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Nonlinear optical susceptibilities of conducting polymers
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By use of the Genkin-Mednis approach, a general formalism of the nonlinear optical susceptibili-

ties has been derived for one-dimensional electron-lattice systems. Based on the Su-Schrieffer-

Heeger model, we get an analytic expression of the third-harmonic generation g"'(co) of conducting

polymers. After considering the effects of finite lifetime of the excited states, the cusp at fico=a is

greatly depressed so that it becomes too small to interpret the observed peak of y"'(co) at 0.9 eV.
The case of nondegenerate polymers and the effect of electron-electron interaction in the unrestrict-

ed Hartree-Fock approximation are also discussed. Our results imply that the electron interaction

would play an important role in the nonlinear optical properties of conducting polymers.

I. INTRODUCTION

The nonlinear optical properties of conducting poly-
mers have attracted a great deal of interest both experi-
mentally and theoretically. The experiments' have
demonstrated that conducting polymers possess a very
large third-order optical susceptibility, g' '-10 esu,
and an extremely short response time, -0.1 ps. Such
significant properties suggest that the conducting poly-
mers are a promising candidate to be a high-speed non-
linear optical material. There are many interesting phe-
nomena shown in the nonlinear optical susceptibility of
polyacetylene. One is that the third-harmonic generation
of trans-polyacetylene is one order of magnitude larger
than of cis-polyacetylene. The other is that the spectrum
of third-harmonic generation y' '(co) of trans
polyacetylene has two peaks at Ace=0. 6 and 0.9 eV.
Since the energy gap 2h of trans-polyacetylene is about
1.8 eV„ it is obvious that the first peak at 0.6 eV is due to
the three-photon resonance enhancement. Meanwhile it
seems that the second peak at 0.9 eV comes from the
two-photon resonance enhancement. However, because
two-photon absorption in a rigid lattice is forbidden by
the momentum conservation, how to understand the ori-
gin of the second peak becomes a subtle problem.

Recently, Wu used the Keldysh Green's function to
establish an analytic expression of the third-harmonic
generation based on the Takayama —Lin-Liu —Maki
(TLM) tnodel; he found that the theoretical spectrum of
g' '(cv) has a cusp at ltto=b, without any adjustable pa-
rameter, and then he attributed the second peak to this
cusp. But Su and his co-workers calculated y' '(co) from
the Su-Schrieffer-Heeger (SSH) model; the second peak
did not appear in their results. Since the TLM model is a
continuum version of the SSH model, these two models
should not give qualitatively difFerent results. The above
divergence has to be clarified, and it will be helpful to find

the real origin of the observed second peak.
This paper is organized as follows. In Sec. II we derive

a general formalism of the nonlinear optical susceptibili-
ties by using the Genkin-Mednis approach. 7 This general
formalism is exact over the full frequency region and it
goes beyond the continuum model (TLM model). Then
we get an analytic expression of the third-harmonic gen-
eration (THG) of conducting polymers based on the
discrete lattice model (SSH model) in Sec. III. Through
the discussion on the effects of finite lifetime of the excit-
ed states, we find that the above divergence can be
clarified. In Sec. IV we briefly discuss the efFects of elec-
tron interaction within the unrestricted Hartree-Fock ap-
proximation and the case of nondegenerate polymers.

II. FORMALISM

We use the Genkin-Mednis approach to search for the
solution of the Schrodinger equation in an external elec-
tric field

i% =A'g .

In the electric dipole approximation, we can write down
the Hamiltonian

'2

p+ —A(t) + V(r);1 e

2m c

here, V(r) is a periodic lattice potential. Since the vector
potential A(t) is only dependent on time t and indepen-
dent of r, it can be considered as a shift to the wave vec-
tor k. Then, the wave function f in Eq. (l) can be ex-
panded on the Bloch wave function with a shifted wave
vector, i.e.,

P= gtb„„(r)C„(k,t ),
n, k
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where the basis function is

1(„„(r)=e' 'u„„(r),
and the shifted wave vector is

(4)

tric field. For our purposes, it is convenient to rewrite
Eq. (6) in operator form

= [Ap((c)+A, ((ct ) ]C(kr } .c)C(kt)
Bt

(c—:k+ A(&) .
Ac

(5)

(6)

where s„(k) is the eigenvalue corresponding to the Bloch
wave function 1(„(„

Q„„((c)=Jdr u„'„(r)Vku„.„(r), (7)

the dipole transition strength, and E(t ) the external elec-

The Bloch wave function p„z (when (c=k) is the eigen-
function of electrons in the periodic potential V(r },and n

is an index numbering the electron bands. Substituting
Eqs. (3) and (4) into (1) and taking account of the fact
that the basis function (4) is orthonormal, we can get

aC„(kr )
i% = g [s„((c)5„„.+ieQ„„((r).E(t)]C„(kt),

at I

The operators in Eq. (8) correspond to the matrices in (6),
respectively. Now, we can get the effective Hamiltonian
through carrying out a unitary transformation such that
the nondiagonal matrix elements of the Hamiltonian van-
ish identically, which will self-consistently determine the
unitary transformation. For fixed a, the matrix of the
unitary transformation and then the wave function f can
be obtained in the form of a power expansion of the elec-
tric field E( t ). Once the solution of Schrodinger equation
(1) is in hand, the polarization P can be presented in the
form

P=PO+P&+P2+

Owing to the dependence on x, which contains the exter-
nal fields, the expression is actually expanded to a, too.
Then, P~ (j=0, 1,2, . . . ) would be the jth response to the
external electric field E(t ), i.e.,

(P~) = g Jdco, dco2 dN, y'~' . . . (Q;co, , co2, . . , co, )E. , (co, )E (co2) E (co, )e'"',
0),cx2. . . ,0! ~

(10)

where g is the jth order nonlinear optical susceptibility, co, , ~2, . . . , co are the frequencies of the incident fields, and
Q= —(N&+N2+ +N() and a(a„a2, . . . ) (=x,y, z) are the space direction.

For the one-dimensional lattice system, we are only interested in the chain direction, so that all the vectors above will

be taken in this direction. In order to make the calculation more transparent, we restrict it within a two-band system,
one a conduction band, the other a valence band. Then, we can get an analytic expression for the third-order nonlinear
optical susceptibility after making a complicated calculation,

( Q j CO ), COz, N 3 )
(3)

Q„,(Q„—Q„) Q,„
6' V k, p (N«+N, )(N„+N, +N2)(N, „—Q)3 XX

1 Q„Q„Q„Q,„ Q„Q„Q„,Q„+
2 (CO„—Q)(CO,„+N()(N,„—N2) (CO,„+Q)(N„+N()(CO,„—CO2)

(Q„—Q„)Q«g Q„,+--
(CO„—Q}(CO,„+CO, +CO, ) C}k CO,„+CO,

(Q„„—Q„)Q„g Q„
(N„+Q)(CO „CO( N2) C)k CO „CO~

1 Q„g Q,„
(CO „+CO(+C02) (}k CO +CO( Bk CO Q

where A'N„=c, ,(k) —E, (k), the subscripts c, v indicate
the conduction and valence bands, respectively, and g(*
stands for the summation over terms obtained by all per-
mutations of co„co2, co3 and Q. In principle, the calcula-
tion can be performed for any number of bands, but it
will be more complicated.

Schrieffer-Heeger model. The SSH Hamiltonian with a
dimerized lattice structure reads

HssH= g [ p+( )
+

& ]( I~+( ~C( +C( C(+( s)
I, s

(12)

III. THIRD-HARMONIC GENERATION

Since the real chain of polymers has discrete structure,
we start our calculation of y' '(co) from the Su-

where to is the transfer integral between the nearest-

neighbor sites, and 5 the gap order parameter. From this

Hamiltonian, we can get the electron-energy spectrum
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Q,„(k ) = —Q„,(k )=[toa b, /e, (k ) ]sgn(k ) .
(14)

E, (k }=—e„(k)
=

[ [2~ocos(ka ) ] +[6sin(ka )] }
'~~, (13)

the energy gap E =24, and the dipole transition
strength

Q,„(k}=Q„(k}=0,

In principle, we can calculate any third-order nonlinear
susceptibilities from Eq. (11). Since the experimental re-
sult' is about the spectrum of third-harmonic genera-
tion, we would focus on that in this section. The third-
harmonic generation susceptibility can be obtained by
taking co, =coz=co3 =co and substituting Eqs. (13) and (14)
into (11),

grHo(co) =g ( 3co;co,co, co)

1/5 1

8[(x 2
1 )( 1 52x 2)]1/2

5 —8x (1+5 )+205 x 2048(x —1)(1—5 x )

X 2
+

2 2x —(2z )

19683—17496x (I+5 )+152285 x
x —(3z )

where

I, ) 4 e'~ ( roa)'

45
(16)

z =fico/2b„5=26, /4to is the energy gap in the unit of
bandwidth 4to, cr is the number of chains in unit cross
area, and the polymer chains are assumed to be oriented.
It is easy to see that, in the limit of 5=0, which happens
if the bandwidth is considered to be infinite, our formula
(15) reduces to Wu's expression of gr„'o(co) [Eq. (11) in
Ref. 3]. That is to be expected, since the TLM model is a
continuum version of the SSH model.

As we know, due to the residual electron-lattice in-
teraction and/or the imperfection of the lattice, the excit-
ed state will be unstable and then the energy of excited
states should contain a small imaginary part, i.e.,
x = fico,„/25~x + i g in Eq. (15); here the iinaginary part

g is the damping of excited states in units of 2A. In the
ideal case, g~O+, we found that the shape of grHo(co) is
insensitive to 5 and its magnitude is changed only a few

percent for difFerent 5, which is not surprising, since the
integrand in Eq. (15) is dependent on x . This result
shows that the contribution of deep inside states to
yI '(co) is not important. In this special case without
damping, the spectrum of third-harmonic generation
from Eq. (15) is almost the same as Wu's result. Howev-
er, in the real case, the damping g is finite, i.e., the life-
time of excited states is not infinite. For polyacetylene,
Io =2.5 eV, 5=0.9 eV, o.=3.2X 10I4 cm

—
z, and

g-0.03; next we have 5=0.18 and yo '=1.0X10
esu; then the numerical spectrum of y' '(co) can be ob-
tained from Eq. (15). It is plotted in Fig. 1 (the real part
and the imaginary part) and in Fig. 2 (the absolute mag-
nitude}. In order to compare with Wu's work, the special
case i)~0+ of Eq. (15) is also calculated and plotted as a
dashed line in Fig. 2. From these curves, we can clarify
the divergence about the second peak at fico=h. Wu
calcu1ated y' ' by taking an infinite long hfetime of excit-
ed states, while Su and his co-workers added an imagi-
nary part to the excited-state energies in their calculation
for a polymer chain with finite length. Our results show
that the cusp at fico=A exists distinctly only in the ideal
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FIG. 1. Third-harmonic generation g~HG(co) for g=0.03: (a)
the real part and (b) the imaginary part.

I

case rI~O+, and that once the finite lifetime of excited
states is taken into account, the cusp at Iriai=& &s greatly
depressed, so that it becomes too small to explain the ex-
perimental results (the circles in Fig. 2). Therefore it is
necessary to go beyond the simple electron-lattice in-
teraction model to interpret this nontrivial two-photon
resonance enhancement. We think that the effects of
electron-electron interaction and various elementary exci-
tations or defects have to be considered.

Concluding this section, it should be noted that a split
of the peak at irido=26/3 appears in Fig. 2 after consid-
ering the finite lifetime of excited states. This theoretical
prediction can be checked by measuring the detailed
structure of the three-photon resonant absorption.
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B. EH'ects of electron interaction

In order to include the effect of electron-electron in-
teraction, we consider the extended-Hubbard model com-
bined with the SSH Hamiltonian

H=HssH+ U g C(,C(,C(,C(
l, s

0.1—

+ I' g C(,.C(,.C(+(,.C(+(, '
I, s, s'

(18)

0. 1 0.2 0.3 0.4 0.5 0.6 0 7 0.8

where U, V are the on-site and nearest-neighbor site
Coulomb repulsion, respectively. For the dimerized
ground state within the unrestricted Hartree-Fock (UHF)
approximation, we have

FIG. 2. Absolute magnitude of third-harmonic generation
XTHG&+&

(C(,C(s) =
, 2

(C(t, C(+(, ) =m+( —1)'5m;

(19)

(20)

IV. EFFECTS OF ELECTRON INTERACTION
AND NONDEGENERATK POLYMERS

then, the effective single-electron Hamiltonian is

eff
—g [to + '(

—1 )' + '
—,
' b, ](Ci+, ,C(,s +CA C,+, , )

In this section, we will briefly discuss the effects of
electron-electron interaction and the case of nondegen-
erate polymers. Before doing that, the third-order zero-
frequency susceptibility will be given first, since it is more
affected by the electron interaction and degeneracy than
the spectrum of third-order nonlinear susceptibility itself.

I,s

where

t()=to+ Vm .

b, =b, +2V5m .

(21)

(22)

A. Zero-frequency susceptibility

From the Eq. (15) or Eq. (11), the zero-frequency
third-order susceptibility can be got

(3) (3)gg (/s 17—12x ( 1 +5 )+65 x
x' [(x —1)(l—5 x )]'

(17)
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FIG. 3. Dependence of zero-frequency susceptibility p"'(0)
on the parameter 5.

where 5 and yo(
' are defined as in Sec. III. The depen-

dence of y' '(0) on the parameter 5 is plotted in Fig. 3,
from which, we can see that it is insensitive to 5; the
reason is that the contribution of deep inside states to y' '

is not important, which has been mentioned in Sec. III.
In fact, from the Fig. 2, we can see that in the regions
z(:fico/2b, ) (0.2 —and 0.53(z &0.8, the susceptibility
gTHo(co)-g' '(0), that is, agreement with the experimen-

tal data.

In the UHF approximation, the on-site Coulomb repul-
sion U cannot affect the structure of the electron energy
band and then affect the nonlinear susceptibility. The
self-consistent equations for these parameters in Eq. (22)
can be obtained by minimizing the total energy,

1 ~/2 cos (Ic)

[cos (k)+5 sin (k)]'
n/2 5sin (k)

[cos (k)+5 sin (k)]'
b =4tomA, 5m,

(23)

(24)

(25)

where 5 =b /2t 0 and A, is the electron-lattice coupling
constant. For polyacetylene, A, =0.233, to=2. 5 eV, and
b, =0.9 eV; then, we can get the dependence of Zi and 5
on the Coulomb repulsion V from Eqs. (22) —(25). The
numerical results are shown in Fig. 4.

For this system, Eq. (15) with yr(H)G(co) is also valid,
but the parameters 6 and 5 there should be replaced by 6
and 5. From the discussion of Sec. III, we know that the
spectrum structure of yTHo(co) is insensitive to the pa-
rameter 5, and insensitive to the Coulomb repulsion V.
Therefore, within the UHF approximation, the shapes of
the spectrum yTHG(co) are almost the same before and
after turning on the electron interaction. But the go

' is
well affected by the electron interaction; the result is
shown in Fig. 5. Since yo

' is a scale factor for the
y( '(co), the zero-frequency susceptibility y( '(0) [as well
as the overall magnitude of y' '(co)] is quickly decreased
with the increase of the Coulomb repulsion V. This fact
implies that the electron interaction would play an im-
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where, the energy gap order parameter is

5'=5+2&, . (2&)

P.8 1 1 1 1 I

0 01 02 03 04 05 06 07 08 09 10
V/i,

FIG. 4. Dependence of 8 and E on the Coulomb repulsion V.

portant role in the nonlinear optical susceptibilities of
conducting polymers.

=
~ X ( —)'«I'+i .«,.+Ct', ,Ci+i, , »

l, s
(26)

which lifts the ground-state degeneracy. Then, the total
Hamiltonian is

ssH+~

l, s

(27)

C. Nondegenerate polymers

For the case of nondegenerate polymers, such as, cis-
polyacetylene, polythiophene, and poly(3-hexyl-
thienylene) (P3HT), etc, the Hamiltonian should add the
following term

Then from the discussion in Secs. III and IV, we can find
that the nondegenerate and degenerate polymers almost
have the same shapes of the spectrum y' '(co), but the
overa11 absolute magnitude of the third-order susceptibili-
ties y' ' is different, since it has the dependence of 5
[see Eq. (16)]. For cis-polyacetylene, the energy gap
2h'=2. 25 eV; then, we have

(3) (3)
+trans lucis

Comparing with the experimental results, this ratio be-
tween trans- and cis-polyacetylene is too small. This fact
again calls for a new mechanism to the nonlinear optical
susceptibilities of conducting polymers.
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