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A consistent theory of magnetotransport and collision broadening for a two-dimensional electron
system with a periodic modulation in one direction is presented. The theory is based on the self-
consistent Born approximation for the scattering by randomly distributed short-range impurities
and explains recent experiments which revealed, in addition to the familiar Shubnikov—de Haas os-
cillations at stronger magnetic field, a new type of low-field oscillation, also periodic in B ~! but with
a period depending on both the electron density and the period of the spatial modulation. It is
shown that the antiphase oscillations observed for the resistivity components p,, and p,, have as a
common origin the oscillating bandwidth of the modulation-broadened Landau bands, which
reflects the commensurability of the period of the spatial modulation and the extent of the Landau
wave functions. Recent magnetocapacitance experiments are also well understood within this

theory.

I. INTRODUCTION

Aiming at electronic devices of smaller size and higher
performance, current semiconductor research spends
considerable effort on the investigation of electronic sys-
tems of reduced dimensionality. As an interesting inter-
mediate case between one- and two-dimensional systems,
samples containing a two-dimensional electron gas (2D
EG) with a unidirectional periodic modulation on a sub-
micrometer scale became recently accessible to experi-
ment. Devices with a microstructured gate can be fabri-
cated, which allows tuning of the density modulation by
an applied gate voltage between the limits of a weakly
modulated 2D EG on one side and an array of weakly
coupled quasi-one-dimensional stripes on the other.!
More recently, Weiss et al.? have used an ingenious holo-
graphic modulation technique, exploiting the persistent
photoconductivity effect in GaAs/Al,Ga,_,As hetero-
structures at low temperatures, to produce (weakly)
modulated 2D electron systems of high mobility with a
well-known period a (typically of the order of 300 nm)
much smaller than the electron mean free path
d (~10 um at T=4.2 K).? In these systems, a sys-
tematic investigation of the effect of the modulation on
the dc-transport properties became possible, and interest-
ing novel magnetoresistance oscillations were detected.?

A 2D EG (density N, =3.4X10"! cm™2) with periodic
modulation in the x direction (2 =294 nm) but homo-
geneous in the y direction, shows at low temperature
(T=4.2 K) in a perpendicular magnetic field B (z direc-
tion), in addition to the usual Shubnikov-de Haas (SdH)
oscillations at larger magnetic field (B =0.5 T), pro-
nounced low field oscillations (B < 1.0 T) of the resistivi-
ty component p,,, and weaker, but also clearly resolved,
oscillations of p,, with a phase shift of 180° with respect
to those of p,,.” Similar to the SdH oscillations, which
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appear for 0.5 T<B < 1.0 T as superimposed on the nov-
el low field oscillations, these new oscillations are period-
ic in 1/B, but with a larger period depending on both N
and a. This period is obtained from the minima of p,,,
which can be characterized by the commensurability con-
dition?

2R, =(A—1%)a, A=1,2,3,... (1.1
between the cyclotron diameter at the Fermi level,
2R, =2vp/w,=2I%kg, and the period a of the modula-
tion. Here kp=1/27N, is the Fermi wave number,
I=V'fic /eB the magnetic length, and w, =#/ml? the cy-
clotron frequency with the effective mass m =0.067m , of
GaA:s.

The first theoretical explanations®* of this effect ad-
dressed only the large amplitude oscillations of p,,,
which have also been observed in gated samples.* They
noticed that a weak modulation potential V(x)
=V,cos(Kx) with a=27/K and Vy,<<Ep=#k}/ 2m,
lifts the degeneracy of the Landau levels (LL’s) and leads
to modulation-broadened Landau bands with eigenstates
which carry current in the y direction, a local Hall drift
due to the crossed magnetic field in the z direction and
the oscillating electric field in the x direction. In thermal
equilibrium, these alternating local Hall currents add to a
vanishing macroscopic net current. In the presence of an
applied electric field, however, a Landau-band contribu-
tion to the conductivity o, results which is absent in a
homogeneous 2D EG, and which increases with increas-
ing band width. The latter is an oscillatory function of
the band index n due to the fact that the eigenstates
effectively average the periodic potential over an interval
of the order of the cyclotron diameter 2R, =2/V'2n +1,
the extent of the wave function in the x direction.
Evaluating the conductivity with the ad hoc assumption
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of a constant transport relaxation time 7, one can explain
the novel oscillations of p,,,>* but not those of pyy.3 The
reason is that this assumption neglects quantum oscilla-
tions and, e.g., for the homogeneous 2D EG yields the
classical Drude resistivities without any SdH oscillations.
Since, on the other hand, the oscillatory local Hall drift
can also be understood in classical terms, it may not be
too surprising that this result, novel oscillations of p,,
with minima given by Eq. (1.1), and no oscillations of p,,
(and p,,) can also be derived from a semiclassical calcula-
tion based on Boltzmann’s equation in the constant-
relaxation-time approximation.’

It is, however, important to note that the assumption
of a constant relaxation time has no justification. For the
homogeneous electron gas in a quantizing magnetic field
it is well known®’ that a reasonable transport theory
should calculate the collision broadening of Landau levels
and the transport coefficients, which at low temperature
are both governed by scattering of electrons from ran-
domly distributed impurities, in a consistent manner. In
the simplest of such “conserving” approximations, the
self-consistent Born approximation (SCBA) for the
scattering by short-range (8 function) potentials, the in-
verse transport time equals th Landau-level width
[#/7=T(E)] and is proportional to the density of states
(DOS),® i.e., exhibits magnetic quantum oscillations and
is not constant at all.

The main purpose of the present work is to demon-
strate that such a consistent quantum-mechanical treat-
ment of collision broadening and transport coefficients of
the modulated system explains in a natural way all the
different types of oscillations seen in experiment, the nov-
el antiphase oscillations of p,, and p,, at low magnetic
fields, and also the superimposed SdH oscillations which
occur at higher magnetic fields. In contrast to the quasi-
classical (the constant 7) approach, no additional mecha-
nism is needed to explain the novel oscillations of p,,.
On the contrary, all the novel oscillations have the same
origin, the oscillatory dependence of the bandwidth of
modulation-broadened Landau levels on the level index n.
Narrow bands lead to large peak values of the DOS and
thus to maxima of Pyy which, via the scattering rate,
directly reflects the oscillations of the DOS. On the other
hand, the local Hall drift and thus the Landau-band con-
tribution to the conductivity o,,, which dominates in
high-mobility samples the resistivity p,,, becomes small
for narrow .bands, and p,, exhibits minima where p,, be-
comes maximum.

The generalization of the established theory of collision
broadening and transport properties to modulated sys-
tems leads to some mathematical difficulties, since impor-
tant selection rules, which hold for homogeneous sys-
tems, are no longer valid. We discuss these difficulties for
the single-particle Green’s function in Sec. III and we
formulate and evaluate a tractable approximation scheme
which overcomes these difficulties while still containing
the essential physics of collision broadening and satisfy-
ing the necessary requirements of consistency and
analyticity in the complex energy plane.

In Sec. II we define the model and in Sec. V we discuss
our results. In addition to the novel oscillatory effects at
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lower magnetic fields, we also consider the fine structure
of SdH peaks at larger B values. Actually, this question
has already been discussed theoretically several years
ago,® long before the low field oscillations were detected,
but its experimental investigation is still preliminary.® In
addition to the numerical results of Sec. V, we give in the
Appendix some analytical results which hold in the limit
of larger Landau quantum numbers, i.e, for low magnetic
fields.

Some particular results of this work have been pub-
lished in advance'® or quoted in a different context,'"!2
but a systematic derivation based on the standard pertur-
bational approach to transport theory is presented here
for the first time.

II. MODEL AND ENERGY SPECTRUM

The system we have in mind is a 2D EG forming a
plane inversion layer in GaAs near its interface with
Al,Ga,_,As. Charge neutrality is guaranteed by a layer
of ionized donors in the Al, Ga,_, As behind an undoped
spacer layer. In the holographically structured sam-
ples,>? the distribution of ionized donors is periodically
modulated in one direction (the x direction) parallel to
the interface. For the theoretical description of the sys-
tem, two aspects of the impurity distribution are impor-
tant, which can be characterized by different length
scales. On a “microscopic” scale (~10 nm) the impuri-
ties, i.e., mainly ionized donors behind the spacer layer,
seem to be distributed randomly and lead to collision
broadening effects, i.e., imaginary parts of the self-energy.
On a larger scale (~300 nm), the charged-donor density
is periodic and leads, via screening effects, to a periodic
effective potential seen by the electrons, and thus to a
modification of the single-particle energy spectrum, i.e., a
real part of the self-energy. In principle, it should be pos-
sible to treat both aspects on the same footing, taking
into account a suitable correlation of the impurity distri-
bution. In practice, however, such a theory has not yet
been worked out, and we will treat the different aspects
differently. We will simulate the long-range modulation
by a simple (sinusoidal) periodic potential, just as if it
were produced by a grating gate, and we will take into ac-
count its effect on the single-particle energy spectrum in
principle exactly. The short-range fluctuations on the
other hand, which give rise to collision broadening, will
be simulated by randomly distributed scatters and treated
perturbatively.

We are mainly interested in the limit of weak modula-
tion and small magnetic fields. Then, assuming strong
confinement of the 2D EG in the z direction perpendicu-
lar to the interface, we can describe the system by a
strictly 2D model, i.e., we assume that the (occupied)
wave functions are of the form W(r)=1v(x,y)x,(z), and
that y,(z) and the corresponding electric subband energy
are independent of modulation and magnetic field. Of
course, this assumption is not strictly true, e.g., it is
insufficient for a theory of magnetocapacitance,'® but is a
reasonable approximation for the investigation of trans-
port properties in the inversion layer,” and allows us to
average the Hamiltonian over the z direction, leading to
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effective 2D interaction potentials.” !?

As a further simplification we assume that the effective
modulation potential seen by the electrons is independent
of the magnetic field. This is a poor approximation for
strong magnetic fields at which the SdH oscillations are
well resolved, since then the screening of the external
electrostatic potential by the 2D EG becomes strongly
dependent on the filling of Landau levels."* For smaller
magnetic fields, however, where the oscillations of the
Landau DOS are smeared out by thermal and by collision
broadening effects, this approximation is reasonable.

Using the Landau gauge A=(0,xB,0) for the vector
potential, we thus describe the electron-impurity system
by the 2D Hamiltonian

H=H,+V,, (2.1)
with
1 d’ fid e :
- ) nea . e
HO—E’; fi dx2+ idy+ch + Vycos(Kx)
(2.2)
|
172

n'!
!

Von(x0)={n',xo|Vocos(Kx)|n,xq) =V,

where L™ " (X) is a Laguerre polynomial.'* The solid
lines of Fig. 1 depict, for a realistic set of parameters, the
energy spectrum of H, obtained from numerical diago-
nalization of H|, using Eq. (2.5) with a sufficiently large
set of basis functions. The thick broken lines show, for
comparison, the result of the first-order perturbation cal-
culation with respect to V,, given by the diagonal ele-
ments of Eq. (2.5),

g,(xg)=E,(xy)=E,+U,cos(Kx,) , (2.6)

with E, =fiw.(n +1), the unperturbed Landau energies,
and U, =V,exp(—1X)L,(X). It is seen that the first-
order approximation becomes very good for large quan-
tum numbers n, i.e., high energies. We have checked that
the energy value, beyond which the first-order approxi-
mation becomes excellent, increases with decreasing mag-
netic field B. A realistic value?® of the Fermi energy is
Eg~11 meV. Thus, near Ep, and for the parameter
values of Fig. 1, the first-order approximation is excellent
for B >0.1T, but it breaks down for B —0.!?

The most important effect of the novel magnetoresis-
tance oscillations is that the modulation potential lifts the
degeneracy of the Landau levels and leads to Landau
bands of finite width. The bandwidth (=2U,) depends
on the band index »n in an oscillatory manner. Formally,
this is due to the properties of the Laguerre polynomials.
Physically it reflects the fact that with increasing n, the
spatial extent of the wave function increases

exp(— 1X)X """ 2L A= (X)Re(e" 0in )
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and with

V,=2u(r—Rj;Zj) , (2.3)
J
a random array of in-plane scattering potentials due to
impurities at distance Z; from the 2D EG. The eigen-
functions of H, are of the form
Vi (x,y) =L, expliky )Pnsx,(x), With L, a normaliza-
tion length. Note that, owing to the symmetry of the
problem, the center coordinate x, =12k remains a good
quantum number, as in the unmodulated case. The
QJ,,xO( x ) are eigenfunctions of the one-dimensional Hamil-

tonian

= o an? +imwi(x —xy)*+Vycos(Kx), (2.4)
with eigenvalues €,(xq)=¢,(xy,+a)=¢,(—x,). Using
the well-known’ oscillator wave functions

Pny(x)={x|nx,) of the unmodulated system (V,=0)

as a basis set, one calculates (for n'<n and with
X=1K 212) the matrix elements of the modulation poten-
tial to be

(2.5)

4.0
3.5
P ——
[ -
.o pF .
2.5 t
% [
g 2.0
>
= 1.5
©
E 1.0
0.5
0.0
0 1 2 3
K xq

FIG. 1. Calculated energy spectrum vs center coordinate x,
for B=0.15 T and periodic potential Vycos(Kx,) with
Vy=0.25 meV and a=27w/K=294 nm. Solid lines, exact;
dashed-dotted lines, first-order approximation of Eq. (2.6). The
flat-band energies (thin dotted lines) E; = 1(a /1) (A—})
calculated from Eq. (2.8) are E;=0.36 meV, E,=1.96 meV,
E;=4.83 meV, etc.
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(~2R,=2IV2n+1), and the latter effectively senses an
average of the periodic modulation potential over an in-
terval of width 2R, . Indeed, if one takes the average of
the modulation potential over the classical cyclotron or-
bit with radius R, and center coordinate x,, one obtains
the large-n limit of Eq. (2.6),*

U,=VoJo(KR,)=Vor 2nX)" 4cos(2V'nX —m/4) .
2.7)

The energy values at which one expects flat Landau
bands can be estimated from the asymptotic formula for
zeros of the Laguerre polynomials,’® L,(X)=0 if
X=Xx{",

XM= rA—DP/(n+1), A=1,2,3,... (2.8)
or directly from Eq. (2.7). Expressing this in terms of the
cyclotron radius R,,, one obtains Eq. (1.1) as the condi-
tion for flat bands (with R, instead of R,). The corre-
sponding flat band energies E, =#iw_ (n + 1) with n calcu-
lated from Eq. (2.8) (i.e., n not necessarily an integer) are
indicated as horizontal dotted lines in Fig. 1.
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A fact related closely to the finite width of Landau
bands is that the eigenstates of H, carry current in the y
direction. The expectation value of the velocity operator
v, in such an eigenstate [n,x,) is

1 ds,,_lde,,
mo, dx, # dk ’

(n,xolv,|n,x4)=— (2.9)

and vanishes only for flat bands. The physical meaning
of this result is, of course, a local Hall current, or, in clas-
sical terms, a guiding-center drift of the cyclotron motion
in the presence of the periodic electric modulation field.
There is no corresponding current in the x direction, and
(n,xq|v,In,x4)=0 as in the unmodulated system.

In the following calculations, we will replace the exact
eigensolution of Eq. (2.4) by the first-order approxima-
tion, i.e., we use Eq. (2.6) for the energy spectrum and

Voum (Xx0)
|n,x0)=|n,x0>+ 2 u"n’xO)

(2.10)
m¥*n En _Em

for the eigenstates. This yields for the velocity matrix
elements needed below to calculate conductivities

ol
V2 —iv , — — - ‘/?V, VIV
P ( vyx] Mo | SV A By TV Sy S
V' 1V, g —VaVi_ .
F(1=8, ,_) nrtl L (2.11)

with V,,, given by Eq. (2.5). The diagonal matrix ele-
ments of v, are consistent with Egs. (2.6) and (2.9),
whereas (n,x4|v, [n,x,)=0 holds in this approximation,
too. We want to emphasize that, in principle, there is no
necessity to use the first-order approximation with
respect to ¥, for the energy eigenvalues and velocity ma-
trix elements. We use this approximation, since it is
quantitatively very good for the parameter values of our
interest, and since it allows us to calculate, in the absence
of random impurity scattering, all relevant quantities
analytically.

III. COLLISION BROADENING

We now consider the effect of random impurity scatter-
ing on the Green’s function G *(E)=(E+i0" —H) .
For simplicity we assume only one type of impurity po-
tential, i.e., take the same value of Z ! in Eq. (2.3) for all
impurities, and we assume that the positions R; of the
impurities, with area density n;, are uncorrelated. The
average over impurity positions is taken term by term in
the perturbation expansion of G ~ with respect to ¥V, as
usual.®*”'!® The average Green’s function G~ =(G ™ );np
satisfies Dyson’s equation and can be expressed in terms
of a self-energy operator, G “(E)=[E—H,—X(E)]™".

In the self-consistent Born approximation (SCBA)®’
(i.e., approximation No. 4 of Ref. 16) the self-energy is

(n—n'—1)fo,

f

proportional to G, and a nonlinear closed equation for
G~ and X7 is obtained, which is visualized diagrammati-
cally in Fig. 2(a).

For the unmodulated system (¥,=0) it can be shown
that both the self-energy operator £~ and the Green’s
function G~ are diagonal in the Landau representation
|n,xo), which diagonalizes H,, and that they are in-
dependent of x, provided the impurity potential u(r) has
rotational symmetry.® Furthermore, for the short-range
potential u(r)=uy8'?(r), 27 (E) is in the SCBA also in-
dependent of n, i.e., a multiple of the unit operator.

(a) Ni

G = = + ! .

> > D

FIG. 2. Diagrammatic representation of the self-consistent
Born approximation. (a) Green’s function with self-energy ac-
cording to Eq. (3.1); (b) current vertex F from Eq. (4.4).
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Thus, for Vy=0, 27 (E) commutes with H,, one can
write Dyson’s equation in the form G, (E)=[E—E,
—3.(E)]"}, and the center coordinate x, only deter-
mines the degeneracy.

For the modulated system, V,70, £~ does not com-
mute with H,, and there is no representation in which
both 2~ and G~ are simultaneously diagonal. The only
obvious symmetry is the translational invariance of the
average Green’s function in the y direction. Thus,
G ~(E) must be diagonal in x,. In the eigenbasis of H|
we thus can write the SCBA for the self-energy as

S E)= 3 [ dxim Tl 50,%5)Ga5 (E) 3.1
n',m'

with
I2, wm(X0,x0)=ny fdzR (n,xolu(r—R)|n",x{)

X(m',xglu(r—R)|m,xq) . (3.2)

For an iterative solution of Eq. (3.1), one has to invert the
matrix (G~ 1).° =[E—E,(x()18,, — 2.0, in each itera-
tion step. Even the assumption of short-range (8-
function) scattering potentials does not simplify the com-
plicated matrix structure noticeably.

We did not attempt to evaluate the complicated
quantum-number dependence of the self-energy. Instead
we made the ansatz of a quantum-number-independent
self-energy, so that the average Green’s function can be
written in H, representation as

1
E—E,(xy)—27(E)’

G,;o(E)= (3.3)
with an effective c-number self-energy determined by the
simple self-consistency equation

- a 1
s (E)=rg§ fo dxo— G, (E) , (3.4)
where a high-energy cutoff is needed to make ReX~ well
defined.%!” We restrict the n sum to n <2Eg/fio,.
Then, both G,,}O(E ) and 27 (E) are analytical functions

with non-negative imaginary parts in the complex half-
plane ImE <0, 37 (E) bounded for |E|— «, and the
sum rule

[7 dE 4, (E)=1 (3.5

is satisfied for the spectral function A, (E)

=rr_llmG,,;o(E ), i.e., our ansatz conserves the number
of states, as it should. We think that this ansatz contains

the most important features of collision broadening, since
for the nonmodulated limit, ¥;—0, and with

1 #

r2= i — 3.6
O 27 7 3.6)
it reduces to the SCBA for  potentials, with 7 the corre-

sponding lifetime for zero magnetic field.” Using Eq.
(2.6), one evaluates Eq. (3.4) as
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I(E)=3 s (3.7)
w ([E-E,— (E)P-U}'*’ '
and obtains for the DOS (including spin degeneracy)
2 a 1 _ 2 (E)
DIE)=>"5 fo dxo 2 Ay (E)=Im i
(3.8)

In the limit of vanishing collision broadening, I'3—0, Eq.
(3.8) reduces to

1 e(U,—|E—E,|
DENr,0= 5 2]

UZ—(E—E,?'*"’

(3.9)

with 1D Van Hove singularities at the low- and high-
energy edges of the modulation-broadened Landau bands.

Thus, our basic approximation, Eqgs. (3.3) and (3.4),
contains both the effects of collision broadening and of
modulation broadening of Landau levels, with reasonable
limits if one of these mechanisms is turned off. In the fol-
lowing we will see that it uniquely determines a calcula-
tion scheme for the transport coefficients and that it pro-
vides, without any further approximations or assump-
tions, a good qualitative understanding of all the magne-
toresistance oscillations mentioned in the Introduction.

We can, however, not expect this approximation to
yield quantitatively correct results. As mentioned, it
reduces in the absence of the periodic modulation to the
SCBA for short-range (8-function) impurity potentials, in
which the effect of impurities is described by a single life-
time parameter 7, which determines the broadening of
the Landau levels [see Eq. (3.6)], and at the same time has
the meaning of a transport relaxation time. Systematic
measurements on modulation-doped GaAs /Al Ga,_,As
heterostructures of the same type as those showing the
novel magnetoresistance oscillations have shown, howev-
er, that the Landau-level broadening I' is much larger
than one would estimate, using Eq. (3.6), from the
transport relaxation time 7, at zero magnetic field,
I'>>#/7,."* This is in agreement with other experimen-
tal investigations'>?® and indicates that long-range
Coulomb potentials due to ionized donors behind the
spacer in the Al,Ga,_ As provide the dominant scatter-
ing mechanism in these high-mobility systems.!® 2!

Nevertheless, in order to keep the calculations
mathematically simple and numerically tractable, we con-
sider in the following only the approximation defined by
Egs. (3.3) and (3.4), which also implies that we neglect the
x, dependence of the self-energy. From this approxima-
tion we cannot expect quantitative agreement with the
experiments, but can expect a qualitative understanding
of the underlying physics.

Figure 3 shows results for the DOS obtained from nu-
merical solution of Eq. (3.7). For sufficiently small col-
lision broadening (small I'y), the DOS peaks due to indi-
vidual Landau bands do not overlap. This oscillatory
dependence of the bandwidth of the modulation-
broadened Landau levels (LL) is seen directly from the
width of the peaks, but the corresponding modulation of
the peak height, which is a consequence of the fact that
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FIG. 3. Density of states in units of the zero magnetic field
DOS Dy=m/(m#*) for B=0.35 T, V;=0.35 meV, and (a)
[,=0.0590V'B[T] meV, (b) [,=0.1025V'B[T] meV, and (c)
[,=0.3074VB[T] meV.

each LL contains the same number of states, is much
more impressive. Maximum peak height is obtained near
flat band energies. If the modulation-induced bandwidth
becomes larger than the collision broadening, a double-
peak structure is resolved, the remainder of the 1D Van
Hove singularities. The sharp edges of the individual

2e
L,L,

Xplo)=—

The matrix elements of the velocity operators v, and v,
are given in Eq. (2.11) in the first-order approximation.
One confirms that the general sum rule
X (0)=8,.e 2N, /m also holds in the present modulated
case. Since we are here only interested in the static con-
ductivity, we will take the limit v —0.

In the first attempt® to understand the novel magne-
toresistance oscillations in the framework of Kubo’s for-
mulas, Egs. (4.1) and (4.2) were evaluated in a crude
damping approximation. The impurity potentials were
neglected in the Hamiltonian H—H,, and scattering
effects were simulated by the substitution w=i /7, where
7=#/y has the meaning of a transport relaxation time.
With this approximation, the novel oscillations of p,,
could be explained, but not those of Pyy- The reason for
this failure was supposed® to be the neglect of quantum

2 o
[ 7 dE f(E)r{8(E—H)[v,6(E+#w),+v,6(E—fow,]) .
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DOS peaks, which are well known from the SCBA for
the unmodulated 2D EG,’ are an artifact of our approxi-
mation, which neglects coherent multicenter scattering
completely.

If the collision broadening is so large that the DOS
peaks start to overlap (see top of Fig. 3), in addition to
the peak heights also the minimum values of the DOS be-
tween peaks show an oscillatory modulation owing from
the bandwidth oscillations. Recently we have used these
results to calculate the magnetocapacitance of holograph-
ically modulated samples, and we found nice agreement
with the experimental results, which clearly exhibit the
expected modulation of maximum as well as minimum
values of the magnetocapacitance oscillations.!! An ana-
lytic expression, describing this modulation in the large-n
limit, is derived in the Appendix.

IV. CONDUCTIVITIES

A. General formalism

We use conventional linear response theory to calcu-
late the current density j resulting as a response to an ap-
plied electric field E. We consider only the spatial aver-
ages of both j and E, i.e., we take the ¢ —0 limit of the
corresponding spatial Fourier transforms. Then the
response of our electron-impurity system to an adiabati-
cally switched-on electric field with frequency w is given
by a Kubo-type formula for the conductivity tensor,%?2

1
oﬂv(w)=z[xw(w)—xw(0)] , 4.1)

where ® is understood to have a positive infinitesimal
imaginary part (w—w+i0"), and, in our single-electron
approximation, the susceptibility x,,, can be written as a
trace over single-particle states,

(4.2)

oscillations of the scattering rate y. Indeed, this crude
damping approximation yields for the homogeneous un-
modulated 2D EG, for which it is easy to evaluate Eq.
(4.2) explicitly, just the classical Drude result

2
oD =D — o v _eNST
xx - ’ [
Y 1+ (w 1) m
D _ D (4.3)
Oy =@, TOy,

In the present paper we avoid such ad hoc assumptions
and evaluate the impurity average of eq. (4.2) in a sys-
tematic approximation consistent with the treatment
of collision broadening in Sec. III. Since 8(E—H)
=(2mi)"'[6 ~(E)—G *(E)), impurity averages of the
type
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F(E,E';0,)=(G(E),G(E"))p, 4.4)

have to be calculated, where E and E’ include positive or
negative infinitesimal imaginary parts. Expanding the

’s in powers of ¥V, and taking the average term by term
leads to a linear integral equation for F, the Bethe-
Salpeter equation.

B. Present consistent approximation

The Bethe-Salpeter equation in the SCBA, shown in
Fig. 2(b), is trivially solved in our present approximation,
Egs. (3.3) and (3.4), which means that the kernel (3.2) is
replaced by 8,,,8,, T3, where '3 is a constant, indepen-

P-I-‘-(E)_

f dxo

For the Hall conductivity we obtain

O —-—f dEfE)f dxo

In the numerical calculations we used the identity
dG,,;0 /dE

=165, B}/

-3y [ O"Gn;o (E)dx /a

The transport coefficients were calculated from Egs.
(4.6)—(4.8), using the solution of Egs. (3.3) and (3.7). For
given density N; of the 2D EG and for given temperature
T, the chemical potential u was calculated from the equa-
tion

[” dE f(E)D(E)=N (4.9)

This typical results for the conductivities are depicted in
Fig. 4. Finally, we inverted the conductivity tensor to

16; [,=0.056,/B[T] mev
C N,=3.4:10'! /cm?
£ r T=2.1K
N -
o L
‘>‘\ —
s 8
s L
p=}
'tc) —
S —
[S) -
0_ Lol ity Lt
0.0 0.5 1.0
B (T)

FIG. 4. Calculated conductivity vs magnetic field, where
V,=0.25 meV and @ =294 nm; the values of o,, have been re-
duced by a factor of 5.

2 I(n xOIU In xO)I An »Xo E)An'xo(E) .

nxolvy [n'xq)(n'xqlv, ]nxo)Anxo(E)
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dent of all the quantum numbers. Then, one can prove

that current vertex corrections vanish and Eq. (4.4)
reduces to
F(E,E"v,)=G(EWw,G(E’") . (4.5)

Inserting this into Egs. (4.2) and (4.1), we obtain, in the
limit @ —0, for the diagonal components of the conduc-
tivity tensor after integrating by parts,

f dE df(E)

where f(E)={exp[(E—u)/kgT]+1}7" is the Fermi
function and

(E), (4.6)

O up

4.7)
dG,.
2 n'xg
— . 4.
Re JE ' (4.8)
[
obtain the resistivities
— 0}’}’ — T xx — oyx
Pxx = D’ Py = D’ Pxy = D 4.10

with D= oxxayy-i-a The results, for two different

temperatures, are shown in Figs. 5 and 6. For compar-
ison, we have also included the thermodynamic DOS

df D(E),

Dyl )—aNs—de @.11)
T#—aﬂ .

which determines the magnetocapacitance of the sys-

100

w
o

2
TTT T T T T T T Mooy

%a/!la

bt
n

resistivity (107 3h/e?)

0.0

[ B B I T B I A T
0.5

e
o

1.0
B (T)
FIG. 5. Calculated resistivity in units of 1073k /e2>=25.8 Q.

The thick solid line represents the thermodynamic DOS in units

of Do=m /7#* (scale on right-hand side). Parameters as in Fig.
4.
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100

resistivity (1073h/e?)
5

r—
—
0.5+
0,0_J_llllllllllllllllll
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FIG. 6. Same as Fig. 5, but for the higher temperature
T=4.2 K.

tem.!!

In addition to the SdH oscillations, which are resolved
in Fig. 5 for B>0.3 T, and which are in phase for
Pxx» Pyy> and Dy, the novel oscillations are clearly seen in
the resistivities with minima of p,, and maxima of p,, at
B=0.88,0.38,0.24 , and 0.18 T, corresponding to A=1,
2, 3, and 4 in Eq. (1.1). The extrema for A=1 are ob-
scured by the strong SdH oscillations. Before we discuss
the results in detail, we want to recall briefly the corre-
sponding results for an unmodulated system, which are
helpful for the understanding of the situation of our
present interest.

C. Unmodulated case

If we omit the modulation, V=0, the quantities in
Eqgs. (4.7)-(4.8) are independent of x,, and the matrix ele-
ments of v, and v, given by the first two terms of Eq.
(2.11), are off dlagonal in the Landau eigenbasis. In this
homogeneous isotropic case, the sum in Eq. (4.7) can be
rearranged to yield, for both u=x and u=y,°

2
Hiogy—€"_ Al
B = o e ) (4.12)
withI'=T(E)=2Im3 " (E), and
ﬁ(E)=(E—A)D(E)+?lﬂjFDO : (4.13)

where A=ReZ (E) and Dy=m /m#* is the DOS for
zero magnetic field. With 7=#/I'(E), Eq. (4.12) resem-
bles the Drude result, Eq. (4.3), if Ai(E) is replaced by the
density N,. Indeed, if for small magnetic field the SdH
oscillations are smeared out by collision broadening
effects, #(E) approaches, for E >> |37 (E)|, the integrat-
ed DOS, and , with 7(E;)=N; , Eq. (4.12) reduces to the
zero-temperature Drude result. Furthermore, Eq. (4.8)
can be shown to reduce to &’
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_daf ol
JE o(E), (4.14)

yx

o”—m N—[" dE

ﬁa)

c

which completes the analogy and relation to the classical
Drude result.

For stronger magnetic fields, #fiw, >>T', the SdH oscilla-
tions are resolved and Eq. (4.12) reduces to the well-
known result 2 (E)«<T(E)D(E), i.e., within the SCBA
the low-temperature conductivity o «T'3D(Ep)? is
nonzero only due to elastic scattering of electrons by im-
purities from occupied states into empty states at the Fer-
mi level.

V. DISCUSSION OF RESULTS

The novel magnetoresistance oscillations caused by a
periodic modulation of the 2D EG in one direction are
most easily understood for high-mobility systems, where
collision broadening effects are small, I'y<<#iw_, and in
the limit of weak modulation I'y <<V, <<fiw,.

Owing to Eq. (2.9), a qualitatively new, n-diagonal con-
tribution to g, arises,

2dx
AO'yy(E)_ fO 0 El(nxoh) |nx0 | [Anx )]2 ’

(5.1

which is absent in the unmodulated case. The A,fxo fac-

tor behaves like the square of the DOS, so that the contri-
bution Ao, becomes increasingly important with de-
creasing collision broadening (I'y—0), and leads to SdH
oscillations which are in phase with those of the DOS.
As discussed in connection with Fig. 3, the periodic
modulation of the 2D EG leads to a modulation of the
peak height of the DOS oscillations with maxima near
flat-band energies. The diagonal matrix elements of v,
on the other hand, vanish for flat bands, so that Ao, (E )
exhibits SdH-type oscillations modulated by a prefactor
approaching zero where the amplitude of the DOS oscil-
lations becomes maximum. Thus, the amplitude oscilla-
tions of Ao, (E) and those of the DOS have a phase shift
of 180°.

Since the spectral function A,,XO(E ) is a broadened &

function, with maximum value 2 /7T if the energy depen-
dence of T is neglected, one may to a crude approxima-
tion replace [A,,,CO(E)]2 by (my) '8(E —¢,(x,)) with a
constant y. Inserting this into Egs. (5.1) and (4.6) yields,
for Ao,,, Eq. (8) of Ref. 3. If one further assumes the
thermal broadening (~kyzT) to be larger than fiw_. but
less than the distance of adjacent flat-band energies, one
obtains in the semiclassical large-n limit, using Eq. (2.7)
the approximate result®'2

Rc o

e? V(ZJ 4
w= 2k yho, aky cos®

Ao , (5.2)

with zeros given by Eq. (1.1).

The off-diagonal (n'¥#n) contributions to Egs. (4.7)
and (4.8) are, for V, <<fiw, still dominated by the first
two (¥V-independent) terms of Eq. (2.11). For a qualita-
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tive understanding of these contributions, it is sufficient
to neglect their explicit x, dependence and to take into
account the effect of the periodic modulation only via the
self-energy. In this approximation we can use Eq. (4.12)
for o, and the regular, off-diagonal contribution to o,
and Eq. 4.14) for o,. Since, for I <fiw,
a,’c’i(E )« D(E)?, the SdH oscillations are in phase with
the DOS oscillations and moreover, the modulation-
induced oscillations of the peak heights are also in phase.
Since at liquid-He temperatures (T ~2-4 K) the SdH
oscillations are not resolved for B <0.4 T, it is important
to understand the temperature dependence of the novel,
modulation-induced oscillations. To this end, we com-
pare in Fig. 7, for several values of the temperature and
as functions of the chemical potential p, the thermo-
dynamic DOS D, defined in Eq. (4.11), and the quantity
af

2
dE D(E)*,

D}u)= [dE (5.3)

which is proportional to o,,. Since the area under the
individual D(E) peaks is the same for all peaks, (i.e.,
since all Landau levels contain the same number of
states), the oscillations of D are completely washed out
if the thermal average extends over only a few neighbor-
ing Landau bands (kT =#w.). For such T values,
D%(u) shows, however, still pronounced oscillations with
maxima at flat-band energies, since the area under the in-
dividual D(E)? peaks strongly depends on the peak

- (a)
w O
= [
2
o
S E AWML
A
R |
g
o : 1
~ \
Dol bbb bbb bbbl
- (b)
=k
° -
o - /\/\_,
o -
s rC
= F m
~—
o -
:11L | A M\
0 7 14
M (meV)

FIG. 7. Thermal average of (a) DOS D(E) and (b) [D(E)}?
vs chemical potential u for temperature T=0.5, 1, 2, and 4 K
(from bottom to top). The curves are normalized and shifted so
that (a) the average value is 1, and (b) the maximum value is 1.
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height, with maxima at flat bands and minima at broad
bands. To smear out these modulation-induced oscilla-
tions, much higher temperatures are required, with kzT
of the order of the distance AE, between adjacent flat-
band energies E;, =1(a /1)*%w (A—L)%. A similar com-
parison'? shows that the modulation-induced oscillations
of Ao, also survive to these higher temperatures. In our
present high-mobility approximation, the off-diagonal
contribution to o, agrees with o, ; the total o,, is, how-
ever, dominated by Ac o and has minima of the
modulation-induced oscillations where o, has maxima.

According to Eq. (4.14), we also expect oscillatory con-
tributions to the Hall conductivity 0y, but these are by a
factor of I' /fiw, smaller than o,, and are much smaller
than the leading first term on the right-hand side of Eq.
(4.14). Thus, we find that the resistivity components p,,
and p,,, according to Eq. (4.10), reflect the antiphase os-
cillations of o,, and o,,, respectively, whereas the Hall
resistance p,, is essentially given by its classical value
ma, /e’N,, corrected only by small-amplitude oscilla-
tions with maxima when condition (1.1) is satisfied. If the
mobility is not extremely high, the oscillatory part of Pxy
may be affected by o,, and o,,, and more complicated
oscillation patterns result. Regardless, these small oscil-
lations are hardly seen in experiment.”

In summary, all the oscillations shown by the numeri-
cal results of Figs. 5 and 6 are well understood by these
qualitative considerations. We notice that, contrary to
Ref. 3, where SdH-type oscillations were obtained only
for the additional contribution Ao oy the amplitude of the
SdH oscillations calculated in the present work does not
become small near B=0.88 T, where Acryy vanishes.
This is now in agreement with the experimental
finding.>3

From the discussion of the temperature dependence
(Fig. 7), we also understand that, for a given tempera-
ture, the novel modulation-induced oscillations of p,,
and p,, are well resolved down to very low values of the
magnetic field, for which the SdH oscillations are no

8
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1.0 1.5 2.0
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FIG. 8. Calculated resistivity vs magnetic field at higher
fields and larger modulation amplitude; parameters as in Fig. 4,
but ¥,=0.5 meV. Note the weak double-peak structure of p,,,
the remnant of broadened Van Hove singularities.
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FIG. 9. Calculated conductivity as a function of energy,
where V,=0.4 meV, a =294 nm, and B=3.0 T. The solid line
is for o, and the broken line is for o, .

longer resolved and for which the thermodynamic DOS
appears to be constant (see Figs. 5 and 6). This explains
the experimental fact™!! that, in contrast to the magne-
toresistivities, the magnetocapacitance shows no effect of
the periodic modulation at the low magnetic fields, where
the SdH-type oscillations are not resolved. The only
effect of the modulation potential seen in the magneto-
capacitance is an amplitude modulation of the SdH-type
oscillations, which is clearly seen for sufficiently strong
modulation potential. For the small ¥, value chosen in
Figs. 5 and 6, this amplitude modulation of Dy is hard to
see, although it is present.

The small-amplitude, short-period wiggles seen most
clearly in the p,, curves are partly due to numerical inac-
curacies in the calculation of the chemical potential and
partly due to the magnetic field-dependent cut-off pro-
cedure used for the calculation of the selfenergy. These
could easily be removed at the expense of larger comput-
er time.

For larger magnetic field (B> 1 T), Aayy increases and
Pxx and p,, differ again, as shown in Fig. 8. Systematic
experimental investigations are not yet available for this
regime. The fine structure of the conductivities within a
single SdH peak, has, however, been discussed previously
within a different approach® omitting collision broaden-
ing effects. Within our approach, we find different line
shapes of o,,(E) possible, depending on the values of
magnetic field and mobility, which determines the rela-
tive importance of the diagonal contribution Ao,
whereas o ,, (E) essentially reflects the DOS. Some possi-
ble line shapes are shown in Fig. 9. This may be related
to strong changes in the line shape of p,, found in experi-
ments in which the electron density and the mobility, and
probably also the strength of the modulation potential,
have been changed by a gate voltage.’
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VI. CONCLUDING REMARKS

We have presented a self-consistent theory of collision
broadening and magnetotransport for a 2D EG in a uni-
directional periodic potential, which gives a satisfactory
explanation of all the novel oscillatory effects recently ob-
served in such systems.>”*!! The theory contains only
two parameters which cannot directly be determined
from the experiment, the amplitude ¥V, of the periodic
potential and an effective strength I'y of the impurity
scattering. We choose I' so that the average resistance
at small magnetic fields agrees with experiment and ¥, so
that the amplitude of the novel oscillations of p,, com-
pares favorably with experiment. This determines, within
narrow limits, a ¥, value, which has been checked®!? to
be reasonable concerning the experimental procedure of
microstructuring.>>!! The collision broadening of the
Landau bands and the amplitude of all other oscillations
are then fixed.

Quantitatively, the agreement between our theory and
the experiment is not perfect. The amplitude of the novel
oscillations of pyy at low magnetic fields, the lowest B
value at which the SdH oscillations are first resolved, and
the amplitudes of the SdH-type oscillations of both the
resistivities and the magnetocapacitance indicate that in
the experiment the linewidth of the Landau levels is
larger than we calculate from a fit of I to the zero-field
mobility. This finding is consistent with the situation fa-
miliar from nonmodulated samples.'®* "2° There, too, the
collision broadening is much larger than estimated from
the zero magnetic field mobility within the single-
parameter SCBA for point scatterers, indicating the im-
portance of long-range Coulomb scatterers in high-
mobility samples.!® 2!

The present theory also has problems in explaining in
detail the line shape of the magnetocapacitance oscilla-
tions, which come out too sharp near the minima, as a
consequence of the sharp band edges obtained in the
SCBA, owing to the neglect of coherent multi-center
scattering.” We also expect problems with predicting the
detailed line shape of SdH peaks in strong magnetic
fields, since localized states, which eventually lead to the
quantized Hall effect and are completely neglected in our
approximation, may become increasingly important.

Nevertheless, we think that the nice qualitative agree-
ment of our results with the experimental findings in the
low magnetic field region leaves no doubt that our theory
contains the basic mechanism for the novel magnetoresis-
tance oscillations: the modification of the Landau energy
spectrum by the periodic potential, which leads to the
beating effects superimposed on the DOS oscillations and,
as a direct consequence, to the novel oscillations of p,,,
and also to a band conduction responsible for the novel
oscillations of p,, with a phase shift of 180° relative to
those of p,,,.

Note added in proof. Recently, P. Vasilopoulos and F.
M. Peeters [Phys. Rev. Lett. 63, 2120 (1989)] calculated
resistivities for the same physical situation, but with an
approach neglecting collision broadening. They obtained
for p,, small-amplitude oscillations (more than 2 orders
of magnitude smaller than those of p,,) on top of a
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nonoscillating background (similar to our result for the
DOS), but not the weakly-temperature-dependent result
shown in our Figs. 5 and 6.
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APPENDIX

Here we derive approximate analytical formulas for the
self-energy 27 (E) and the DOS D(E) which explicitly
demonstrate the beating effect owing to the spatial modu-
lation on the SdH-type quantum oscillations, and which
hold in the large-n limit for small magnetic field at finite
energies, E >>fiw,.

The main contribution to the sum in Eq. (3.4) comes
from the energy band E,(x,) [cf Eq. (2.6)] closest to E.

J

o I“Z)
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We assume ny =E /fiw, >>1 and use the asymptotic form
(2.7) to approximate in Eq. (3.4) the energy spectrum

E,(xo) =% (n+1)+ U(E)cos(Kx,) , (A1)
with
g |7
U(E)=Vyr~'/? [ngzzﬁ—wc
Xcos | Kl ;fc 1/2-% (A2)

For the imaginary part of Eq. (3.4) we can now, to a good
approximation, extend the » sum from — o« to o and
evaluate it by the method of residues. We do the same
for the real part and, thereby, introduce effectively a
cutoff, since the symmetric sum of n and —n terms con-
verges. We thus obtain

adx
S(E)~ fo—zi

2
_ mIg .

or, separating real and imaginary parts,

2

i 75 ra 1 —sinu +i sinhv
A(E)+-T(E)= dxy——————————
(E) 2 (E) fiw, fo ¥0y " coshv +cosu

where v =nT'(E)/fw_, and

u=27{E—A(E)—U(E) cos(Kx)] /o, .

a 1 _ T
= -~ —~U(E -,
o, fo dxoacot ) [E—2"(E)—U(E)cos(Kx,)] >

n= o E—3(E)—U(E)cos(Kxo)—#w,(n+1)

(A3)

(A4)

(AS)

In the case of large collision broadening, #I" >>#iw,, we can expand with respect to the small quantity exp(—v), and
solve Eq. (A4) by iteration. Up to first order in exponentially small terms, one obtains

2 2

Lom 7l a 1 27

1 = — —_ — —

sT(E) o, ‘1 2exp | —2 oo, fodxoacos oo, [E—U(E)cos(Kxg)] | |, (A6)
Lom o ' pa, 1. [ 27

A(E)= o, 2exp | —2 o, fodx(,;sm o, [E—U(E)cos(Kx,)] | , (A7)

and, expanding up to second order in the modulation strength V), one gets from Eq. (3.8) for the DOS

1TF0
fiw,

27E
fiw

D(E)=—"">

1+2exp|—2 -

2
]COS

For V=0, this is exponentially damped de Haas—van
Alphen (dHvA) oscillations around the zero-B DOS, with
maxima at the Landau energies E, =#w. (n+3). The
modulation potential leads to a beating effect, an oscilla-
tion, which becomes weaker with increasing energy as

c

a

2 172 172

Vo

fiw,

fiw,
2E

2E
fiw,

cos?

/
r—
a

(A8)

f

(a/D[(fiw,)/(2E)]'*=[Lmw?a?)/E]"/2. The dHvA
amplitude is in general reduced and has the value of the
unmodulated system only at the flat-band energies
E),=1maw?a*(A—1)? corresponding to Eq. (2.8).
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