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The crossover from ballistic to diffusive transport in narrow two-dimensional conductors is stud-
ied as a function of Fermi energy and disorder. For an ordered sample, conductance quantization
is confirmed. As the disorder is increased, the sharp conductance steps as a function of Fermi en-
ergy are rounded and preceded by pronounced dips. The origin of these dips is explained in terms
of “level repulsion” between Lyapunov exponents of the total transfer matrix. For even larger
disorder, the channel-opening signature in a given sample is obscured by universal conductance

fluctuations.

However, this structure can be restored, even for samples longer than the elastic

mean free path, by ensemble averaging over different realizations of the disorder. The conditions
for carrying out experimentally such an ensemble averaging are specified.

Both ballistic and diffusive quantum transport have at-
tracted considerable interest in recent years. The conduc-
tance of ballistic constrictions induced in a high mobility
two-dimensional (2D) electron gas was discovered experi-
mentally' ™ to be quantized in multiples of 2e?/h,
reflecting the discrete number of the conducting channels
in narrow constrictions, each channel characterized by a
transmission coefficient of unity. At the other end, in the
diffusive regime, the so-called universal conductance fluc-
tuations (UCF) were found theoretically and observed ex-
perimentally in a large number of systems. Recently,
Hirayama, Saku, and Horikoshi** have observed conduc-
tance fluctuations in transport through narrow channels
which they attributed to elastic scattering in the constric-
tion region. The link between ballistic’ and diffusive
transport in constrictions is also the subject of this Rapid
Communication where we report on a systematic numeri-
cal study of the role of disorder in transport through nar-
row channels at low temperatures. In particular, we show
that in the presence of a weak disorder (/ 2 L,M where / is
the elastic mean free path and L, M are the channel length
and width in atomic units, respectively) the jumps charac-
terizing conductance quantization start to smear and are
preceded by pronounced dips in the conductance each
time a new channel is about to be opened (enhanced
scattering). For a stronger disorder (L,M >/, but still in
the delocalized regime), UCF dominate the conductance
and obscure the characteristic structure due to channel
opening. This structure can be restored, even for
moderate disorder, by ensemble averaging over different
realizations of the disorder, since this procedure averages
out the UCF and only the channel-opening structure
remains. Experimentally this procedure amounts to either
a measurement at temperatures much higher than the
Thouless energy, Vr=hD/L 2 (D is the diffusion
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coefficient), or to an average over magnetofingerprints at
many values of the magnetic field covering a range larger
than ¢o/LM, where ¢o is the quantum flux unit (we as-
sume that the relevant dimensions are smaller than the
phase coherence length).

In our simulations we use the two-terminal’ Lan-
dauer® ~'° formula for the conductance between two par-
ticle reservoirs bridged by the narrow system under con-
sideration. The assumptions and limitations associated
with this formula are discussed elsewhere.!®”!2 Refer-
ence 7 shows that conductance steps follow from this for-
mula for an ideal system. We employ two methods previ-
ously used to study transport through disordered conduc-
tors. To study the behavior of the Lyapunov exponents of
the total transfer matrix we adopt a method based on the
Oseledec theorem which was first used in this context by
Pichard '3 and is also documented in Ref. 14. The samples
studied by this method consisted of 2D strips, 15 sites
wide and up to 10000 sites long. To extract the exponents
of an infinite sample from the finite ones, an extrapolation
procedure was employed as detailed in Ref. 15. The
Lyapunov exponents method fails to yield the precise con-
ductance of a finite length sample. To that end we have
adopted the Green’s-function method first used by Fisher
and Lee'¢ (see also Lee and Stone).!” Using that method,
the conductance of squares up to 1515 sites was calcu-
lated accurately. The Hamiltonian in both cases was a
nearest-neighbors two-dimensional tight-binding Hamil-
tonian with diagonal disorder (Anderson model).

H=Y |n,meminm|+ X' |n.m)Vin'm'|, 1)
n.m n.m
n'.m'

where the prime indicates sum over nearest neighbors

only. The site energies &,, were assumed to be uniformly

distributed in the range [— W/2,W/2]. Energies will be
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given in units of ¥, where the zero-disorder bandwidth is
B=38.

The results presented here were obtained for rigid
boundary conditions in the transverse direction. Similar
calculations for periodic boundary conditions yielded
identical results (except for the exact values for the ener-
gies corresponding to channel opening) implying that the
effects described below do not crucially depend on bound-
ary conditions.

The dimensionless conductance g of a 15x 15 square as
a function of energy, for an increasing amount of disorder
is depicted in Fig. 1. For W =0 (ordered case) g varies in
the expected steplike fashion where each step corresponds
to an opening of a new conducting channel as is well
known by now. As the disorder is decreased the average
conductance decreases monotonically. For W~4, g~1,
in agreement with previous studies of localization in 2D
systems.'® The average conductance is sensitive to the en-
ergy near the band edge and becomes practically energy
independent closer to the band center. This point is fur-
ther discussed later. The fluctuations are extremely sensi-
tive to the disorder. For W =0.5, where g is reduced by
only 20% compared with the ideal case, the conductance
steps are already substantially rounded and are preceded
by distinctive dips. For a somewhat larger disorder, when
the elastic mean free path becomes shorter than the
sample’s length, the steps are not discernible (see Fig. 1)
since the UCF are now fully developed.

The results depicted in Fig. 1 characterize transmission
through a specific realization of the disorder. The results
of an ensemble averaging over 50 realizations are shown
in Fig. 2. We find that the averaging process eliminates
most of the UCF and reveals the structure due to channel
opening which can now be seen even for a mean free path

15 —T—T T T T T T T T 1

N
-
|

)

e2
h
T

CONDUCTANCE (
[9))

oLt . 1 1

! Lo |

Tz 24 32 40
ENERGY

FIG. 1. Conductance g =tr(zt *) as function of energy, disor-
der W=0, 0.5, 1.5, 2.5, and 4.0 corresponding to mean free
paths (calculated in 2D and effective-mass approximation) of
o0, 100, 11, 5, and 1.5, respectively (upper curves for small dis-
order). Sample geometry 15x15, calculation using Green’s
function.
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FIG. 2. Conductance g=tr(st*) as function of energy, en-
semble averaged over 50 different samples having the same
geometry 15x15 and the same disorder was taken for each of
the curves. W =0, 1.5, 2.5, 3.5, and 4.5 (upper curves for small-
er disorder). Calculation using Green’s function.

which is a few times smaller than the sample’s dimensions.
We emphasize that such an averaging can be easily real-
ized experimentally by using temgeratures larger than the
Thouless parameter Vr=hD/L* (and smaller than the
energy separation between the different channels), by
scanning the Fermi energy over an energy range within
the above interval, or by averaging over different magne-
toprints taken at magnetic fields covering many intervals
of ¢o/LM. To verify that such an energy interval indeed
exists we notice that the energy spacing between adjacent
transverse states is roughly given by 6E =rxEr/krw
(where w is the channel width). Substituting vrl/2 for D
one thus obtains V7/8E =wl/zL?<« 1, a condition which
can easily be satisfied experimentally by choosing the
right dimensions and disorder.

Next we consider the conductance saturation as the
Fermi energy is increased (for W > 0). The two-terminal
conductance of a finite sample is given by '
- 2
gl ) = Y LT
where &; is the decay length of the ith eigenfunction of the
total transfer matrix. As conjectured by one of us'® (see
also Ref. 20), the 1/£; are roughly equally spaced (Wigner
repulsion) such that 1/& ~i/MI. For L > [ it follows then
from Eq. (2) that only Mg = IM/L = g channels contrib-
ute to the conduction and opening of new channels with
& < L will not increase the conductance. These features
are clearly observed in both Figs. 1 and 2. As the disorder
is increased, Mg = g is reduced and the energy at which
the conductance saturates shifts towards the band edge.

Finally, we turn to discuss the pronounced dips in the
conductance each time a new channel is about to be
turned on. The Lyapunov exponents of a strip of
15x10000 sites are depicted in Fig. 3 for W=1.5. It is
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FIG. 3. Lyapunov exponents 1-15 (starting from the right-
hand side of the figure) as functions of energy. Calculation us-
ing a transfer matrix for a strip of 15X 10000 sites and disorder
W=1.5.

clear from Fig. 3 that any channel opening is accom-
panied by an increase in the Lyapunov exponents of other
states and in particular the adjacent ones. The elastic
mean free path is much shorter than L (I = 10) thus ex-
cluding the possibility of any resonances of the type dis-
cussed, for example, by Szafer and Stone.® We argue that
the origin of the increase in the Lyapunov exponents each
time a new channel is opened is due to enhanced scatter-
ing from all other channels (and particularly neighboring
ones) to the new one. Since the longitudinal energy of a
barely open channel is small, this channel is localized and
reflects many of the incoming electrons to backwards
propagating states. Such a mechanism will indeed result
in conductance dips each time a new channel is opened.
The effect also exists as the evanescent channel is about to
be opened. Such dips have been observed experimentally
by Hirayama and co-workers** and during the final
preparation of this paper, similar effects were found
analytically by Bagwell?! for a model with a single attrac-
tive 8-function impurity.

More detailed information is given in Fig. 4 where four
curves appear as a function of band energy: dashed and
solid lines for Lyapunov exponent 9,10 (out of 15 shown in
Fig. 3), Lyapunov exponent 10 for an ordered system in a
dotted line, and the fourth curve, in a dash-dotted line, for
the function (er—E.—2.0)"2 where E. =coslni/
(m+1)] is the transverse energy of the ith state and
i=10. [The last curve is the first-order expansion of
cos(k;) where k; is the longitudinal momentum.] In the
ordered case the k;’s are the Lyapunov exponents. It is

FIG. 4. Lyapunov exponents as function of energy calculated
using a transfer matrix. Dashed and solid lines for Lyapunov
exponents 9,10 (W =1.5); dotted line for Lyapunov exponent 10
(W =0); dash-dotted line for the function (er — E;—2)"2 In-
set shows the blowup of the region of vanishing of the exponents.

seen that Lyapunov exponent 10 of the ordered system
coincides with that of the disordered system over much of
the range so they have practically the same “effective crit-
ical exponent” of + even for relatively strong disorder
W=1.5. The “resonance” in Lyapunov exponent 9 ap-
pears when channel 10 is opened resulting in a conduc-
tance dip. When the energy is further increased the local-
ization length of the new channel increases and becomes
comparable to L (for a short enough system).

To summarize, a systematic numerical study was done
on how disorder modifies the conductance steps due to
channel opening and smears them via the UCF. A suit-
able ensemble averaging (feasible experimentally) can
average out the latter and make the characteristic struc-
ture due to channel opening visible even for / < L. These
structures may exist in experiments looking at UCF and it
is an interesting question to what extent they might in-
crease the size of the latter.

Note added. After submitting this paper, the authors
learned about theoretical calculations on a related prob-
lem by Kramer?? as well as experimental results by Gao
etal.” The subband opening effects observed in this work
are in qualitative agreement with our results.
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