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%'e develop a formalism for studying the motion of nondegenerate electrons in semiconductors,
which allows a nonperturbative description of the effects of an external high electric field on
electron-phonon scattering within the Kadanoff-Baym-Keldysh nonequilibrium Greens-function
approach. Based on the exact solutions of Schrodinger's equation, we solve Dyson's equation for
the single-particle retarded Green's function 6'(k„z,z', co). Recognizing that high fields break the
translational symmetry of the system and that momentum is no longer a good quantum number, we

use Airy transforms to handle the position dependence parallel to the applied high field. From this
we are able to derive a model for the spectral density function A (k„s,co) through which we can ac-
count for quantum effects such as collisional broadening and the intracollisional field effect in a sim-

ple and rigorous way. %e demonstrate the theory by considering only weak scattering with nonpo-
lar optical phonons and restrict ourselves to fields that are constant in space and time. Our formu-
lation suggests the presence of a novel quantum effect induced by the simultaneous presence of
scattering and electric field which produces a discontinuous trajectory of the electron path along the
field direction.

I. INTRODUCTION

The technological possibility of fabricating devices of
nanometer dimensions' and the subsequent recent rapidly
increasing interest in the physics of ultrasmall semicon-
ductor electronics components have motivated the for-
mulation of a quantum theory of transport phenomena
capable of overcoming the limits of the semiclassical ap-
proach based on the Boltzmann equation. This latter
theory is based on the validity of the adiabatic approxi-
mation and on perturbation theory. It assumes the con-
duction electrons to be in nearly stationary and free-
particlelike states with a well-defined momentum k.
Nonstationarity arises from the assumption that the
perfect-crystal periodicity is altered by imperfections, im-
purities, and phonons. Collisions with phonons, in par-
ticular, are assumed to be independent and to occur in-
stantaneously in space and time, thus causing weak and
infrequent scattering of the electrons among the states
Ik). Any applied electric field is treated as weak and
slowly varying and its effect is only to accelerate the car-
riers through the momentum states without distorting
the states or interfering with the scattering processes.

In nanometer devices, however, both the electric field
and the scattering rates can reach very high values and
the spatio-temporal variations of the phenomena involved
become comparable to those of the microscopic interac-
tions. In these regimes, encountered especially when pro-
cesses such as impact ionization and carrier injection into
insulators are investigated, we cannot expect each indivi-
dual collision to be completed before other processes
occur and therefore interfere with them. The limits of
applicability of the Boltzmann theory are thus surpassed
and transport must be considered from a fully quantum-

mechanical viewpoint, since neglecting the uncertainty
relations can now lead to erroneous results. Two impor-
tant quantum effects that appear as a consequence of the
position-momentum uncertainty relation and of finite life-
time are collisional broadening (CB) and the intracol-
lisional field effect (ICFE), and these should be taken into
account in a proper treatment of quantum transport. '

Collisional broadening rejects the finite lifetime of the
carriers interacting with impurities, phonons, etc. , thus
violating the assumption of the effective-mass model, ac-
cording to which there is a unique relation between the
carrier energy e,„=fico and its wave vector k (ei,
=fi~k2/2m ). fico and k must now be taken as indepen-
dent variables; the relation between them is described by
a spectral density function A (k, co).

The intracollisional field effect deals with the fact that
a carrier is accelerated by the field during a collision
whose duration can no longer be treated as instantane-
ous. ' " This effect, which can be present even in the
semiclassical regime, ' ' becomes significant in submi-
crometer devices characterized by mean collision dura-
tions and mean free times that are not negligible com-
pared to the transit times through the device. This is ex-
pected to produce a shift of the threshold energy for the
emission or absorption of phonons. '

The formulation of a scheme capable of describing
nonlinear transport phenomena is a long-standing and
much-debated theoretical problem, ' ' and most existing
Green's-function formalisms have been limited by the use
of gradient expansions in the external fields. ' Several
models have been proposed ' to include collisional
broadening and the intracollisional field effect within a
Monte Carlo approach, but they are far from being satis-
factory since they do not have any solid first-principles
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justification that goes beyond the gradient expansion.
Other approaches are based upon the Kadanoff-

Baym-Keldysh (KBK) nonequilibrium Green's-function
technique. ' ' By including the field in the 'unper-
turbed" (absence of scattering) Hamiltonian, this tech-
nique makes possible a nonperturbative calculation, at
least in principle. However, current applications of the
KBK methods have been limited to weak fields and jor
slowly varying systems and have not been applied suc-
cessfully to problems beyond the linear response.

The aim of this paper is to derive a spectral density
model which can account for both the energy dependence
of the collision rate and ICFE. In Sec. II, we give a very
brief review of the general theory based on the KBK
methods, whereas in Sec. III and the Appendix we
present the details of our formalism and how it differs
from a treatment based on center-of-mass coordinates.
We will show how, by solving the appropriate Dyson's
equation for the case of scattering mechanisms described
by a momentum-independent self-energy, we can obtain
an analytical expression for A (ki, s, co), as well as for the
quantum-mechanical distribution function f(ki, co), cap-
able of accounting for CB and the ICFE.

II. THE SPECTRAL FUNCTION
AND THE NONEQUILIBRIUM GREEN'S FUNCTIONS

6'(r, i;r', r')= (4 —(r', r') II(r, r)), (7a)

6 (r, t;r', t'}=——(4'(r, &) + (r', ~') & (7b)

(the field operators are expressed in the interaction repre-
sentation} which describe the propagatio'n of an extra
particle (or hole) added to the system. From these we can
define the retarded and advanced Green's functions

6"(r,r;r', r')= ——8(r i')( {4i(r,r),—~II (r', &') j ),

the spectral function reduces to

A (k, co) =2ir5(fico —
si, ),

so that there is just one possible energy for each momen-
tum Rk.

In the case of electrons interacting with phonons, on
the other hand, uncertainties in the momentum-energy
relationship must be taken into account. The nonequili-
brium Green s-function method is particularly suitable
for determining not only this renormalization of the elec-
tron eigenvalues due to the interactions, but also the
effect of an applied external field on the interactions
themselves. This formalism is based on the double-time
correlation functions

The spectral function A (r, t;r', t') can be defined in
terms of the anticommutator of the fermion-creation
and -annihilation field operators f' (r, t ) and p(r, t ) as

A(r, r;r', r')=( {ql(r, r), ~p (r', t') j ), (1)

6'(r, t r', i')= &(r' r}(—{4(r—, r), '0 (r', t') j ),
(8a)

(8b)
where the angular brackets (. . . ) indicate the nonequili-
brium expectation value. ' The spectral function
defined above becomes

A (r; t; r', t )=5(r—r'), (2)

as a consequence of the equal-time commutation of the
field operators. If A is a function only of the difference of
its arguments, it can be Fourier transformed and Eq. (2)
leads to the sum rule

respectively. Analogous relations hold for the various

phonon Green's functions D '(r, t; r', r
'

) with
a=(, ), r, a.

The definition (1) for the spectral function is then
equivalent to that usually given in terms of the retarded
and advanced Green's functions,

A =i(G —G '
) =i(6"—6') = —2 ImG" .

f A(k, co)=1 . (3)

This allows us to calculate 3 from the solution of
Dyson's equation for 6", which can be formally written
as

It is also easily seen that the summation over all momen-
tum states provides the density of states ' 6 f'

G f +6 l' +KG 1
0 0 (10)

1 d kP(co)= f 3 A(k, co) .
2~

(4)

A(k, co) also satisfies higher-order sum rules. All of
these properties make the spectral function an essential
quantity to calculate, since it has a clear interpretation as
a weighting function (with total weight unity), giving the
conditional probability that a particle in state k will have
energy %co.

In the Boltzmann theory, where the electrons are in
the free-particle states

where integration over intermediate variables is implied
throughout. Here 60 is the retarded free-particle propa-
gator and the retarded self-energy X"desribes the interac-
tions of the electrons with the crystal, as well as with any
applied external field. X", however, is a functional not
only of 6", but also of 6, which makes (10) an equation
coupled to Dyson's equation for 6

III. THE AIRY-REPRESENTATION FORMALISM

A. The Airy representation

The solution of Dyson's equation is a difficult task,
especially in the presence of high external fields that can-
not be handled perturbatively. In order to describe high-
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field effects, we must be able to overcome the difFiculties
associated with an electron system that is no longer
translationally invariant along the direction of the ap-
plied electric field. As a consequence, momentum along
the field is no longer a good quantum number and
Dyson's equation cannot be diagonalized in the space of
the unperturbed, free-particle Hamiltonian.

Many authors, ' have attempted to overcome
these difficulties by representing the electric field E by a
vector potential A(t)= —JE(t') dt' T.his breaks time-

translation invariance, which is equally important in the
proof of conservation laws. A kind of translational sym-
metry does persist in the presence of a constant field: a
real-space translation along the field, combined with a
shift in the energy, preserves the form of the problem.
However, describing the system in terms of shifted coor-
dinates, like z —Ace/eE, also does not deconvolve the
Dyson's equation. The introduction of the Wigner coor-
dinates, used in many earlier attempts to go beyond small
perturbative fields, does not make the problem simpler,
but actually complicates it by artificially introducing the
unphysical extra center-of-mass time T in a vector-
potential gauge or the extra center-of-mass coordinate R
if a scalar potential is used.

We have used a different approach. As stated earlier,
when an external potential P(r) is applied, the unper-
turbed (absence of scattering) Dyson equation cannot be
diagonalized by Fourier transforming in space. It is pos-
sible, however, to diagonalize it in the space defined by
the normalized eigenfunctions [g;(r)) of the field-
dependent unperturbed Hamiltonian H =Ho+/.

We restrict ourselves to electrons in a single band and
represent the uniform, applied electric field E along the z
direction of motion through a scalar potential P(z) =eEz,
so that the system is described by the effective-mass
Schrodinger equation

g(k~, s )—:f f e ' Ai[(z —s )/L ]f(p, z ), (14)

where f(p, z ) is an arbitrary function. As demonstrated
in the Appendix, in this space, a function diagonal in
both k~ and s variables is translationally invariant in the
transverse direction, but not along the z direction. This
is a very appealing property since it implies the possibili-
ty of dealing with diagonal functions without requiring
an assumption of translational invariance along the direc-
tion of the applied field.

We can now define the field operators in the interaction
picture by

4(r, t ) =f d k~ f ds +z, (r)&1, ,(t), (isa)

with an inverse transformation

&„,(t) =fdr gf, (r, t )4'(r, t ), (15b)

with

[&„,(t), & „, ,(t)]+=5(k~—k~)5(s —s'),

[al, , (t), a~, , (t)]+=0 .
(16}

tric fields, but which we ignore in the present treatment.
The case of more general fields is discussed in the con-
clusions.

We work in the Hilbert space defined by the normal-
ized eigenfunctions (12), i.e.„plane waves in the plane
perpendicular to the field and Airy functions along the
direction of the field. This enables us to define a coordi-
nate system (kj, s } for Fourier transforming to momen-

tum in the transverse directions and "Airy transforming"
(see the Appendix) to s coordinates along the field. The
transformation that connects the two coordinate systems

(p, z ) and (k~, s ) is defined by the integral operation

$2+2
+eEz 1((z)=eP(z) .

2m

This has solutions represented by the stationary states

Pl, , (r) = e ' Ai[(z —s )/L ],
corresponding to the energies

Ak
c.&,= +eEs,2m'

(12)

(13)

as a consequence of the fact that the basis is normalized.
Here the negative sign on the subscript indicates commu-
tation for bosons and the plus sign indicates anticommu-
tation for fermions. The time dependence of the opera-
tors is given by

—i /Ac& t

ol, , (t) =it|, ,e

B. Nonequilibrium field-dependent Green's functions

where p and k~ are, respectively, the position and wave
vector of the electron in the plane normal to the field,
L = (A /2m *eE}',and Ai(x ) is the Airy function of the
first kind. ' Airy variable s, defined as s =e, /eE, with s,
the electron kinetic energy in the direction of the field,
has a physical interpretation as the electrons turning
point in z. This solution is exact, but does not include
the possibility of Zener tunneling from one band to
another, an effect that can be significant at very high elec-

As emphasized in the previous sections, we want to
treat the electric field exactly. In order to do this, we fol-
low the suggestion of Ref. 38 and take the free-particle
propagator Go in (10) to be the Green's function for an
electron in the presence of the electric field, but without
scattering, and denote it by GE. One of the advantages of
our formalism is that now, using (15)—(17) in (Sa), the un-

perturbed, field-dependent, single-particle propagator at
zero temperature,

GF(r, t;r', t')= —' f d'kids f d ki fds'gz, (r)P„', ,(r')g(r )(r@ ~[0gz, (r), g„, , (r')I ~@o—), (18)



41 AIRY-COORDINATE TECHNIQUE FOR NONEQUILIBRIUM. . . 1393

in (k~, s } space has the simple expression

(19)

or, in the frequency domain,

1
Ge(ki, s, co) =

Ado Fg +l'g
(20)

In (18) ~40) indicates the vacuum state and ii in (20) is an
infinitesimal positive convergence factor.

Transforming Dyson's equation into the Airy represen-
tation leaves only one integration over intermediate vari-
ables, namely

FIG. 1. Born approximation to the self-energy from
electron-phonon scattering.

G "(ki,s,s', co) =GE(ki, s;co)5(s —s')

+GE(ki, s;co)J ds2 X'(kiysys2yto)

X 6 "(ki,s2, s';co) (21)

The phonon Green's function is given by

Do(r, t;r', t')= ——(T[g(r, t), j (r', t')]), (25)

In order to solve the Dyson equation (21), we need a
model for the retarded self-energy X" in (ki, s) coordi-
nates. If the system is weakly coupled, we can write the
electron-phonon interaction in the Born approximation,

X(r, t; r', t ') =iD(r, t; r', t')G(r, t;r', t'), (22)

which includes the vertex matrix elements and corre-
sponds to the diagrams shown in Fig. 1. The retarded
self-energy is then given by

X"=i(D G'+D "G ) . (23)

The operator ordering in G is such that it vanishes as
the density goes to zero. As a result, for a nondegenerate
system, the term containing G is a negligible ' correc-
tion to that containing G', and

(here the development of the appropriate integration
paths follows the description of Ref. 33). This is a vast
improvement over the many integrations (they add in
pairs) that one gets by using ordinary coordinates or mo-
menta.

C. Self-energies

where y and y are the phonon field operators.
In the limit of low particle concentration, the electrons

are not expected to aff'ect the phonon states, so we can
assume that the phonons remain in equilibrium, and are
not aff'ected by the electric field. We therefore use the fa-
miliar expression

Do (q)= i g —
~ V„~ [N +(rt+ I)/2]5(co —otto„z)

(26)

for the phonon correlation function. Here q and Xq are
the phonon wave vector and occupation number, respec-
tively, and

~ Vzq~ is the electron-phonon interaction ma-
trix element. The term with g=+1 corresponds to
emission, and q= —1 to absorption, of a phonon of fre-
quency coq by the electron of energy Ace.

Within this model, the retarded self-energy in recipro-
cal space reads

&"(k,k', co)= f dq+~ V
~ [N +(rt+ I)/2]

XG'(k —q, k' —q;co —ilcoz) .

gf —Q) )Gf (24) (27)

This approximation decouples Dyson's equation for G"
from that for G, thus solving the diSculty mentioned in
Sec. II.

Fourier transforming in time and transverse coordinates,
and Airy transforming along the z direction, we obtain
the following expression:

6'(ki, s,s';to)= g f dq i V„&i [No+(rt+ I)/2]

x fds" fds'" 6"(ki—qi, s",s'";co—iles~)
I

X fdze *A(z —s)A(z —s")fdz'e ' A(z' —s')A(z' —s'") (28)

for the electron-phonon interaction in (ki, s;to) space. For nonpolar optical phonons, X"(s,s') is highly peaked about
s =s', so that we can make the approximation

X"(s,s'}=X"(s)5(s—s'), 6"(s,s') =6"(s)5(s—s') .

By integrating (28) over the s' values, we finally obtain

(29)
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X"(k„s;tu)= i
Vi' (2' ) +[No+(g+I)/2] Jd q, Ids"A ((s —s")/3' 1)6"(kt —qt, s";co —t)~o) . (30)

Equation (30), together with Dyson*s equation (21), is now a self-consistent problem, since knowledge of the full
reen's function 6", obtainable by solving (21), is needed for the calculation of X" present in (21) itself. As a first esti-

mate, we consider only the lowest-order, one-phonon scattering by taking 6"-Gz in (30), which can now be evaluated
explicitly and reads

X"(s,co) =
~

V~ g [No+ (g+ I )/2]F(s, ro),
g=+1

27T PlRe[F(s, ru)] = 8'~ Ai'(g)Bi'(g) —
g Ai(g)Bi(g)+ (31)

27T mIm[F(s, co)]= — 8' [Ai' (g) —(Ai'(g)]

where 8= [3(trteE ) /2m *]',g= [eEs —trt(co —rjtuo)]/8.
The self-energy above has the correct limit for vanish-

ing field. In fact, for g=1, its imaginary part, which the
optical theorem relates to the scattering rate I by

1.0x10 3 '

1 2
I (tu) = = ——ImX"(tu),

r(co) A'
(32)

3
0.00 =

ILl

CK

reduces to that obtained by considering one-phonon
emission processes in the Born approximation, when
g~ ac (or equivalently, E~0): —1.0x10 3

I

0.0 10.0
I

200
t

30.0 40.0

lim —ImX"(s, tu) =—g (Rcu —e, —&run)
1.0x10 3

E=1,0x107 V/m

I (e„co)
2

(33)

where g =(2m')
~

V~ /fi Even in . the absence of an
electric field, therefore, we have a finite linewidth which
accounts for collisional broadening.

On the other hand, the real part of the self-energy,
which represents the deviation, due to the interactions, of
the electron energy from the free-electron energy ck van-
ishes when E=O. This indicates that our lowest-order
approximation fails to describe fully the energy renormal-
ization caused by collisional broadening alone, but that it
represents a quite reasonable model for the ICFE. Figure
2 shows the real part of the self-energy as a function of
the argument g for three different values of the field. The
oscillatory nature of the self-energy has not been seen in
previous treatments of the high-field behavior and is a
consequence of the nonperturbative inclusion of the elec-
tric field in the problem. These oscillations indicate the
existence of regions in which the electron energy is alter-
nately lowered and raised, suggesting the presence of
quantization in space, with every other zero crossing in
the figure representing a quantized level towards which
the quasiparticle energy concentrates. The zero crossings
occur asymptotically where (=[3m(2n+I)/8] . Be-
cause of the irrational factor in 0=3' eEL, the oscilla-
tions are incommensurate with those occurring in the

3
0.00

D4

—1.0x10 3
I

0.0
I

100
I

20.0
I

30,0 40.0

1.0x10 3

E=1.0x106 Vjm

3
0.00

ce',

(c)

—1.0xl Q 3 I

0.0
I

10.0
I

20.0
I

30.0 40.0

FIG. 2. The real part of the self-energy as a function of the
reduced coordinated g [defined following Eq. (32)] for three
different values of the applied electric field.
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phonon-decoupled problem.
In Fig. 3, we plot the imaginary part of the self-energy.

The presence of the ICFE is found to generate a tail in
the scattering rate for g(0 and a series of damped steps
at g & 0 associated with the oscillations in the real part of
the self-energy and reflecting the influence of the quan-
tized levels through the Airy functions. The existence of
such a tail smooths out the sharp threshold in energy of
the scattering rate, making possible transitions which
cannot occur in the absence of the field. The appearance
of steplike oscillations, on the other hand, signals the on-

set of additional densities of final states corresponding to
the subbands generated by the quantized levels described
above.

G "(kj,s, s', co) = 5(s —s')
iiico —ek, —X"(s,co)

(34)

D. The spectral density function

With this model for the self-energy, Dyson's equation
(21) is a multiplicative equation and can be solved im-
mediately for the retarded Green's function

1.0x 1 0 2

E=S.Ox107 V/m

whose imaginary part is proportional to the spectral den-
sity function A (k~, s, co). According to the definition (9),
we have

3

g 5.0xl p.3—

—2 ImX'(s, co)

[fico —
ei, , —ReX"(s,co)] + [ImX"(s,co)]

(35)

1.0xl0 2

3

g 5.pxlp 3—

0.0 10.0 20.0 30.0

F= l.px107 V/m

40.0

This is plotted in Fig. 4 for different values of the electric
field. It is positive definite and integrates properly, satis-
fying the normalization condition (3). A(ki, s;co) exhibits
an unusual double-peak structure near the zero point
(where, in the semiclassical limit, there is a 5 function
representing the semiclassical turning point). The depth
of the valley between the peaks increases as the electric
field decreases. On the other hand, the height of the right
peak relative to the left one decreases, as does their rela-
tive separation, until they merge to form the Lorenztian
shape typical of the collisional broadening effect in the
absence of a field. This can be seen analytically by taking
the limit of (35) for vanishing fields, which is

lim A(ki, s;co)=
g~ oo

(fico ei,
—e,—) +

0.00

= A (ki, s„co) . (36)

1.0xl0-2

3

44g5.0xl 0 3—

0.0 10.0 20.0 30.0

E=1.0x106 V/m

40.0 is shown in Fig. 5 for different ratios of the trans-
verse energy to the optical-phonon energy. A similar be-
havior is shown in Fig. 6 for A(k~, s, co) of (35). Further-
more, A(ki, s, co) reduces to the free-particle 5 function
of (6) in the absence of the electric field and scattering:

A ""(k,co)= lim lim A(k~, s;co)r-o g-
= lim A (k~, E, ;co)r-o
=2m.5(%co—

Ei,
—s, ) . (37)

E. The quantum-mechanical distribution function

0.00'
0.0 10.0 &0.0 30.0 40.0

The next step is to calculate the correlation function
(7a). The density of particles is, in fact, given by

FIG. 3. The imaginary part of the self-energy, which is pro-
portional to the scattering rate, for three different values of the
applied electric field. The continuous curve refers to the case
when the ICFE is accounted for and the dashed curve to the
case when the ICFE is neglected.

(n(r, t)) =(4 (r, t), %(r, t))
iAG (r, t;r,—t)

(38)
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fii(k)= i—Af 6'(k, co), (39)

and the knowledge of 6 would then represent the solu-
tion of the transport problem. In equilibrium, 6 and

I

so that 6 (k, tu) can really be identified as the average
density of particles in the system with momentum irtk and
energy fico. 6 (k, co), therefore, must be closely related
to the distribution function f(k, co) which describes the
physical system. As a matter of fact, the quantum-
mechanical Wigner distribution function fii, (k) is defined
in terms of 6 as

G' obey

6 (k, tu) =i A (k, a))fFD(ro),

6 (k, co) = —i A (k, co)[1—f„D(ro)],

(40)

(41)

where f„D(co) is the Fermi-Dirac distribution function.
No similar relation holds in nonequilibrium situations,
and an equation of motion is needed for G (Ref. 44)
(and/or for 6 ). In the Kadanoff'-Baym formulation,
with the prescriptions given by Langreth ' for the
time-contour integration, this is represented by the two
integro-differential equations

iA —HG—(r, t;r', t')= f dt, fdr, [X"(r,t;r„t, )6 (ri, t, ;r, t)+X'(r, t;r„t, )6'(ri, t, ;r, t)],ai 00
(42a)

and

iR—,
H' 6 —(r, t;r', t)= f dtidr, [G"(r,t;r„t, )X'(r, , t, ;r', t')+6'(r, t;r„t, )X'(r, , t, ;r', t')],t' oo

(42b)

where H and H' act on the unprimed and primed variables, respectively. By Fourier transforming the transverse vari-
able p=(r —r')i and Airy transforming the longitudinal variables z and z' on both sides of (42a) and (42b), these can be

E= l,px103 V/m

3 3

5.0x 1 04—

a)

-4.05 0.00 0.05
0.00

—1.0xl0-2 0.00 1.0x10 2

E = 10.0 V/m
E = 5.0 V/m

3
5.0x105—

3
~ 5.0x105—

(c)

0,00
-5.0x]0 30.00-5.0x10 3 5.0x10 3 0.00 5.0xlp-

FIG. 4. (a) The spectral density function (continuous curve) in Airy coordinates as in Eq. (35) for three different values of the elec-
tric field. The dashed curve refers to calculations with collisional broadening only [see Eq. (36)]. The spectral function for (b) 1000
V/m, (c) 10 V/m, and (d) 5 V/m. Notice the change in the g scale. Here the electron transverse energy E„ is taken to be equal to the

phonon energy %cop.
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written in (k~, s ) space as

i% —E„, G (kt, s,s';r) = dr, [X"(s;r—r, )G (k~, s, s'; r, ) +X (k~,s, s', r —r, )G'(k), s;r, )],
OC

(43a)

and

~ 0 ( oo

i A —
El, , G (k~, s, s', r) = dr, [G'(k„s;r—r, )X (k„s,s';r, )+G '(k~, s,s'; r —r, )X'(s; r, )],

c)r oo
(43b)

where the approximation (29) has been used and the change of variables r=t t' a—nd r, =t, t'—has been performed.
The right-hand sides of both (43a) and (43b) are sums of convolution products so that the Fourier transform in the time
domain can be trivially done. Furthermore, by summing them, we obtain

(2|rtco —2sl, 2Es)G—(k~, s;co)=2Re[X"(s;co)]G (k~, s;co)+2Re[G'(kj, s;co)]X (kt, s;co), (44)

where 2"+2' =2 ReX" and 6 "+6' =2 ReG " have been used.

Equation (44) can be solved for G and we obtain

G (k, ,s, co) = A (k„s,co)
X (s, co)

2 ImX "(s,co )
(45)

with A and ImX" as given in (35) and (31), respectively. X' can be expressed in (kt, s) space as

2'(s, cu)= l)'(', , +[NO+(|)+) )/2] f d'q, f ds" A'((s s")/3' 'L—) (Gk, —q„s";co+g~o),

f(s, co) =i. X (s, co)

I s, co
(47)

where I (s, co) = —2 ImX"(s, co)/fi, and we can rewrite (45)
as

with a procedure analogous to that used to obtain (30).
In Eq. (45), the quantity in large parentheses can be
identified as the quantum-mechanica1 distribution

analogous to (40) also holds in the nonequilibrium case
without the loss of CB or the ICFE. Thus, the Airy coor-
dinates allow us to derive the ansatz that has been intro-
duced in earlier approaches.

Substituting (45) into (46) and performing the qt in-

tegration, the quantum-mechanical distribution function

f(s, co) reads

f(s, co) =g[(No+ (ri+ 1)/2]
G (k~, s, co)=i A(k~, s;co)f(s, co) . (48)

This relation te11s us that, within the limitation of the
approximations involved in our approach, a separation

with

X I ds" V(s, s";co+gcoo)

Xf(s";co+ricoo) (49)

xo=l

3
t

cn 3

00 10.0 20.0

-0.01 0.00 0.01 0.02 0,03

FIG. 5. The collisional broadening spectral density as a func-
tion of the scaled many-body energy g for three difFerent values
of the electron transverse kinetic energy cz (here the energies

are expressed in dimensionless units xl, = c,z /fico0 and x0 = 1).

FIG. 6. The total (Ca+ ICFE) spectral density of Eq. (35) for
three different values of the electron transverse energy (here, as
in Fig. 5, the energies are in dimensionless units) at E= 10
V/m.
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2&3vr mA ((s —s")l3' L)
ImX "(s,co —i)coo)

fico —eFs"—ReX "(s ";co )—+ tan
ImX'(s"; co)

(50)

Equation (49) is a homogeneous integral equation which
can be solved by numerical integration. This solution
procedure will be described elsewhere.

A(ki, s, co) also indicate the possibility of constructing a
novel Monte Carlo simulation" able to provide a quanti-
tative evaluation of this effect. This will be described in a
later paper.

IV. CONCLUSIONS

We have introduced a treatment in which the momen-
tum coordinate representation along the field direction is
replaced by a new representation in terms of Airy coordi-
nates. This yields the mathematical advantage of
simplified Dyson's equations involving fewer coordinates.
We have applied this to the case of nonpolar optical-
phonon scattering in semiconductors in high electric
fields.

The result is the appearance of a series of damped os-
cillations in both the real and imaginary parts of the elec-
tron self-energy, indicatinng the existence of preferred
quantized energy levels for the electron. A state-counting
argument would, then, imply the need for another quan-
tum number. An approximately analogous situation
occurs in crystals where the continuous reciprocal-space
coordinate is replaced by a quasimomentum restricted to
the first Brillouin zone and its augmented by a band in-
dex. The levels represented by zero crossings of the real
part of the self-energy could serve as a kind of quasi-two-
dimensional subbanding in which each crossing plays a
role analogous to the subband index.

In addition, the double-peak structure of the spectral
density function suggests that there is a length scale asso-
ciated with the motion along the field direction. We con-
jecture that this motion might therefore be more ap-
propriately treated in terms of "hopping" transport in
the z direction between states described by discrete values
of the Airy coordinate: the net effect of the field is to
produce a discontinuity in the electron trajectory, which
can be evaluated quantitatively using the new metric
defined by the Airy transform. This discontinuity, which
can be interpreted as a field-assisted scattering (hopping)
from z to z', is ultimately responsible for the broadening
of the carrier position after each scattering event along
the field direction.

We have not treated inhomogeneous fields. However,
we know that by transforming to a basis of states found
in the absence of phonon scattering, but with a nontrivial
field included, a simplified form of the KBK equations re-
sults. A diagonal approximation in the associated coordi-
nate system may lead to similarly useful results.

We have also shown how, in our formalism, an expres-
sion generalizing the equilibrium 6 =iAf relation (40)
holds even at higher fields. This is generally expected (al-
though debated in the literature ) since it is consistent
with the definition (39): the frequency integral of A al-
ways equals unity by virtue of the equal-time
(anti)commutation rules [see Eq. (3)].

The positive definiteness and normalization of
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APPENDIX

We define the Airy transform A&[a(t)] of a general
function a (t) by

A(g)= A&[a(t)]—= f dt A(g t)a(t—),
where A is the normalized Airy function

(Al)

A(g t)= ——Ai[(z —s)/L] .1

L

The problem is to find the inverse transform of the
Airy transform. Using the integral representation '

(A2)

we find that

(A3)

We can therefore define the inverse of the Airy transform
as

(A4)

The Airy transform is in the form of a convolution, so
the Fourier transform of the Airy transform is the simple
product

F„[A(g)]=A(k) (ak) . (A5)

A function f(z, z ) is translationally invariant if its
value depends only on the variable difference z —z'; that
1S,

f(z,z') =f(z —z', 0) =f(z —z') .

A function f(z, z ) is diagonal if it can be written as

f(z, z')=f(z)5(z —z') .
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Iff(z,z ) is translationally invariant, then it is diagonal in reciprocal space. In fact,
I—ikz ikz f'( ~

)
— ik(z —z') —i(k —k')z'f

(
~

)
&2tr &2n. '

2m

I—ik(z —z') —i t, k —k')z'

2m

=f d(z —z')e '"" ' 'f (z —z')5(k —k') =f(k)5(k —lc') .

However, a similar relation does not hold between translational invariance in real space and diagonality in the Airy
coordinate space.

'If a function is translationally invariant in z, then it is also translationally invariant in s:

f(s,s')= f dz fdz'A(z —s)A(z' s')f(z—,z')

= f dz fdz'A(z —s+s')A(z')f(z+s', z'+s')

Z Z Z S S Z Z+S, Z +S

dz dz z s s z z, z

=f(s —s', 0)—=f(s —s'),
where the fourth line follows by translational invariance in z.
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