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We explore the relationship between cellular-automata-based growth models and equilibrium
thermodynamic models of material structure. Application is to the growth of (GaAs),_, Si,,-type
alloys. As a function of x these alloys have an order-disorder phase transition. We address a con-
troversy over the relevance of growth models or equilibrium statistical models to the description of
the alloy structure, and particularly the critical properties of the phase transition. Experiments to
determine the relevance of the models are proposed.

In 1982 a new class of mixed alloys with interesting
structural and electronic properties was grown by
sputtering techniques.! These alloys consist of a mixture
of III-V compounds and group-IV elements such as
(GaAs),_,Si,,. The materials would phase separate un-
der true equilibrium conditions but under the conditions
of growth they form a mixed alloy with the atoms form-
ing a diamond lattice. As a function of x such materials
may be expected to undergo a type of structural phase
transition.’ In the x —O0 limit the Ga and As sublattices
are well defined, while in the x — 1 limit there are no sub-
lattices defined. Indeed, at x =0.3 experimentally3 a
change in the long-range-order parameter has been ob-
served by x-ray diffraction for materials grown in the
[100] direction.? Two distinct types of theories have been
proposed for the structure of these alloys and particularly
for this transition.

In the first type of model,>* a (metastable) thermo-
dynamic equilibrium is postulated (with phase separation
excluded). A model Hamiltonian describes the local in-
teractions of atoms on adjacent sites, where qualitatively
As—As bonds and Ga—Ga bonds are high in energy,
Ga—As bonds are low in energy, Ga—Si and As—Si
bonds are intermediate. The effective Hamiltonian is
equivalent to a three-state model on a diamond lattice,
where the three states on each site are the three possible
atoms on a site. The phase diagram of this Hamiltonian
including an order-disorder phase transition is analyzed
with fitted interaction parameters to describe a phase
transition in the GaAs to Si alloy system. This model
then yields structural information such as local bonding
probabilities that can be used to study other properties of
the system such as the electronic states.

In the second type of model®® a simple probabilistic
growth model® is used. In this model the atoms are add-
ed layer by layer using assumed sticking probabilities for
the three different atoms at the growth face. The sticking
of As atoms to As atoms or Ga atoms to Ga atoms is for-
bidden, and Si sticks with uniform probability. These
rules are equivalent to a three-state probabilistic cellular
automaton (CA) describing a new layer in terms of the
preceding layer atoms. Each layer of the grown material
represents a “snapshot” of the CA. A grown sample cor-
responds to a particular time history of the CA. No
equilibration is allowed after deposition. The growth
model yields a bulk material whose structural properties
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include a phase transition in the long-time limit of the au-
tomaton as a function of Si concentration. In the ordered
phase, the long-time limit of the growth model is a two-
cycle, alternating between layers dominated by arsenic
and gallium, respectively. Similar to the thermodynamic
model, the long-range-order parameter measures this sub-
lattice correlation.

Nominally these two models correspond to different
dynamics (Fig. 1). The equilibrium model describes a

FIG. 1. Schematic illustration of the difference between two
classes of models of material structure (a) equilibrium and (b)
simple growth automata rule. In equilibrated material the
atoms are considered able to move around, as illustrated by
atomic interchange but typically effected also by defect motion
or other dynamical processes. In material modeled by simple
growth rules, the layers are added strictly according to a layer-
by-layer process. The configuration of each layer depends only
on those preceding it. The illustrated alloy has three com-
ponents.
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material where atomic motion allows the exploration of
phase space by atoms for a duration long enough to at-
tain equilibrium statistics. Practically, it is possible that
equilibration occurs only during and close to the time of
deposition, in which case the net deposition time of a lay-
er must exceed the relaxation time to equilibrium. The
growth-model dynamics are for precise sticking probabil-
ities at the growth face; it is assumed that after sticking
no reorganization of atoms occurs. The microscopic dy-
namics of the actual growth process are not established.

While the controversy over which model to accept has
continued for several years, much of the focus has been
on the electronic properties’ ~!! that are derived from the
structural properties by only approximate electronic
Hamiltonians, whose solution is a controversy in itself.

In this article we analyze more directly the structural
implications of these two models and propose experimen-
tal tests to better understand the relevance of simple
growth models based on Cellular Automata and thermo-
dynamic equilibrium models to the structure of materials.
We first discuss the formal relationship between CA
growth models and Hamiltonians. Specializing to the
case of (GaAs),_.Si,, alloys, a formal relationship be-
tween the two models is explicitly constructed. This
leads to a discussion of generic features of these models,
with experimental implications that can distinguish their
relevance.

AUTOMATA AND HAMILTONIANS

For a material in equilibrium, the Hamiltonian
specifies the probability of any microstate of the system
through the Boltzmann weight. When equilibration time
is much faster than the measurement time, then, in the
course of a measurement, the system is able to move
through phase space in a manner that the time spent in
each region is proportional to the corresponding
Boltzmann weight. If the system is in a quenched
(frozen) equilibrium distribution, or the equilibration
time is slower than measurement time, then the
Boltzmann weight can still be realized when a material is
composed of many independent subsystems (for example,
crystal grains or correlation lengths) or when averaging
explicitly over many measurements of independent sam-
ples.

In contrast, a CA-based growth model assumes a very
different scenario. Deposition of a single layer occurs ac-
cording to local stochastic rules. These rules specify the
probability of attaching each kind of atom to every possi-
ble atomic environment specified by the previous layer.
Once the layer has been added, no further equilibration is
allowed to occur; that is, the time scale of equilibration is
much longer than that of the growth, or any experiment.
Nevertheless, it is easy to show that the local stochastic
growth rules can be reinterpreted as the Boltzmann
weight of a properly defined Hamiltonian.'>'* Thus,
when a material is composed of many independent sub-
systems or when averaging explicitly over many measure-
ments this inferred Boltzmann weight is realized.

Consider a probabilistic CA rule and its time history
[Fig. 1b]. The CA rule is defined by a probabilistic rule
of discrete time P(s(x% ¢t +1)|s(x%1)). s(x%¢) complete-
ly specifies the d-dimensional system at time t. Then the
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probability of having a state s(x% ¢ + 1) of the system at a
later time ¢ +1 is given by

P(s(x? t +1))=P(s(x% t +1)|s(x%1)) .

Each time slice of the automaton is stored or “frozen”
as a layer of a material grown layer by layer; the time axis
of the CA plays the role of the spatial growth direction.
The d-dimensional automaton is related to a (d +1)-
dimensional system Hamiltonian by its interlayer interac-
tions, '3 given by

—BHcal(s(x4T1)]= 3 In[P(s(x?, ¢ +1)[s(x%1))] .
t

An ensemble of materials, grown using the probabilistic
cellular automaton, is identical by construction to the
equilibrium distribution of the Hamiltonian H,. This
construction leads to a mapping of all d-dimensional cel-
lular automata to (d + 1)-dimensional Hamiltonians,

CA¢—HITY

If this mapping is interpreted simplistically, there
would seem to be no difference between the two types of
models: material grown by the cellular-automaton rule
can also be described as the result of equilibration of a
Hamiltonian.

COMPARISON OF HAMILTONIANS
FOR TWO MODELS

The CA rule proposed® by Kim and Stern (KS) for
describing growth of (GaAs),_,Si,, is defined on a dia-
mond lattice by excluding Ga-Ga sticking and As-As
sticking and assuming all other sticking is unity but con-
trolled by the relative Si vapor fraction p. To write this
formally, specify the type of atom added using a three-
state variable s for the time slice ¢t +1, and o; are the
three-state variables of its neighbors already present at
the previous time ¢. s or o; =0 corresponds to silicon, *+1
corresponds to Ga and As, respectively. The spatial rela-
tionship between these variables is shown in Figs. 2 and
3.5 With these definitions, the probabilities of adding
each of the atom types in terms of the previous layer may
be expanded as

lnP(s]a,az)=as2+b(a%+a§—alaz)+—;—aloz(1—0102)
—d[so(1+s0o,)tso,y(1+s0,)]+f,
(1

e°=—LS
1+p3’

d=o .

The second-neighbor terms involving 0,0, are generated
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FIG. 2. Illustration of the diamond lattice. For a (100)-
growth automaton the layers are grown from dark to light shad-
ing (left to right). In the ordered GaAs (zinc-blende) -like phase
the shaded sites are one sublattice and the crosshatched sites are
the other sublattice. The relationship between a site s and its
predecessor neighbors 0,0, is shown. The growth model (Ref.
5) for (GaAs),_,Si,, introduces effective interactions between
01,0, which break the symmetry of the lattice and are relevant
at the critical point changing the critical behavior.

by the interference of restrictions placed on the addition
of an atom by the two o sites.!®

The three-dimensional Hamiltonian that corresponds
to this growth model is

—BHcpa=(a+2b)3s}—d 3 s;s;(1+s;s;)
NN

C ’ ¢ '
T 7| 25 2 s'sj+BF , ()

NNN NNN

with B———(k,,T)_l and F =Nf =N Inp, where N is the to-
tal number of sites. The second-neighbor interactions (or
next nearest neighbors, NNN) are only summed over a
restricted class of second neighbors. First, they must lie
in a plane parallel to the growth plane. Second, they
must be related to a mutual nearest neighbor that
succeeds them in the growth direction (see Figs. 2 and 3).

The Newman-Dow (ND) equilibrium-model* Hamil-
tonian is written as

H=h3s;+ASs}+J 3 5,5, +K 3 sis? .
NN NN

There are three basic differences between these two
Hamiltonians. Of these, two do not reflect fundamental
differences between equilibrium and CA-based models.

The first difference is the divergent nearest-neighbor in-
teraction in the KS model compared to its finite value in
the ND model. This directly corresponds to an exclusion
of nearest-neighbor As-As and Ga-Ga pairs in the former
and their inclusion in the latter. The difference in local
environment (nearest neighbor) has attracted much atten-
tion in the electronic-structure calculations in an attempt
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FIG. 3. Illustration of the influence of sites where the growth
direction is perpendicular to the plane of the drawing (Ref. 15).
Arrows indicate the directional bonds from one atom to the two
atoms that it influenced in the growth process. The dashed line
is the projection of the cubic cell of the diamond lattice.

to distinguish the validity of the two models. However,
this is not a fundamental difference between growth and
equilibrium models.!” Such comparisons do not distin-
guish the inherent validity of a growth versus equilibrium
model for the structure of the material, only the particu-
lar choice of interaction parameters, or sticking probabil-
ities.

The second difference is the importance of second-
neighbor interactions in the KS growth model. Such
second-neighbor interactions could be included in the
ND model, and generally should exist in Hamiltonian
systems. Nevertheless, any comparison of these models
on the basis of an extended parameter space should
recognize their relative simplicity of specification. In the
KS model only one parameter describes the whole Hamil-
tonian consisting of three finite interactions. Later
growth models for more realistic results, however, have
chosen to complicate the parameter space.'®

The third major difference is the asymmetry of the in-
teractions. Specifically, the asymmetry of the second-
neighbor interactions in the growth-model Hamiltonian.
This asymmetry, unlike the first two differences, is a fun-
damental difference between a growth approach and gen-
eric thermodynamic approach. It suggests that specific
tests for the applicability of growth versus thermodynam-
ic models be based on the asymmetry of the material
structure or related properties.>!°

CRITICAL PROPERTIES
AND EXPERIMENTAL TESTS

A concrete example of the asymmetric properties of
the automata growth model in contrast to the thermo-
dynamic model is provided by the critical properties of
the order-disorder transition.
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The properties of Hamiltonians derived from CA rules
are unusual in several ways.!>120723 A key property of
this class of Hamiltonians is that the free energy of the
Hamiltonian is analytic.l(’ Indeed, as defined, it is identi-
cally zero.?? This can be seen by taking a free-energy
trace with the formal definition of the Hamiltonian and
using the normalization 3 P=1. It is usual, however, to
expand the expression for the Hamiltonian in interaction
terms [Eq. (2)], leaving the constant term as the free ener-
gy. This yields a nonzero free energy that is analytic as a
function of Hamiltonian or CA parameters. While phase
transitions are normally associated with nonanalytic free
energies, anomalous transitions may occur with analytic
free energies.!'>?'?2 The phase transition described by
KS as a function of p in Eq. (2) is such a phase transition.

The critical exponents of the automata growth model
can be found from quite general arguments discussed by
Grinstein et al.?* In order to apply their discussion, the
growth-model phase transition must be equivalent to a
ferromagnetic transition in the steady-state limit of an
automaton with up-down symmetry. This equivalence
can be shown in two ways. By considering every other
layer (tracing over the intermediate ones) the long-time
limit of the growth model becomes a steady state rather
than a two-cycle, and the order parameter is ferromag-
netic in each layer (s;). Alternatively, the limit two cycle
can be converted to a one-cycle (steady state) by
redefining the spin variables on alternate layers sending
+ 1< —1. Having established the equivalence, the dis-
cussion of Grinstein et al.?® implies that the universality
class of the phase transition is equivalent to that of the
dynamical Ising model. The mean-field results for the
critical exponents of this transition are v=0.5 perpendic-
ular to the growth direction and v.=zv=1 in the growth
direction; whereas the exact value perpendicular to the
growth direction®® is v=1 and the best value in the
growth direction®>?® is v_=zv=2.10+0.05. In the simu-
lations of Kim and Stern® the exponent v_ is found to
agree with the mean-field value v.=1. This suggests that
the stability of the Ising fixed point discussed by Grin-
stein et al.?* does not extrapolate from d =4—¢e down to
the physical dimension of d =2.?” This however, does
not explain why the exponents found by Kim and Stern
are mean-field-like. In any case, the ratio v /v=z=2 is
large. This is a significant difference that should be ob-
servable both experimentally and in simulations. Note
that if an equilibrium model holds, v./v=1 should be
found.
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The experimental detection of the difference in critical
exponents requires the measurement of a set of samples
grown with different compositions near the critical point.
The asymmetry itself may be measurable on a single sam-
ple as a difference in the correlation length measured
parallel and perpendicular to the substrate. Because of
dislocations or grain boundaries, which are outside the
consideration of these models, and also lead to anisotro-
py, this is not a fully conclusive test of the relevance of
the two models. Measurement of the critical exponents
would give a conclusive comparison. This requires a
comparison of the static structure factor y(q) for a series
of samples in the vicinity of the phase transitions where
the divergence of the correlation length can be measured
and compared in different directions.

The experimental measurements may actually tell us
more since the dynamics of growth may reflect an inter-
mediate course between the two models. In reviewing the
growth conditions,' it appears safe to suggest that the
growth dynamics are not a direct sticking, nor do they
support an equilibrium over long-length scales. The
growth, occurring at a rate of 1 layer per second is likely
to involve many growth-etching steps as has been dis-
cussed for the case of diamond thin films.?® In such a
multiple regrowth process, low-energy structures are
preferentially retained. This suggests a quasiequilibrium
approach for distances smaller than the growth-etching
thickness fluctuations, consistent with the equi]ibrium4
picture. At longer length scales, greater than the thick-
ness fluctuations during multiple regrowth, the growth
CA approach® would be relevant. Making use of the
above arguments, the critical exponents of the order-
disorder phase transition should display a crossover be-
havior near the critical point from thermodynamic spher-
ically symmetric behavior to growth related asymmetric
behavior when the correlation length extends beyond the
equilibration size. Experimental tests can thus provide
insight into the growth dynamics by focusing on the
asymmetric properties of material structure at the phase
transition.
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