)

e iqZ 2Pe

(q —k i )(q —k 2 ) (P +k )i( P+ k 2 )(P iq)—
1 1

iKZ

2qri c sin(Kd) (K2 —k2i )(K2 —k22)(K+q)

1 1 (iK P)e-
2ni ~ sin(Kd) (K k, )(E —k2)—(K+q)(K iP)—

(815)

1 1 )e
—iKZ 1 1 (ik +P )e'~

2mi ~ sin(Kd) (E~—k2i)(K2 —k22'(K+q) Zqri c sin(Kd) (K —k, )(K —k2)(K+q)(K+iP)
ik)Z ik2Z

(P+iq)e (P+iq )e

(k, —k2)(k, q)(P+ik, ) —(k2 k i )(k2 q)(P—+ik2)—
i/Z

(q —k, )(q —kz)
(P+iq )e'q'" ' 2Pe

(q —k, )(q —kz}(P iq) (P +k—
i )(P +k2)(P iq}—

ikl Z ik&Z
(P iq )e- + (P iq )e-

«i —k2}(ki —q' )(p+ik) (k', —k, )(k —
q }(P+ik )

(P iq )e'q — 2Pe

(q' —k21)(q2 —k22)(p+iq) (P2+k2i)(P2+k22}(p+lq)
(B16)

—iKZ

~ »n(Kd) (K' —k', )(IC' —k', )(E —ip )

ikl Z ik2Z
e e= —8 +-

(k i
—k2)(p+iki ) (k,' —k', )(P+ik, )

2P
—Pz

+
(P +k, )(P +k~)

(B17)
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=1+ 81

(P +q )2P

] 1 ] g~ —q2 gp
(P +q )2P 2tri ~ sin(Kd) (K —k, )(K —k2)(K iP)

ki —
q 1 2P(P + )+k' k—' P+tk (P'+k')(P'+k') (818)

1 1 1 (K' q'—)K
(p +q gp 2qri c sin(Kd) (K —k, }(K —kz)(K —ip)

y, =C,yI( q} +Cze "dy', (
—q) —6n —ÃP,

where

,
( ) ~ 1 1 (K q)—iK

(
—ittd iqd}dK

2qri c sin(Kd) (K' —k', )(K' —k,')(K iP)—

(819)

(820}

aIld

i(k, —q)

(k 2 —k2z )(P + ik, )

i(k2 —q) + 2P(P+iq )

(k2 k2)(P+tk ) (P2+k2)(P2+k2)
(821)

y, =@,y2(q)+C, e'q y', ( q) A'a——E'—P,
where

1 1 (K q)iK—
( 1 — ' 'xd )dK

2ni c sin(Kd) (K k~ )(K ——k2)(K+iP)

(822)

i(k, +q)=Be'q'—
(k f

—kz)(P+ikl )

i (kz+q ) 2P(P iq )—
(k —k )(P+ik2) (P +k )(P +k )

(823)

Substitution of the above results, (814)—(823), into (812) leads to the final expression of 8(Z) in the semi-infinite medi-
um in the same form as (4.8)—(4.10), which is obtained by the proper limiting procedure. Since f(X)~0 for X~ oo,
Cf(Z) and Cf(Z) describe the field in the regions Z-O and Z-d, respectively. The part Bf(Z) coincides with the re-
sult of DA-DS, as discussed in Sec. IV.
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