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The magnetic-field dependence of the oscillation amplitude of the magnetization of the two-
dimensional electron gas is studied both analytically and numerically. A closed analytical expres-
sion for the envelope of the magnetization oscillations is obtained in the limit of sharp Landau

levels.

The great success of the de Haas-van Alphen (dHvA)
effect in three-dimensional conductors' is due to the ex-
istence of a well-developed theory, which provides a quan-
titative basis [the Lifshitz-Kosevich formula (LK) (Ref.
2)] for the determination of complicated Fermi surfaces
of metals. The theory of the two-dimensional de
Haas-van Alphen (2D dHvA) effect was started by
Peierls.® In the zero-temperature limit he obtained that
the magnetization in an ideal two-dimensional electron
gas (2D EG) has a sharp, saw-tooth form and a constant,
with field, amplitude. In this model the magnetization ex-
periences jumps, at the end of each de Haas-van Alphen
period, from a positive to a negative value and the suscep-
tibility exhibits infinitely sharp negative spikes, respective-
ly. For years this result was a standard textbook exercise.
Recent progress in growing of two-dimensional conduc-
tors have attracted both the experimental*~™® and the
theoretical '°~'® attention to thermodynamic properties of
two-dimensional electron gases.

The qualitative difference between the 3D and 2D
dHvA effect follows from the fact that in the isotropic
case the Fermi surface crosses a large number of Landau
tubes, while in a 2D electron gas the Landau levels just
below and just above the Fermi energy dominate the
magnetic-field dependence of the chemical potential. This
results in strong quantum oscillations of the chemical po-
tential,'!'!¢ while in a three-dimensional case the quan-
tum oscillations of the Fermi energy are negligibly small.?
Vagner and co-workers'!'!® obtained an analytical expres-
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sion for the magnetic-field dependence of the chemical po-
tential and magnetization at finite temperatures in the
limit of sharp Landau levels. Zawadski and Lassnig'?
have studied numerically the thermodynamics of 2D EG,
assuming a Gaussian form of the Landau-level width.
They have reported, also, strong quantum oscillations of
the chemical potential, which define the oscillation form
of the magnetization, if the electron density is field in-
dependent. Shoenberg!'? has performed an analytical cal-
culation including the finite temperature and different
forms of the Landau-level broadening. Several groups
have applied the many-body techniques'* and possible
connections of the 2D dHvA with the quantum Hall effect
were outlined in Refs. 11 and 15.

In spite of this growing activity in the theory of the
two-dimensional dHvA, a simple analytical expression for
the magnetic-field dependence of the magnetization of 2D
EG, which could be used, like the Lifshitz-Kosevich for-
mula, to analyze a wide spectrum of the experimental
data is not yet available. In this Rapid Communication
we derive an analytical expression for the envelope of the
magnetization of the 2D electron gas at finite tempera-
tures, in the limiting case of sharp Landau levels. While
in the isotropic three-dimensional conductor the magneti-
zation smoothly oscillates with field, in 2D EG one expects
a sharp, saw-tooth magnetic-field dependence of magneti-
zation. Such a different magnetic-field dependence of the
magnetization dictates, obviously, a different mathemati-
cal approach to the problem. In the Lifshitz-Kosevich
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theory the summation over the Landau levels is performed
using the Poisson summation formula: a Fourier trans-
form of a smooth function, operative when all but the first
harmonics have negligible amplitudes. In the two-di-
mensional case the number of Fourier harmonics is ex-
pected to be relatively large. It is more convenient, there-
fore, to perform explicitly the summation over the Landau
levels, since only two, adjacent to the Fermi energy, Lan-
dau levels are partially full.
Magnetization is defined by

9F(B)
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where F(B) =Q(B) —uN is the Free energy, u(B) is the
chemical potential, and

Q=kpTg(B) Zoln{l+cxp[—(x,,+a)]} )
is the thermodynamic potential (we neglect the spin con-
tribution). Here x,=(nhw. —u)/ksT, a=hw./2kgT, n
is the number of a Landau level, g(B) = B/¢y is the degen-

eracy of a Landau level, . =eB/m, is the cyclotron fre-
quency, and m. is the effective (cyclotron) mass in the x -y
J
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plane. At low enough temperatures, a>>1, the Landau
levels far below the Fermi energy are completely occu-
pied, while those far above the Fermi level are completely
empty. If the number of particles is fixed, N =const(B),
the chemical potential is pinned to a Landau level during
the entire dHVA period (the magnetization is linear with
the field with a positive slope when the number of elec-
trons is fixed) and jumps to a neighboring Landau level
when a new dHvA period starts. The analytical expres-
sion for the magnetic-field dependence of the chemical po-
tential at finite temperature is presented in Refs. 11 and
16.

Let us denote (we follow the Ref. 11) by nr the value of
n in Eq. (2) corresponding to the highest occupied level.
Now (np+ $))hw.>p> (np— ¥ )ho.. Assuming ho,
>kpT (i.e., a>>1) we may neglect the unity in the sum-
mand of Eq. (2) for all n’s up to n=ng—2. To take into
account correctly, however, the depinning of the chemical
potential from the level (nr+ ¥ )hw. and the pinning to
the level (nr — + ) hw. we should retain the exact expres-
sion for both the (nr—1)th and the nrth terms. Using
this approximation, we arrive at the following analytical
expression for the magnetization of the two-dimensional
electron gas: '

3)

f
This expression is a limiting case'® of Eq. (28) in Ref. 13.
Numerical calculation of the magnetization, based on Eq.

In the three-dimensional dHvA case the magnetization
is well described by the LK formula,'? and the amplitude
of the oscillations is proportional to: (z2/a)/sinh(z?/a).
This functional form follows from the Poisson summation
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FIG. 1. Numerical calculation of the magnetization, based on Eq. (3). The parameters are as follows: m. =0.3mo, where mo is the

free-electron mass, Er =0.3 eV, and T=10 K.
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formula, used in LK theory to change the summation over
the Landau levels into the integrals, when the Fermi sur-
face crosses many Landau levels. However, in the 2D
electron gas under sufficiently strong magnetic fields,
when the energy gap (the Landau gap) hw, is larger than
the temperature smearing of the distribution function, the
Poisson summation formula is not operative, since only
two terms in the sum over n are contributing to the oscilla-
tion amplitude: these are the Landau levels just above and
just under the Fermi energy.

Let us now define the functional form of the envelope of
the magnetization in 2D EG at high magnetic fields and
low temperatures, where Bey,=B*. Here By, are the
field values corresponding to the maxima (minima) of the
magnetization, and B* is the magnetic field when the
chemical potential is exactly between the two Landau lev-
els. In this case | 4|e®>1, and the magnetization Eq.
(3) takes the form

et e

Here Ef is the Fermi energy and B.x can be found by
equating to zero the derivative

oM .
aB Bcllr 0 '
Bow=B* |1 F——1——|. (5)
2a*(np 1)

Keeping in mind that 1/2a* (nr £ 1) < 1, we substitute
Beyr, defined by Eq. (5), into Eq. (4) and obtain the
analytical behavior of the magnetization amplitude:

Ef
A{extr= + j&)’

1—%ln(2a*)——'—-]. ©)
a a
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Figure 2 presents a comparison between the analytical
expression Eq. (6) and the numerical calculation based on
Eq. (3). In the low-field limit we use the LK formula,
since at @ <1 many Landau levels should be taken into
account, and the Poisson summation formula can be
effectively used. '

Let us discuss now the applicability of our main result,
Eq. (6), in realistic experimental conditions. Our theory
is valid in the limiting case of sharp Landau levels:
ho.>T, T, A,, where I is the Landau-level width and A,
is the miniband width. We assume also that the electron
density is field independent and zero density of state be-
tween the Landau levels. We consider here the experi-
mental situation in the GaAs/Al,Ga;-,As heterojunc-
tions and in the GIC’s—the graphite intercalated com-
pounds.

The first dHVA measurements in GaAs/Al,Ga;-xAs
superlattices and heterojunctions* have shown a relatively
smooth magnetization, while a sharp, saw-tooth form of
the magnetization should be expected: The inter-Lan-
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FIG. 2. (a) The high-field part of the envelope of magnetiza-
tion, Eq. (3). (b) The analytical expression, Eq. (6). (c) The
low-field region, as approximated by the LK formula.

dau-level spacing, at 5 T was Aw.=9 meV and the
Landau-level width was estimated, from the mobility
measurements, to be I' < 2 meV. These and several addi-
tional thermodynamic experiments® have raised the possi-
bility of a substantial density of states between Landau
levels. In Ref. 16 it was shown analytically that any finite
density of states within the Landau gap removes the ex-
ponential sharpness of the negative magnetization slope in
2D EG. In Ref. 17 a statistical model for a spatially inho-
mogeneous two-dimensional electron gas was introduced,
which yields an effective background density of states be-
tween the Landau levels. Unfortunately, the highly in-
structive and elegant experiments of the Bell Laboratories
group* are still the only available source for the dHvA
data in superlattices and single heterojunctions. We ex-
pect that the much sharper magnetization oscillations in
samples with better mobilities could be analyzed using our
Eq. (6).

Another family of the two-dimensional electron gases is
presented by organic conductors® and by GIC’s: the
graphite intercalated compounds,”’ ~® which are examples
of a superlattice with a two-dimensional electron gas. The
dHvA in a superlattice was studied theoretically in Ref.
10. Their obvious advantage for the dHvA measurements
is a very high (almost metallic) electronic density. Their
band structure and chemical composition complicates,
however, the analyzing of the experimental data. We will
discuss here recent experiments on Ass-GIC and Br,-GIC.

Stage I: Ass-GIC. Joss and co-workers’ have reported
dHvA measurements on stage-I Ass-GIC in magnetic
fields up to 22 T. They have found a cylindrical Fermi
surface. The Landau-level separation at 20 T is found to
be larger than their broadening. The oscillations are,
however, rather smooth with higher harmonics. These
data indicate that in Ass-GIC the equilibrium between the
intercalant and the graphite layers is field dependent at
high magnetic fields and the intercalant may serve as a
flexible reservoir of carriers.'® This will result in a tri-
angular form of the magnetization oscillations, smoothed
by temperature and imperfections. In this model only the
odd harmonics in the Fourier spectrum should appear at
high fields. Our theory, based on the assumption N



41 MAGNETIZATION OF A TWO-DIMENSIONAL ELECTRON GAS

=const, is not applicable to this system, where neither
N =const nor u =const during a single dHvA period.
Stage II: Br-GIC. Markiewicz and co-workers® have
reported sharp negative spikes in the susceptibility of a
stage-II Br,-GIC. Their conclusion is that this material
presents a unique system with true energy gaps between
Landau levels. This indicates that the magnetization
measurements, if performed on stage-II Br,-GIC, will
show a sharp, saw-tooth, magnetic-field dependence, and
could be effectively analyzed in the framework of our
theory, i.e., using Eq. (6) for the magnetization envelope.
In conclusion, we have obtained an analytical expres-
sion for the magnetization oscillations envelope in the lim-
iting case of sharp Landau levels and made a detailed
comparison with the numerical calculation. Unlike in the
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LK theory we have not used the Poisson summation for-
mula at low enough temperatures hw.>kgT. In the
high-field limit the agreement is rather good. In the low-
field limit the Landau-level broadening cannot be neglect-
ed, and the Shoenberg theory'® can be operative. We
have analyzed the existing dHvA data in heterojunctions
and GIC’s and have outlined the conditions when our
theory can be effectively used.
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