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A nonlocal Wigner-like correlation-energy functional for electronic systems is presented. The
functional is constructed to satisfy certain uniform, as well as nonuniform, coordinate-scaling re-
quirements and is the simplest nonlocal form to do this. Our numerical results appear to compare
favorably with those of other functionals.

n(ixy, z) -k'n(Ax, Ay, Xz), (2)

Levy and Perdew have shown that E, does not scale
homogeneously but rather satisfies the inequality

E,[n,] &ZE, [n]; Z&1.
In addition, Levy has recently derived requirements for
the correlation functional in the limits of X 0 and

~. He has shown that, in the limit of A, 0, E, [ni]
approaches 0 in the following way: 9

There is considerable interest in correlation-energy cal-
culations and their corresponding nonlocal electron-
density functionals. ' We present a nonlocal correlation
functional that is not based on gradient corrections to the
local-density approximation (LDA). Instead, in the cases
of a nonuniformly scaled electron-density n~', where
ni(x, y, z) Xn(Ax, y, z), and a uniformly scaled6 elec-
tron-density ni, , our formula is the simplest viable nonlocal
one that exhibits correct coordinate scaling in the limits of

0 and A, , as recently derived. ' The function-
al generates results that appar to be competitive with
those of other functionals. '

The correlation energy in density-functional theory"'2
is defined as

E,[n]-&e '"(T+V«)e '") -&e„'"(T+V„(@m~~)

(1)
where 4„'"is that wave function which yields n and mini-
mizes just (T) and 9'„'"is that wave function which yields
n and minimizes (T+ V„). When the coordinates of an
electron-density expression are uniformly scaled such that

stant in the infinity limit. Rather, it goes as —ink, and is
therefore unbounded. This was an important considera-
tion in the development of our proposed functional which
has, as its primary constraint, adherence to the uniform
and nonuniform limits.

Early in this research, it became apparent that the
structure of the simplistic Wigner formula' not only
satisfied Eq. (3) and both uniform scaling limits, Eqs. (4)
(Ref. 14) and (6), but was also the simplest possible local
form of such a functional. The functional due to Wig-
ner, "with a uniformly scaled density is

(7)
~ 0.44n(r)dr

7.8+X 'r

where r, (3/4trn ) 'i . This functional actually gives
better results than the LDA for atoms. ' Similarly, Brual
and Rothstein presented a Wigner formula, with different
coefficients, which was parametrized by an exact correla-
tion energy for He. Given its simplicity, the Brual-
Rothstein formula gives surprisingly reasonable values for
correlation energies for some atoms and ions. '6

Although the Wigner formula scales correctly, the
~ limit presents a problem. The negative constant

that the functional approaches as A, ~ is, unreasonably,
always the same for a given number of electrons (N), re-
gardless of the density used. In addition, the uniform case
gives the same constant as the nonuniform case, for all
densities. This is also unreasonable.

As a result of the fact that a Wigner-like formula au-
tomatically satisfies Eqs. (3), (4), and (6), the following
nonlocal functional was investigated for closed-shell sys-
tems using Hartree-Fock densities

lim E,[ni] ——
A,b[n],1~0

where

(4) (an+b[Vn [/n' )dr
c+d I Vn I/(n/2) i +r,

(8)

0 & b [n] (U[n] +E [n] & U [n] .

In the case of A, ~, the functional satisfies

(s) where a, b, c, and d are coefficients. Equation (8) can be
scaled in a variety of ways. With ni'. , as k~ ~, Eq. (8)
becomes

lim E, [ni] ~ a[n],

where a[n] is bounded from below. For a nonuni-
formly scaled density, the A, co limit must also be
bounded, at least for two electrons. '

It is important to note that most traditional correlation
functionals are based on the LDA, with or without gra-
dient corrections. The LDA does not go to a negative con-

(9)

(an+ b ) Vn ( /n 't )dr
c+d

~
Vn )/(n/2) +A'r, ,

(10)

E, [n"]- (an+A b (8n/8x [/n' )dr
c+k d [ 8n/8x [/(n/2) +k ' r,

and is thus bounded from below as X vv. With ni, for
all k, Eq. (8) becomes
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and is thus not only bounded as A,~ ~, but also gives,
desirably, an asymptotic value which varies with n

Parametrization was achieved by using an identity
developed by Levy and Perdew. Namely,

(8E,[tt/]/N. )i - i

E, [n']

2

(i4)

where i He, Li+, Be +, Be, B+, Ne, Mg, and Ar. The
coefficients that resulted from minimizing Eq. (14)
are a —0.748 60, b 0.06001, c 3.60073, and d

0.90000. Table I gives numerical results for our func-
tional, "experimental" correlation energies as defined by
Eq. (12), and values obtained from the functionals of Per-
dew, ' Becke, and Lee, Yang, and Parr (LYP).3 It can
be seen that the proposed functional gives competitive
values for most atoms and ions.

It should be pointed out that, in light of the previous
discussion of the different definitions of the correlation en-

ergy, the two definitions cannot always be considered
close, especially when the Hartree-Fock density is
markedly different from the true density. This may ex-
plain the rather large difference between "experimen-
tal" and Eq. (8) values for B+ and Ne +. Our functional
is possibly not inadequate for these ions. Instead, the ex-
act E,™and the exact E, [nHF] are perhaps significantly
different due to a certain near 2s-2p degeneracy.

An open-shell functional for the correlation energy that
is an elaboration on the closed-shell functional is also

8E, [nx] -E,[n]+T, [n],
I

where T, [n] is the kinetic contribution to E,[n] T.he
traditional quantum-mechanical definition of correlation
energy is

Ec Eexact EHF

and, for atoms, satisfies EP —TP from the virial
theorem. If E, and EP [Eqs. (1) and (12)] were exactly
the same, and if T, and TP were exactly the same, then

8E, [tie]

N,

Because they are not exactly the same, ' we cannot expect
(8E, [ni, ]/%, )&-i to be exactly zero; but because the two
definitions are close, we can expect (8E, [nq]/N, )i, -~ to be
small in magnitude when n is the Hartree-Fock atomic
density. Accordingly, parameters that could minimize

(8E,[nx]/N, )i.-i
E, [tt]

subject to other constraints, could be said to be suitable
candidates for coefficients in a correlation functional.
Here, eight closed-shell Hartree-Fock atomic densities'
were considered in the minimization process as well as one
experimental value, the correlation energy for He. ' '9
Subject to the constraint that our E, for He agreed with

EP for He to five decimal places, the equation that was
minimized was

TABLE I. Correlation energies E, of closed-shell species.
Energies are in atomic units.

Species LYP' Eq. (8) Expt. '

He
Li+
Be'+
Li
Be
B+
Ne'+
F
Ne
Mg
Ar
Kr
Xe

—0.044'
—0.045"
—0.049"

—0.095'

—0.136"

—0.395"
—0.471"
—0.810'
—2.01"
—3 31"

—0.042"
—0.050
—0.055
—0.070'
—0.092"
—0.107'

—0.364'
—0.391'
—0.466'
—0.785"

—0.0437 g

—0.04751'
—0.0490~
—0 073'
—0.095~
-0.107~

—0.361'
—0.3838
-0 459
—0.751~
—1.748
—2.743 d

—0.0420
—0.0442
—0.0452
—0.0805
—0.095
—0.100
-0.108
—0.364
—0.383
—0.444
—0,787
—1.899
—3.151

—0.0420
—0.0435
—0.0443

—0.094
—0.111
—0.18'

—0.387
—0.444
—0.787

"'Perdew's functional (Ref. 1).
Becke's functional (Ref. 2).

'Lee-Yang-Parr functional (Ref. 3).
Obtained by integration program by J. P. Perdew.

'From Refs. 2 and 3, and references therein. These values refer
to E,~M.

"Reported in Ref. 2.
~Reported in Ref. 3.
"Reported in Ref. 1.
'Reported in Ref. 22.
'See Ref. 23.

presented here. It is spin-dependent and includes an addi-
tional factor in the numerator that was found empirically
to give good agreement with experiment,

(an+ b ) Vn /n ' ) (1 —( ) ' drE,[tt.,np]
c+d()Vtt, (/n, + )Vttp)i/np )+r,

(i5)

where g (n, np)/(tt, +—np) and where the coefficients
are those for Eq. (8). Here a signifies up spin and P
signifies down spin. Results of this functional and
relevant comparisons appear in Table II.

As emphasized earlier, the functional of Eq. (8) satis-
fies both the uniform and nonuniform coordinate-scaling
requirements for k 0 and X ~, as Eqs. (9) and (10)
demonstrate. It can be identified as the simplest viable
nonlocal functional to satisfy these conditions and the con-
dition that the infinite uniform limit be dependent upon n

The nonlocal terms not only scale correctly in the uni-

formly scaled A, ~ limit, but must also be present in the
numerator and denominator to offset each other in the
nonuniformly scaled A, ~ limit. It should not be a great
surprise, therefore, that Eq. (8) gives reasonable values
and values better than a purely local functional. In the
nonuniform infinite limit, however, Eq. (8) has a similar
problem to that of the Wigner functional; namely, Eq. (8)
goes to the same constant for a given N, regardless of the
density and for any nonuniform case. The open-shell
functional, Eq. (15), on the other hand, does not have this
problem for the nonuniform case, for systems with spin
polarization, while also correctly scaling for both limits.
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TABLE II. Correlation energies E, of open-shell species. En-
ergies are in atomic units.

TABLE III. Correlation energies E, and (8E,[n&]/$)j, )l,

for Becke's functional and Eq. (8).

Species pa gb LYP' Eq. (15)d Expt. '

H
He+
Li'+
Li
B
C
N
C
Na
P

-0.002
—0.002"
—0.004"
—0.054'
-0.130"
-0.168"
-0.206'

-0.421"
-0.608"

0.000'
0.000'
0.000'

-0.055'
-0.129'
-0.166'
-0.202'
-0.179'
—.0.419'
-0.590'

0.000I
0.000~
0.000~

—0.0538
0 128s

-0.1618
-0.193~
-0.171'
-0.408
-0.566

0.000
0.000
0.000

—0.046
—0.129
-0.160
-0.188
—0.177
-0.399
-0.554

0.000
0.000
0.000

—0.046
—0.125
-0.157
-0.189

-0.398
-0.553

Species

He
+

Be +

Eq. (8)' Expt. '

—0.0419 —0.0420 —0.0420 —0.0165 —0.0023
—0.0498 —0.0442 —0.0435 —0.0150 —0.0015
-0.0546 -0.0452 —0.0443 —0.0134 -0.0012

"Obtained from Becke's functional.
bObtained from the functional in Eq. (8) by the integration pro-
gram of J. P. Perdew.
'This value is E™

'Perdew's functional (Ref. I ).
bBecke's functional (Ref. 2).
'Lee-Yang-Parr functional (Ref. 3).
4Spherica11y averaged values obtained by integration program of
J. P. Perdew.
'From Refs. 2 and 3, and references therein. These values refer
to E~
'Reported in Ref. 2.
IReported in Ref. 3.
"Reported in Ref. 1.
'Reported in Ref. 22.

The LDA functionals with gradient corrections, such as
the ones by Langreth and Mehl5 (LM) and Perdew, ' have
the advantage that they give, of course, the correct result
in the uniform-density limit, but they do not satisfy the

~ scaling requirement. (It should be noted, however,
that Perdew has a recent unpublished functional which is
bounded as A, oo. ) Now, our Eqs. (8) and (15) are ob-
viously not correct in the uniform-density litnit. Two re-
cent correlation functionals that also do not reduce to the
correct result in the uniform-density limit, but that do
scale correctly in the A, ~ limit for uniformly scaled
electron densities, are the functionals of Becke2 and Lee,

Yang, and Parr. 3 They also scale correctly for the A, 0
uniform limit. However, the LYP functional does not
obey the nonuniform A, ~ limit because it is unbounded
for two electrons and Becke's approaches 0 in this limit
for two electrons, which is probably unreasonable. Also,
although bounded from below, our functionals in Eqs. (8)
and (15) actually become slightly positive in the A,

nonuniform limit because b turns out to be positive upon
optimization. Becke's functional is not very accurate for
Li+ and Be +. This is likely due to the fact that Becke's
functional gives a larger value for

~ (8E, [nq]/t))t. )q-~
~

than does Eq. (8). (See Table III.) Finally, the function-
als of LYP and Becke and our Eq. (15) have the desirable
feature that they vanish for all one-electron densities.
Becke's functional and those of Perdew and LM have the
desirable feature that they do not vanish for completely
spin-polarized systems with more than one electron. Our
Eq. (15) and the open-shell functional of LYP always
vanish for these systems.

We are extremely grateful to John P. Perdew for the
generous use of his integration program and for helpful
discussions.
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