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Taking into account the interaction of an electron with both bulk longitudinal-optical (BO) and

surface longitudinal-optical (SO) phonons, we study the self-trapping energy of a magnetopolaron in

a polar-crystal slab as a function of magnetic field and finite temperature, by using the generalized

Larsen perturbation-theory method. The temperature dependence of the self-trapping energies E80
and E» are found to be strongly dependent upon the strength of the magnetic field. The results

also show that the self-trapping energy Eso, as well as the self-trapping energy Eao, plays an impor-
tant role. However for thin slabs, Esp plays the main role.

I. INTRODUCTION

Recently, with the development of techniques to fabri-
cate heterostructures and superlattices, the properties of
a polaron in a polar-crystal slab have aroused great in-
terest, especially regarding the inQuence on the properties
of the polaron by a magnetic field and by temperature.

In the past, most work on polarons in a polar-crystal
slab was devoted to the calculation of the ground-state
energy and the effective mass of polarons at zero temper-
ature, and to the discussion of the dependence of the
polaron's properties on the electron-phonon coupling
strength. ' Licari and Evrand derived a Hamiltonian
for the electron-phonon interaction in a slab, which in-
cluded the interaction of electron with bulk longitudinal-
optical (BO) phonons and surface longitudinal-optical
(SO) phonons. ' Some studies of the polaron in a
polar-crystal slab have been carried out, but none of these
took into account the electron —SO-phonon interaction.
Thinking that when the thickness of the slab is compara-
ble to the radius of the polaron, the electron —SO-phonon
interaction is even stronger than the electron —BO-
phonon interaction, some authors " have studied the
electron —SO-phon interaction together with the
electron —BO-phonon interaction. In recent years the
properties of a polaron in a magnetic field have also at-
tracted attention. ' ' Larsen' developed a perturbation-
al theory for two-dimensional (2D) magnetopolarons and
Gu and his collaborators ' applied Larsen's method to
investigate the interface and slab magnetopolaron, simul-

taneously taking into account the interaction of electrons
with both BO and SO phonons. However, the tempera-
ture dependence of the properties of a magnetopolaron
was not reported in this earlier work.

In recent years there has been renewed interest in the
temperature dependence of the properties of polarons.
The different assumptions on the mechanism of the
electron-phonon interaction and the different theoretical
methods applied have led to ever significant different
dependences of the polaron mass on temperature. In the
early studies, Yokota' approximately calculated the en-
ergies of the polaron by using the Hartree method, and
came to the conclusion that the polaron mass decreases
with increasing temperature. This result was also ob-
tained in Refs. 15-18 at sufficiently low lattice tempera-
tures. However, by using the Gurari variational method,
Fulton' obtained a contrary result. In Refs 12 and
20—23, the polaron mass was also found to be an increas-
ing function of temperature at sufficiently low lattice tem-
peratures. A compromise between these opposite tem-
perature dependences of the polaron mass is obtained by
extending Feynman's polaron theory to finite tempera-
ture. With Feynman's path-integral polaron theory, it
was found ' ' that with increasing temperature the po-
laron mass first increases at low temperatures, subse-
quently reaching a maximum value at a certain finite tem-
perature, and for still higher temperatures it starts to de-
crease. Recently, Wu et al. also found this behavior.

The electron —optical-phonon interaction in a polar-
crystal slab plays an important role in determining the
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temperature dependence of the properties of a magneto-
polaron. The purpose of this paper is to study how the
electron —optical-phonon interactions affect the tempera-
ture dependence of the properties of a magnetopolaron in
a polar-crystal slab. Taking into account the interaction
of an electron with both BO and SO phonons, we have
derived for the first time the self-trapping energy of a
magnetopolaron in a polar-crystal slab as a function of
the strength of the magnetic field and temperature in ar-
bitrary magnetic field strength at finite temperature by
using the generalized Larsen perturbational-theory
method. Taking GaAs as an example, we make the cal-
culations of the self-trapping energies EBQ and EsQ,
which arose from the electron-BO-phonon interaction
and the electron —SO-phonon interaction, respectively, as
a function of magnetic field strength B, temperature T,
and the thickness of the slab, N, in arbitrary B at finite T.
The results show a strong temperature dependence of
EBQ and EsQ on the magnetic field strength B. As the
temperature increases, ~Eao~ and ~Eso~ decrease in the
weak magnetic field, while they increase in the strong
magnetic field. The results also show that the
electron —SO-phonon interaction plays an important role,
especially when the slab is thin. The present paper is or-
ganized as follows: in Sec. II we write out the effective
Hamiltonian and self-trapping energy for the system, Sec.
III contains our numerical results and our conclusion is
presented in Sec. IV.
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FIG. 1. Geometry of a polar-crystal slab.

in the slab, can be written as

H =H~~+Hj H~~ =HO=Ho+H

0 x ph& L e-BQ e-SQ &

where
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H, = p — y + p+ x

mb mb 4

(la)

(lb)

(lc)

Hph g ~~B ~Ok, mpk, m,,p +g ~s,pbs, pbs, p
k, m, p

(ld)

is the contribution from the electron moving in the x-y
plane,

II. EFFECTIVE HAMILTONIAN
AND SELF-TRAPPING ENERGY

is the contribution from BO and SO phonons,

H, =p,2/2mb+ V, (z) (le)

Now we consider a slab of polar crystal, whose thick-
ness is 2d. The static uniform magnetic field B is alone
the z direction (see Fig. 1). We employ the symmetric
gauge vector potential A=B ( —y l2, x l2, 0) for the mag-
netic field. Under the isotropic effective-mass approxima-
tion, the Hamiltonian of the system, which includes the
interaction of the electron with both BO and SO phonons

is the z direction contribution, where

e„—1
V; (z)=

2e„d e„+1
Z2

z2 —d2

is the surface image-potential energy, and H, ao (Ref. 1)
is the electron-BO-phonon interaction given by

He ao =g F' exp( i k p)—
k

cos(mnz/2d)
[k +(mn. /2d) ]'

m =2,4, 6,

sin(ma. z/2d) t + H
[k +(mn/2d) ]' (lg)

H, so (Ref. 1) is the electron —SO-phonon interaction given by
1/2

sinh(2qd )
e-so exp( —qd)IC* exp( —iq p)[G+(q, z)b ++G (q, z)bq ]+ H. c. ] (ih)

and

cosh( qz) / cosh( qd )
G+ q, z=

(e„+1)—(c„—1)exp( —2qd)

(e„+1)—(e„—1)exp( —2qd)

(eo+ 1)—(eo 1) exp( ——2qd)

sinh( qz ) / sinh( qd )
G qz= (e„+1)+(e„—1)exp( —2qd)

(E;„+1)+( „—e1)exp( —2qd}

(eo+ 1)+(Eo—1)exp( —2qd)
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In the above expressions, mb is the band mass of the elec-
tron we have assumed that it is isotropic for simplicity; k
and q are the plane wave vectors of BO and SO phonons,
respectively, in the x-y plane. The subscript p stands for
the parity. For even parity, p is positive, and for odd par-
ity, p is negative. m is the quantum number of BO-
phonon wave vectors in the z direction. When p is posi-
tive (or negative), m is an odd (or even) positive integer.
ak (ak ) and b ' (b ) are the creation (annihila-
tion) operators of BO and SO phonons, respectively. cOBo

and co, are the frequencies of BO and SO phonons, re-
spectively.

The relation between the frequency of bulk transverse-
optical phonons, ~Tp, and one of the BO phonons, coBp, is
determined by the Lyddane-Sachs-Teller (LST) relation

~BO/~TO 0/e~2 2 (2a)

and the frequency of BO and SO phonons satisfies the
equality

At finite temperature, we choose
l l Nk j, I N j & for

the wave function of the phonon state, in which Nk
and N represent the number of BO and SO phonons,
respectively.

As shown in Ref. 29, the phonon frequency will de-
crease with the increasing temperature, but if the temper-
ature is restricted to the range lower than the room tem-
perature (T & 300 K), the relative change of the frequen-
cy (lhail/pr) is only 1%. Then we can take the phonon
frequency approximately as constant. In addition, we
also approximately omit the electron-phon interaction
energy because of its very small values compared with
A'coBo (or iricoTo) except for the strong-coupling case. So,
with the consideration of taking the phonon frequencies
as the constant values and in the absence of the electron-
phonon interactions at finite temperature, we assume
that the eigenvalues of a ta and b b in the phonon state
l [Nk j, I N j & are approximately equal to the
thermal equilibrium values, i.e.,

2
CO s, +

(ep+1)+(ep —1)exp( —2qd)

(e + 1)+(e„—1)exp( —2qd)
piBo (2b)

Nk =(ak myak m, p & [ exp(ffcoBO/kB T) 1]—
Nq &

= (bq ybq & =[ exp(A'rp /kBT) 1]

(6a)

(6b)

13 =2e8/c,
r

4m.e 1F ACOBp
V 6p

1/2

1/2

(3)

(4a)

where e„and E'p are the optical and static dielectric con-
stants of the polar crystal, respectively, and where kz is the Boltzman constant.

Having introduced the operators A and D, we can
represent the Landau levels as products of two indepen-
dent one-dimensional (1D), harmonic-oscillator states,
which are

ln &„=(n!)'y (At)"l0&„
27Te

f2COTo(ep E ~ ) (4b) and

where V is the volume of the crystal 1 and A its surface
area.

We regard Hll as the "transverse" Hamiltonian and Hz
as the "normal" Harniltonian. For a thin slab, the
motion of the electron along the z axis is almost in a cer-
tain state. Therefore, we can use an approximation
which is analogous to the adiabatic approximation to
find the effective Hamiltonian of the system. Let us first
seek for the energy of the "transverse" motion that de-
pends on the parameter z. Then regard it as an "adiabat-
ic potential" and add it to the normal H~ to find the
effective Hamiltonian of the rnagnetopolaron.

In the following, we shall use Larsen's' method to cal-
culate Hll. We introduce two harmonic-oscillator opera-
tors

DtlM &D =(M+1)' lM+1&D,

DlM &D=M' lM —1&D .
(8b)

At finite temperature, the unperturbed-state wave func-
tion is

ln, M, N„+,Nk, N +,N

lM & ( =M!)'"(Dt) l0 &

where n is the Landau quantum number, and M is the an-
gular momentum projection quantum number relative to
the z axis. In the occupation-number picture, we have

Atln&„=(n+1)'"in+1&„, Aln&„=n'"In —1&g

(8a)

0'
p, —

y —i p+ xx 4 y 4

D = A —i —(x +iy),
2&X

(5a)

(Sb)

=ln&~ IM&D INi, , +& INi, , & INq, +& INq,

and the unperturbed-state expected energy value is

E„(n + ,' )tip /2m& + g —NkAcoBo+ g fico,
k, m, p

(10)

which satisfy the commutation relations of bosons,

[A, A ]=[D,D ]=1 and [A, D]=[A, D "]=0 . (5c)

In the first step, we treat H~l =Hp+HI. We shall take
Hp =H

&
+Hph as the unperturbed Hamiltonian and HI

as the perturbational one.

In the following, we only consider the n =0 Landau
ground state for the sake of calculational ease; the case in
the first excited state will be shown in the next paper
studying the cyclotron resonance of a magnetopolaron in
a polar-crystal slab. After a tedious but direct calcula-
tion (see Appendix), we can obtain the effective Hamil-
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tonian as

H,s(z) =p i /2mb + V; (z) +Ep+ bE p '(z),

where b,E~p '(z) is given in the Appendix.
V; (z)+DE~& '(z) in the ~z~ (d range is approximately

a square-well potential. Thus the z-direction wave func-
tion of the electron can be approximately described by

the wave function of a particle moving freely in an
infinite one-dimensional square well with a 2d width, i.e.,

@L(z)=(1/d) sin[Le(z+d)/2d], ~z~ &d . (12)

The self-trapping energy of a magnetopolaron in a
polar-crystal slab can be found as

Eno =(4z (z}~[DE& +(z)+DE&i' (z)]~4L(z))

Nk+ 1 Nk——X +
4d e„&p A,~+1 'A, ~

—1

Eso = ( 4L (z}
~
[LEE' + (z) +b E' ' (z) ]~4L (z) )

Nq ++1
(ep —e„)~ —. +

where

I, +(i,d) +
N +1
iA,, +I + ' I, (i d)

iA,, —1

N/2

g Is(i, m, d)+I&(i,L,d)
m=1

(13a)

(13b)

'2

I s(i, md)= f dy
p P2

Ay 1
exp

P y+(m/2d)
(13c)

I, +(i,d)= f dy exp
p y 4d2P2

Ay tanh(y/2)[y + sinh(y)/(1+yi/L in )]
4d P [(e„+1)+(e„—1)exp( —y)][(ep+1)+(ep —1)exp( —y)]

(13d)

I, (i d)= f dy exp
i)'iy coth(y/2)[ sinh(h)/(1 +y /L n) y]. —

4d p [(e„+1)—(e„—1)exp( —y )][(Ep+1)—(ep —1)exp( —y)]

(13e)

N in Eqs. (13) satisfies the equality Na =2d, where a is
the lattice constant of the crystal.

Eao and Eso are the self-trapping energies of a mag-
netopolaron in a polar-crystal slab arising from
electron-BO-phonon interactions and electron- SO-
phonon interaction, respectively. It is easy to show that
the unlimited series in the above equation are all conver-
gent.

meU) and the resonant range is in the case in
20&8 (21.5 T. Figure 2 describes the self-trapping en-

ergy Ezz as a function of temperature T for a different
slab thickness N in a strong magnetic field B =22 T
(fico, =38.8 meU), and Fig. 3 describes Eno as a function
of N at different temperature T in weak magnetic field

III. NUMERICAL RESULTS

GaAs is taken as an example to evaluate numerically
the self-trapping energies of a magnetopolaron in a
polar-crystal slab. The characteristic parameters in our
numerical computation are taken from Ref. 31:
E'p= 12.83 6 = 10.9 Act)g~= 36.7 meV, a =5.654 A, and
the electron-phonon coupling constant u =0.067.

The results presented in Figs. 2 —6 show that the tem-
perature dependence of the self-trapping energies of a
magnetopolaron in a polar-crystal slab depend tremen-
dously on the strength of the magnetic field B. In the
present case A'coB=36. 7 meV, and Ace, + and fur, are
both approaches to fuu~o, that is, the difference among
them is small, so we can approximately define that the
weak magnetic field, i.e., co, &coze, co, , is in the case in
B (20 T (fuu, =35.2 meU), and the strong magnetic field,
i.e., co, & co so, , is in the case B &21.5 T (Ace, =37.8

j.o

0

3
-2-0

Ld

l4=60

g~22T,

3
0 0.2 0.3 Q, g o.5

FIG. 2. Ezo vs T for the different thickness of the slab N in
a strong magnetic field, B =22 T, where Td =426 K.
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FIG. 3. Ego vs N for different temperature T in the weak
magnetic field B = 19 T, where Na =2d, TD =426 K.
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8 =19 T (A'co, =33.5 meV). At the same time, Fig. 4 de-
scribes the self-trapping energy EsQ as a function of T for
different N in a weak magnetic field 8 =19 T, and Fig. 5

describes EsQ as a function of N at different T in strong
magnetic field B =22 T. %e can see that the abstract of
the self-trapping energies ~Eao ~

and ~Eso ~
both decrease

with an increase of the temperatures in the weak magnet-
ic field; that is to say the self-trapping of the magnetopo-
laron will be weakened with increasing temperature in
the weak magnetic field. On the other hand, we obtain
the contrary results in the strong magnetic field; that is,
the self-trapping of a magnetopolaron will be
strengthened with the increasing temperature in the
strong magnetic field. From Figs. 3 and 5, we can see
that EBQ and E$Q are both dependent obviously on slab
thickness N and their changing with the changing of tem-
perature is also dependent on ¹ The thicker the polar-
crystal slab, more obvious changing of the self-trapping
energy EBQ with the changing temperature; the thinner
the polar-crystal slab, the more obvious the changing of
the self-trapping energy EsQ with the changing tempera-
ture. The most important thing is that when the slab

4

3
~2 a

0

3 m

g 80, L. &

0 O. i 0.2 o.3
T/Td

p.$ 0 ' 5

FIG. 5. Eso vs N for different temperature T in a strong mag-
netic field, B =22 T, where Na =2d, TD =426 K.
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0. $ O. Z 0.3
l

0.4 0.5

o. l
Td Td

0.3 0.4 o.5

FIG. 4. E&& vs T for the different thickness of the slab N in a
weak magnetic field, 8 =19T, where TD =426 K.

FIG. 6. (a) E~o vs T in different magnetic field strengths B
for slab thickness N =80, where Na =2d, TD =426 K. (b) Eso
vs T in different magnetic field strengths B for slab thickness
N =4, where N, =21, T~ =426 K.
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thickness is small, especially when the slab thickness ap-
proaches the radius of the polaron, the value of Eso and
its changing with temperature are both noticeable. On
the other hand, the value of E&0 and its changing with
temperature are both insignificant when the slab thick-
ness is very small.

Figure 6(a) describes the EBo as a function of tempera-
ture in different magnetic field strengths B for the slab
thickness %=80. Figure 6(b) describes the Eso as a
function of temperature in different magnetic field
strengths B for the slab thickness %=4. We can see
from Fig. 6 that in the weak-magnetic-field range, i.e.,
B (20 T, the abstraction of the self-trapping energy
~Eao~ and ~Eso~ are both decreasing functions of the
temperature; however, in the strong-magnetic-field range,
i.e., 8 )21.5 T, ~Eao~ and ~Eso~ are both increasing
functions of temperature. We can also see that the closer
B is to the resonant range, the more obvious the effect of
the temperature on the self-trapping energies. The case
when B is in the resonant range, i.e., 20 & B (21.5 T, will
be discussed in a planned study of the cyclotron reso-
nance of a magnetopolaron in a polar-crystal slab or
quantum well.

IV. CONCLUSION

Taking into account the interaction of an electron with
both BO phonons and SO phonons in a polar-crystal slab,
we use a generalized Larsen perturbational-theory
method to study the magnetic field and temperature
dependence of the self-trapping energy of a magnetopola-
ron. The results show that the changing of the self-
trapping energies of a magnetopolaron in a polar-crystal
slab with temperature will be different with different mag-
netic fields. As the temperature increases, the self-
trapping of a slab magnetopolaron will be weakened in
the weak-magnetic-field range, but it will be strengthened
in the strong-magnetic-field range. When B is close to
the resonant range, the self-trapping energies of a slab

magnetopolaron become highly sensitive to temperature.
Having neglected the effect of the absorbing virtual-
phonon process in the process of electron-phonon in-
teraction, Fulton' obtained that the mass of a polaron
increased with temperature at intermediate temperatures.
But in the present paper we show numerically that the
absorbing virtual-phonon process must be considered,
especially for the magnetopolaron. The absorption pro-
cess will weaken the self-trapping of the magnetopolaron
in the weak magnetic field, but it will strengthen the self-
trapping of a magnetopolaron in the strong magnetic
field. The emission process will always strengthen the
self-trapping of a magnetopolaron.

In a polar-crystal slab, the electron-SO-phonon in-
teraction plays an important role in the self-trapping en-

ergy of a magnetopolaron, especially when the slab is
thinner. From the numerical results we can see that
when the thickness of the slab is comparable to the radius
of polaron, the electron-SO-phonon interaction is
stronger than the electron-BO-phonon interaction and
the changing of the self-trapping energy Esz with tem-
perature is also more obvious than that of the self-
trapping energy EBO. The thinner the slab, the more ob-
vious the phenomenon stated above. On the other hand,
when the slab is very thick, the electron-SO-phonon in-
teraction is relatively small compared to the
electron-BO-phonon interaction, and the changing of
Eso with temperature is also slower than that of EB~. So
we can neglect the effect of the electron-SO-phonon in-
teraction for a very thick slab, but we must consider it for
the thin slab. For example, in the quasi-two dimensional
(Q2D) system, we inust consider the electron —SO-phonon
interaction.

The method used in this paper can be available for ar-
bitrary magnetic field strength 8, and the range of the
temperature is approximately restricted to T (0.5TD,
where TD =426 K is the Debye temperature. The
method can be conveniently generalized to study the
quantum-well problem.

APPENDIX

Having introduced the operator A and D in Eq. (5), H„and Hl can be rewritten as

H„y=(fiP /2mi, )(A A +—,'), (Al)

Hi =g F'LqMq
k m =1,3, 5,

cos( m irz /2d )
~I m++[k2+( /2d)z]ii2 k, m, +

m =2,4, 6,

sin( m n.z /2d )

[k +(mm. /2d) ]'
1/2

sinh(2qd)

q
exp( —qd)IC*L»M»[G+(q, z)b»++6 (q, z)b ]+ H. c.I, (A2)

where

Li, = ex [p(fi'~ /P)(k„+ik )3 (fi'~ /P)(k„ik )At—], —

Mi, = exp[(vari' IP)(k„ik )D ——(vari' /P)(k„+ik )D ],
L = exp[(fi'~ IP)(q„+iq )3 (fi'~ IP)(q„iq~)A ]-, —

M = exp[(A'~ IP)(q„iq )D (A'—~ IP)(q„+iq )D—] .

(A3)

(A4)

(A5)

(A6)
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In order to calculate the correction in second order conveniently, Hz can be divided into the following four terms:

Hq =Hk ++Hk +H ++H

where

(A7)

Hk + =g F'LkM„
k

Hk = g F'LkM~
k

m =1,3,

m =2,4,

cos(m qrz/2d)

[k + (m qr/2d ) ]'

sin(mqrz/2d) t + H
[k +(mn. /2d) ]'

(A8)

(A9)

H, +=+
q

' 1/2
sinh(2qd )

exp( qd)—[C'L M G+(q, z)b ++ H. c.], (A10)

' 1/2
sinh(2qd )

q

exp( qd)[C—'L M G (q, z)b + H. c. ] . (Al 1)

Because Hz can be written as the four parts stated above, the crossed terms, which are from the states with different
wave vectors or diFerent parities, will disappear in the perturbation energy to second order. Then the correction to
second order is

(A12}

where

gE(2)
m', M', N~ +

I&n, M, N„+,Nk, N +,N IH„+In', M', Nk+, Nk, N +N
E —ED

F2
k

cos (mqrz/2d)

k +(mar/2d) n'

(N„+1)„&n ILq ln'&„„&n'IL„ln & „
(n 'n}AP—/2m~ ficoso-

+g Nk „&n ILkIn'&„„&n'ILkIn &„

( n —n ')gP /2mb +fimao
(A13)

(A15)

b,E„'z„', b,E„' '+, and b,E„' ' can be expressed just the same as (A13), and for the sake of clarity, we do not write them
out.

In the above expression, the first term corresponds to the emission of a virtual phonon during the electron-phonon in-
teraction, and the second term corresponds to the absorption of a virtual phonon in the process of the electron-phonon
interaction. '

For the n =0 Landau ground state the index function of operators A and D in Lk (Lk) and L (L ) can be expanded
into unlimited series, and after a tedious but direct calculation we can obtain the following results:

Nk+ 1 Nk+ Ik +(i,z) (A14)
2d e„Ep; i f i A&+1 iA~ —1

e 1 1 1 Nk+1 Nk

2d „ceo,. i ) i As+1 i A. ,s —1

EEq+ = 2e (eo e„)—g—
1

N ++1
i! iA,, ++1

N ++ '
Iq +(i z)

iz,2+ —1
(A16)

bE' ' = —2e (eo —e„)g

where

N +1
iA2 +1

+
N

EA, 1
I (i,z) (A17)

Ay AyIk+(i, z)= f dy exp
7 p p2 p2

cos (mqrz/2d)

y +(mar/2d)
(A18)

Ik (i,z)= f dy
0

Ay Ay
exp

p2 p2

sin (mn.z 2 /)d
y +(mn /2d)2

(A19)
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I +(i,z)= f dy
0

1

fiy fiy tanh(yd) cosh (yz)
Pz P [(e +1)—(E„—1)exp( —2qd)][(co+1)—(eo —1)exp( —2qd)]

exp 2yd— (A20)

I (i z)= f dy
0

where

coth(yd) sinh (yz)
p2 p2 [(e„+1)+(e„—1)exp( 2—qd)][(co+1)+(eo—1)exp( —2qd)]

and

4=~a ~~Bo»»(s + =~a» ~s +» ~s —=a'c» ~s — »

co, =eB /mb c

(A22)
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