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A systematic extension of the model of almost localized fermions to finite temperatures is present-
ed. It consists in accounting for the quantum fluctuations beyond the Gutzwiller approximation
(GA). We use the slave-boson formulation of the Hubbard model which has been proved to be
equivalent at the saddle-point level to the GA. We determine the values of the Lagrange multipliers
introduced to enforce the constraints, and show how they involve a Mott gap at nearly half filling

for U & U, (localization edge). The results of the GA for the correlation functions are reproduced
at the saddle point when taking into account the implicit dependence of the boson fields with the
external excitation. The Gaussian fluctuations are then considered in a renormalized basis of the
boson fields which brings out two distinct channels (symmetric s and antisymmetric a). We show
how the free energy and the correlation functions can be simply expressed as a function of the same
Landau parameters Fo and Fo defined in the GA.

While the prototype of strongly correlated systems is
certainly normal He, ' there is now a large class of physi-
cal systems that present strong similarities: heavy fer-
mions, transition-metal oxides, and most likely, the
copper oxide superconductors. In the latter case, it is
believed" that the 3d, 2 &, orbital of Cu and the 2p„, 2p»(x —

y }

orbitals of the oxygen hole form a single strongly corre-
lated band. The common features of these systems are a
large effective mass, an enhanced magnetic susceptibility,
and a reduced compressibility. All these properties
reflect the Mott localization due to correlations.

Whereas the week-coupling limit can be attacked by
the usual random-phase approximation (RPA), the
strong-correlation regime is more di%cult to consider.
For instance, there exists no exact solution in dimen-
sionalities d & 1. In these conditions, the variational an-
satz introduced by Gutzwiller —the Gutzwiller wave
function (GWF)—plays a special role, and has been the
subject of a great deal of work. " Let us just remind
the reader that, to make the calculation tractable, one has
to introduce the Gutzwiller approximation (GA). This is
basically a mean-field approximation which neglects any
intersite correlations. It allows one to get an extremely
simple formulation of the problem which already brings
out the essential physical aspects The main one is the
localization (or the approach to it) when the system is (or
is almost) half filled; the second aspect is the magnetism.
The success of the GA is giving a correct description of
the Fermi-liquid regime at low temperature, providing a
microscopic basis of the Landau theory. On the other
hand, it has the usual weaknesses of a mean-field theory:
It fails to describe dynamic effects —the dynamic motion
of vacancies in the almost localized regime —and has no
correct generalization to finite temperature. Unfor-
tunately, within the variational approach, there is no ob-
vious improvement which can be made. In this context,
the reformulation of the problem in terms of slave bosons

proposed by Kotliar and Ruckenstein' (KR) which
reproduced the GA at the saddle-point level, constituted
decisive progress since it transforms the variational
scheme into a standard pertubative treatment which, in
principle, can be pursued beyond the saddle point.

It is essentially the aim of this work to derive the effect
of the Gaussian fluctuations on the GA. We would like
to mention that several recent papers tackled the same
kind of prob1em in a somewhat different situation. Fol-
lowing the 1/N expansion approach developed in the last
two years for heavy fermions, ' Kotliar and Liu' con-
sidered the large degeneracy limit of the Hubbard model,
and discussed the eventual incidence of the 1/N fluctua-
tions on superconductivity. However, as they pointed
out, although the expansion is exact at the order 1/N, it
does not allow for a description of the magnetism that
manifestly occurs in the physical systems closer to the sit-
uation N=2. Under these conditions, we will consider
here the case N =2, which is drastically different from a
physical point of view, and seems to be more appropriate
for describing real systems. %e wi11 also quote the recent
work of Rasul and Li, ' who considered the effect of the
fluctuations for the half-filled-band Hubbard model below
the localization edge (U & U, ), and obtained some in-
teresting predictions on the T lnT term of the specific
heat. They applied it to the case of He, which appears
to be a good candidate for this regime (n = 1, U & U, )—
referred to as regime I, in the following. The other al-
most localized regime —referred to as II here —is ob-
tained by introducing some holes from the half-filled
strongly correlated case (n & 1, U & U, ). It is sensible to
think that this "vacancy regime" describes the situation
of copper superconductor oxides. It is this regime that
we will essentially consider here, with some special em-
phasis on the analogy with the metallic regime I.

Let us start from the formulation of the Hubbard mod-
el introduced in Ref. 12:
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H = g t,,z, z, c, c,
+Used;d, —g(p+trh)n, ,

(la)

with

by any combination U;~; V,-, where U; and V; are di-
agonal operators such as U; =1 in the (0) and ( —0)
configurations, and V; = 1 in (o ) and ( f l). One can in
particular choose, as did KR, '

ter t' pio +pi —a i (lb)

P, =e, e, +gp; p, +d, d; —1=0, (2a)

Qi a ci acia pi api a di i (2b)

Since the time evolution generated by H preserves the
constraints ([H,P; ]=[H, Q,. )=0), it is only necessary to
enforce the constraints at one particular time; this is done
by introducing time-independent Lagrange multipliers
A,I" and A, I

'. Before going further, let us remark that the
choice of z, is not unique, and one can replace"' z;

where t; and U are respectively, the nearest-neighbor
hopping and the on-site Coulomb repulsion between elec-
trons of different spins, c, (c; ) are creation (annihilation)
operators for an electron of spin 0 (=El) at site i, and p
its chemical potential; and e;, p;, and d;, auxiliary boson
fields such as e, e;, p, p, , and d, d;, represent the projec-
tors on the empty, singly occupied cr, and doubly occu-
pied i site. Equation (la) is strictly equivalent to the
Hubbard model as soon as the following constraints are
satisfied:

(3)

All the choices are formally equivalent as far as the con-
straints are exactly satisfied at each site and any time.
This is no longer true when one makes approximations.
Typically, the mean-field approximation satisfies the con-
straint on average, and leads to diferent results depend-
ing on the special choice of z, . These discrepancies are
supposed to disappear if one could include quantum Quc-
tuations at all orders. When stopping at mean field, the
choice (3) is more sensible since it renormalizes z; by its
value in the uncorrelated case, and gives back the free
electron gas in the limit U =0. It is this choice that will
be retained in all the following.

The partition function Z can be written as a functional
integral over the fermion and boson fields

Z= f2)c2)eSp 2)d gdA, ;'"dA, ,
' 'exp —f X(r)d~

I CT

(4a)

where the Lagrangian X(r) is

X(r)= g c; [(i),—p, —crh+A, ';")5;,+z; z, t;, ]c, + ge; (8,+A, ', ")e;
&i Ji& l

+ yp, '.(a,+XI"—XI2')p,.+ yd, ' a,+XI"—y~I2.'+U d, . (4b)

Fo=f0+ Udo+A, o" eii+ gpii +do —1

+ g Aoi '(n —
po

—do) —g (iu+Oh )n (sa)

At the saddle point (uniform and static boson fields), one
can integrate over the Grassman variables and obtain for
the free energy

24p x
~ ~

2ex

1 —fiz e 1 —5
(6a)

the free energy Fp with respect to the seven parameters
ep, Pp dp Ap", and A,o '. This leads, in addition to three
constraints, to the following equations in the paramag-
netic case (where the 0 indices are now omitted):

where

1f0= —— g ln( ice„+qo—s„)
k, l AP, CT

in the notation

(5b)

4 2

U+A, "'—2A, ' '= —isa 1+
1 —fi' d 1+5

22 22
1 —5 1+5

(6b)

(6c)

2
'POD ~ Oo.

sk = g t J exp[ik (R; —R. )] .

It appears then clearly that the saddle point of the slave-
boson formulation of the Hubbard model is equivalent to
the Gutzwiller approximation. '

The saddle-point equations are obtained by minimizing

where
~ e~ is the averaged energy by site in the uncorrelat-

ed case

~s~ =2f capo(co)des, 5=1 n, —

and where we have used the convenient notations intro-
duced by Vollhardt et al: x =e+d. Let us recall that,
in this notation, e, p, d (and so q) can be written
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2= x —5
Zx

x +5
e =

2x

'2

{7a)

(7b)

x'=5/g,
5(1+/)

4

5(1—g)
(10}

2x —x —52 4 2

2x —x —5q=
1 —5

(7c)

(7d)

p2 —]

q =25/g,

By combining (6a), (6b}, and (6c), one can eliminate the
Lagrange multipliers, and obtain the usual optimization
equation of the Gutzwiller approximation. This result is
not surprising since it simply means

d(f0+ Udo )/dd(~) =0,

where eo and po are expressed as a function of do using
the constraints. The resulting equation at T =0 is the
following:

{8a)

One recovers the Brinkman-Rice transition (Mott locali-
zation} above a critical edge of localization U, =Slaol.
Above, one needs to introduce some vacancies (or elec-
trons} to restore the metallic behavior. This is the con-
duction by vacancies. Note that, for infinite U, double
occupation is strictly forbidden (d =0), while the band-
width -5 is different from zero in the vacancy regime.

Indeed, the content of the saddle-point equations (6)
goes beyond the Gutzwiller approximation, and also
determines the values of the Lagrange multipliers at the
saddle point. One finds the following.

Regime I:

with (1+u )(2—u),

and

1 —5
u =Q

1 —a5~

U

8lsol
'

(8b)

(8c)

Regime II:

A,
"'=—(I+/) 1+—( I+/)

2
(12)

where lsol is the value of the energy lsl at half filling.
One can in principle solve the system of equations (8) at
any point of the diagram (U, 5). In fact, we will content
ourselves with describing the most interesting region (in
the since of the correlations) in the proximity of half-
filling. A glance at the behavior of

A (x)=(1—x )x /(x —5 )

enables us to distinguish two regimes:
Regime I (metallic regime} (Refs. 6 and 7), u = U & 1,

n =1. Then

X =1 Q
2—

e =d =(1—u)/4,

p =(1+u}/4,
q=1 —u 2

Regime II (vacancy regime) (Ref. 9), u =u & 1,
x =V5«1. Then

A,
' '= —( 1k') 1 — ( I+/)

2 2g

( —for n 1 and + for n 1). The variation of A,
'" and

A,
' ' as a function of U is reported in Fig. 1. Note the

opening of a gap delimited by the values of A,
' ' in the va-

cancy regime (n & 1) and the electronic regime (n ~ 1). In
fact, one can demonstrate the formal identity between the
Lagrange multiplier A,

' ' and the chemical potential p de-
rived frotn ( dF/d 5). The —observed gap of width
b = U+I —U, /U (Fig. 1) is nothing else but the Mott
gap. While A.

'" and A.
' ' notably differ in regime I, their

being closer (within 5) in regime II is a clear manifesta-
tion which may take a physical meaning not yet under-
stood. Table I summarizes the saddle-point values of the
boson fields and Lagrange multipliers in regimes I and II
(up to corrections in 5 ).

Before studying the quantum fluctuations around the
Gutzwiller approximation, we will end this discussion on
the saddle point by considering the linear response of the
system to an external excitation. It is suitable to distin-
guish whether one works at fixed (independent of the
external excitation) or variable (with an implicit depen-
dence of the boson fields with with the external excita-
tion) boson fields. Typically, the first procedure is
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U cga

Uc

FIG. 1. Saddle-point values of the Lagrange multipliers A.
"'

and A.
(2) as functions of U. Notice the opening of a Mott gap for

U & U, . In the insert, U dependence of the Mott gap.

density, spin spin, density spin) derived from the expan-
sion of the free energy {as a function of 5, M, 5M) show
an enhancement factor due to the implicit dependence of
q with 5 and M, and lead, in Fermi-liquid language, to
Fo and Fo different from zero. In other words, this is
equivalent to considering the saddle point in the presence
of an external field. This situation is to be linked to the
Stoner model in itinerant magnetism {weak-U limit of the
Hubbard model), where the contribution to the elementa-
ry fermion loop is simply yo(q/kz, cu/E~), while the
correlation functions drawn from the expansion of the
free energy

I Un (n $ = U[(n +M —5)/2][(n —M —5)/2]I

present an enhancement factor: a(0 0)=go/(1+Ufo),
y, (0,0)=go/(1 —Uyo), and y, (0,0)=0. The Stoner
theory already gives the structure of linear response that
is obtained further by considering the fluctuations in the
RPA. The situation here is similar, and one finds for the
susceptibility

ate the contribution of an elementary fermion loop

g G(k, o„t)G(k+q, co„+ap)=go(q/kF, co/EF )qo
k, cu„

X,(0,0)=yoqo '

a 'yq.

t)(M )

2aqo
(14)

(13)

where go is the correlation function for the free-electron
gas, and Eg =kz/2m' is related to the effective mass
m'=mqo '. On the other hand, the evaluation of the
correlation functions requires the implementation of the
second procedure. The correlation functions (density

where a is a parameter that characterizes the initial band
of density po: a= 1/(4po~s~ )=1 for a rectangular bond
and 3n /32=0. 925 for an elliptic one. Expression (14)
has been obtained by noting that (g q ) is quadratic in

M, and the saddle-point position ensures dF/dM =dF/
BM ~d. An explicit calculation gives the general expres-
sion

TABLE I. Saddle-point values of boson fields and Lagrange multipliers in regimes I and II (within

the notation g= &1—1/u ).

2

Regime I (n =1, U & U, )

(1—u)+
2

—u (a —1) 5'
(1—u)

{1—u) 5 + 1 u(a —1)
4 2 4(1 —u) 4

Regime II (n & 1, U & U, )

5 5'
2u g'

5 2 5(1+/)—
4 8u

(1—u) 5+ 1

4 2 4(1—u)

u (a—1) 52
4

(1— )'—5 5'
4g 8u'P

(1+u)
4

1

4(1—u)

u (a —1) 5z
4

1 (1+/')
8

8
2 4g 8u g

'

T

25 1— 1+—5'

(1—5')
U,

(1+u)(2—u) —(1—g) 1+—(1+g)
U 5
2

g(2)

g(1) g(2)

U
2

U,

4
(1—u)(2+ u)

—( I —g) 1 — (1+g)
U 5
2 2g

3U, 5
4
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y, (0,0)= Xoqo

1 ed 1
1 ——1—

a (e+d) (2p )

1.e. ,

Fs 1+ Zu 1

25&u (u —1)

(18b)

One recovers

FQ=[ —1+1/(1+u) ]a

in regime I and

FQ =[—1+1/4u]a

in regime II. In the same way, one finds

d Bq
d5 85

x(0,0)=y0q0 '/ 1—
2aqo

(16a)

(16b)

On the other hand, the free energy has no mixed term in
M5, and as in any RPA theory, y, (0,0)=0. As for the
Stoner theory, one expects that the consideration of
Gaussian fluctuations enables us to confirm the structure
of the correlation functions obtained at q =co=0 in the
Gutzwiller approximation (saddle point with "variable"
slave-boson fields}. We will see in the following that this
is e6'ectively the case.

For the consideration of quantum fluctuations, it is
useful to remark as Rasul and Li' that X(r) obeys a lo-
cal gauge invariance [cf. Eq. (4b}]:

Note' that the denominator cannot simplify as for the
susceptibility since q has a linear term in 5. One recovers
the results given in Refs. 9 and 11, respectively, as fol-
lows.

Regime I:

1 1
=q0(e0~ (a —1}+

2a (1—u)

e, ~ exp(i 8, )e,',
d, ~exp[i(8, —gy; )]d

i(8,. —y, )

pie + exp pie &

c; ~exp c;

0

1.e. ,

FD =[—1+1/(1 —u)~]a

Regime II:

1+q0(a —1}+—1 1

(18a) (19)

It is often more convenient to absorb the phases of the
boson fields into the Lagrange multipliers which turn out
to also be fields. This defines the "radial" gauge that will
be retained in the following since it introduces only real
fields. After slightly modifying the writing of the con-
straints

we define the renormalized boson fields

0'

pt+p) At +At pt p) Ata =Ia i =1 7I= 'e d

The basis [a; I has the advantage of making the unperturbated boson propagator D 0
' block diagonal in the paramag-

netic case,

Do '=
'0 D Oa

Do 0
(20a)

where

g(] ) 0

0 U+k'" —2A, ' '

eo

do 2do

and

D
—1 0

eo do

2do 2@0 0 0

2(A,"'—
A,

' ') 2p —2p

2PO 0 0
(20b)



41 FUNCTiONAL-INTEGRAL APPROACH TO STRONGLY. . . 147

D Oa

2(z,"'—g ') —4p,
—4Po 0 (20c}

We will see that the block (s) connected to (g n ) is related to the density-density correlations, and the block (a} con-
nected to (n

& n&
—} is related to the spin-spin correlations. The zero off-diagonal terms ensure y, =0. The analogy with

the Stoner theory is here again obvious ( Un
&

n
&

= U( n
&
+n

&
) i4 —U (n

&
n—

&
) /4), giving Fp = + U and Fp = —U. In-

cluding the fluctuations, the Lagrangian can be written

X(~)= g c; [a,+~zp +5z; )(zp +5z) )t j+(Ap '+5k, '; ')5; ]cj + gaqDp 'a (21)

Let us note X,(r) the first term of the Lagrangian

X)(7)= g cg+q [(a +gp sk+Ap )5&+zp52 q ek+zp5zq sk+q+ g 5z 5z ~q ek+ +q+Mq ]cg
k, q, t7 K

By expanding to the first 2 orders in a:

(22)

c&+ (a,+qp ek+Xp ')5 +zpsk
k, q, o

az'. a'z'.
a;( —q)+ a;( —q)a (

—q)

i =1 to7

a - a".
+zpek+~ a;(q)+ a;(q}a,(q)

aa;aa

az'. az.
'

ax'."
+ g et, +„+q a;(tr)a, (~+q) + a;(q) c„

aa, Baj ' aa,
(23)

(24a)

By integrating over the Grassman variables, and expanding up to the second order in the boson variables, ' one obtains
the Gaussian corrections S' ' to the saddle-point action S' ':

S' '= — g a;(q) (D p '); + g A '(k, q)G& + g B;"(k,q)B (k, q)G& G&+& aj(q)
k, a

i=1 to 7

=—g a (q)D(q)a(q),
P q

(where the notation g is used for k vector and frequency)

a'(z'. +z. ) az'. a.. az. az'.
A; (k, q)=zpek t 5 +el, + t +

aa;aa aa, aa, aa, aaj
=0 if i j=4, 5, or7

if ij=1, 2, 3, or6

(24b)

(25)

a". az.
B "«q) =zp &k (t, +&k+q (t)aa; aa;

if i,j =1, 2, 3, or 6

if i=5or7
a &t)

t

=0 if i =4. (26)

By summing on the bosonic variables, one gets the contri-
bution to the free energy

F'2'= —g ln[ detD '(q, co„)] . (27)

In the (sensible) approximation where one can neglect the
k dependence of the coefficient 8;, D ' can be written in
the form

D '(q, co„)=D, '+ I gp(q, co„), (28)

where in the basis Ia; I,D, ' and 1 are both block diago-

nal. When only the linear terms in yp are kept (RPA):

F' '= —g in[1+ Tr(D„I, )yp(q, co„)]
q, ru„

+ in[1+ Tr(D„I, )yp(q, co„)] .

We have calculated analytically Tr(D „I„) and
Tr{D1,I 1,). It is remarkable that the expressions found
for these two terms in regimes I and II coincides with the
coefficients ( —Fp) and ( —Fp} obtained in a much simpler
way through equations (16) and (18}(within a gp

' factor).



148 M. LAVAGNA 41

The effect of the fluctuations not only confirms the struc-
ture obtained at q=co=O, but also provides the dynamic
aspect which was missing in the Gutzwiller approxima-
tion. Equation (31) allows for a direct evaluation of the
free energy at finite temperature. This avoids the delicate
question of determining the entropy in the Gutzwiller ap-
proximation. Let us mention that a naive mapping of the
entropy on the ideal-gas case would have given a Rln4 en-
tropy term at high temperature in contradiction with the
almost localized picture where the entropy is bounded by
Rln2 on a large plateau Tz ~ T~ U before reaching the
entropy of the ideal gas at higher temperature. This was
the motivation of the astucious extension proposed by
Seiler et al. that remains essentially phenomenological.
The direct evaluation of the entropy is possible here, and
work is currently in progress in this direction. On the
other hand, one can easily deduce the dynamic correla-
tion functions

Xo(q ~)qo
ic(q, co) =

I+FoXO(q, ~) ~XQ
' (30a)

Xo(q, ~)qo '

x, (q ~)=
1+Foyo(q, co) lyo

y, (q, co)=0 .

(30b)

(30c)

In regime I and in the weak U limit, Eq. (16) and (18)
gives Fo =2U and Fo = —2U allowing us to find from Eq.
(30) the RPA results of weak coupling. In regime II,
Fo —1/5 and the compressibility ~ is found to be
unenhanced as expected for an incompressible Fermi
liquid.

The discussion of the eventual instabilities (magnetic,
flux phase, ' superconducting. . . ) essentially depends on

the structure of the correlation function yo considered in
the unperturbated case. For a spherical symmetry, yo is
given by the Lindhard functions, and one finds a fer-
romagnetic instability at large U but no antiferromagnet-
ic instability. The situation is rather different in the case
of an alternated structure (e.g. cubic) where the nesting
property of the paramagnetic Fermi surface at half filling
gives an AF instability at n =1 for infinitesimal small
value of U. The corresponding phase diagram is reported
in Ref. 12. It is easy to see that the ferromagnetic insta-
bility occurs above UF= I/[4(1 —a)] at n =1. The F-
AF boundary is asymptotic to the line n =1 at U = 00 as
required by Nagaoka's theorem. '

From a general point of view, the Fermi surface of the
perturbated system is identical to that of the unperturbat-
ed system. Then, the eventuality of a superconducting or
flux phase might be examined by already breaking the
symmetry at the unperturbated level (through yo). In
that sense, we think that the above calculation may be
useful since it may be adapted to any "unperturbated"
structure. It constitutes a frame in which a set of param-
eters qo

——mlm*, Fo, Fo, Ao(1), Ao(2) are deflned indepen-
dently of the structure. It would be interesting to apply it
to some more complex situations (flux phase, supercon-
ductivity. . . ) perhaps in closer connection to the physics
of high- T, superconductors.
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