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The low-energy effective theory of the edge excitations in the fractional quantum Hall (FQH)
states is derived. The edge excitations are shown to form a new kind of state which is called the
chiral Luttinger liquid (YLL). The effective theory is exactly soluble. This enables us to easily cal-
culate all the low-energy properties of the edge excitations. We calculate the electron propagator
and the spectral function, which clearly demonstrate the non-Fermi-liquid behaviors of the yLL.
We also calculate the interference effects between excitations on different edges. We demonstrate
that the properties of the edge excitations are closely related to the properties of the FQH states on
compacted spaces. Thus the properties of the edge excitations can be used to characterize the topo-
logical orders in the FQH states. We also show that the FQH states with filling fractions v#1/I
must have at least two branches of edge excitations.

I. INTRODUCTION

In the last few years many people have studied the
low-energy dynamical properties of the quantum Hall
(QH) states.! The experiments clearly observed gapless
excitations in finite QH systems. It is generally believed
that the gapless excitations are localized at the edges of
the systems. This is because the QH states are in-
compressible and contain no bulk gapless excitations.
Using Laughlin’s arguments,? one can easily prove the
existence of the gapless excitations in a finite QH system.
The real nontrivial issue is to understand the dynamics of
the edge excitations. For integral QH states,’ the dynam-
ical properties of the edge excitations are shown to be de-
scribed by one-dimensional (1D) Fermi-liquid theory.
While for the FQH states,* they are described by the U(1)
Kac-Moody (KM) algebras. Some static properties (e.g.,
dc transport properties) of the edges states in the FQH
regime are studied in Ref. 5.

In general, the gapless edge excitations may have many
branches.> > The dynamics of the edge excitations is
generally described by several U(1) KM algebras in the
low-energy limit.* This is equivalent to say that the
charge-zero sector of the edge excitations is described by
the charge-zero sector of a Fermi-liquid theory (in the
low-energy limit). Such a Fermi-liquid theory contains
many branches of fermions. The charges of the fermions
are shown to satisfy a sum role*

z—vl—q}:ve2 . (1.1)
I 'vl\

In (1.1) v; and gq; are the velocities and the charges of the
fermions in the Ith branch and v is the filling fraction of
the FQH state. In general, the charges g; can be irration-
al numbers.® The relation between the edge excitations
and the Fermi liquid can be used to calculate many prop-
erties of the edge excitations. The responses of the edge
states to external electromagnetic fields are calculated in
Ref. 6, which lead to a practical way to experimentally
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measure the charges gq; carried by the fermions.

However, as emphasized in Refs. 4 and 6, although the
charge-zero sector of the edge excitations are described
by a Fermi-liquid theory, the charged edge states may not
be described by Fermi-liquid theories. The charges of the
charged edge states especially may not be multiples of g;.
Therefore, to be accurate, we will call g, the optical
charges of the edge excitations. This is because g; are
measured only through the current correlation functions
and do not correspond to the charges of the charged edge
states. Strictly speaking, the edge states in the FQH re-
gime are not Fermi liquids. In this paper, we will derive
an effective theory which describes both the charged and
the neutral excited edge states. We will concentrate on
the non-Fermi-liquid behaviors of the edge excitations.
Although the edge states are not Fermi liquids, the
effective theory of the edge excitations is still exactly
soluble. One can easily obtain all the low-energy proper-
ties of the edge excitations from the effective theory.

II. THE EDGE EXCITATIONS ON A DISC

Consider a FQH state on a disc with filling fraction v.
Let us assume that the edge excitations have only one
branch. This implies that the charge-zero sector of the
edge4 6excitations are described by a single U(1) KM alge-
bra:™

r v
[]k+'aJk+]=e2?ﬂ-_k5k+k' ,
U e 1=lik » Jx 1=0, (2.1
[H’jki]zvkjki s

where
1 1
4+ .04 L. ca— k.
jr=+0 iv]"), Jk de‘/fe'Uja(g),

and L is the length of the edge. The (optical) charge of
the fermions in the corresponding Fermi-liquid theory is
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given by ¢ = V.

The charged excited states arise from adding (or sub-
tracting) electrons to (from) the edge. Therefore, those
charged states are generated by electron creation (or an-
nihilation) operators ¢! (or ¥). The electron operator ¥
carries a unit charge

(¢, Ql=ev, (2.2)

where Q = [do e'*j% o). Because all the low-lying ex-
citations have the same velocity v, ¢ also satisfies

[H, ¢, 1=vkyy .

If ¥, had a velocity different from v, the current operator
JE= 3 Yy lk + k') . would also have that velocity.
This would contradict (2.1).

The total Hilbert space of the edge excitations is gen-
erated not only by the current operator j* but also by
the charged operator ¢. Therefore the Hilbert space of
the edge excitations forms a representation of the algebra
(2.1)-(2.3). To understand the properties of the charged
edge states, we first need to find the representation of the
algebra (2.1)-(2.3).

The structure of the Hilbert space of the edge excita-
tions can be understood even without any calculations.
First, the charge-zero sector of the edge states forms an
irreducible representation of the U(1) KM algebra. The
Hilbert space of such a representation is denoted #y .
The charge-e excited states are obtained by adding an
electron to the system. The system with one more elec-
tron is essentially identical to the original system. Thus
the charge-e sector also forms the irreducible representa-
tion of the KM algebra. A similar result can be obtained
for a general charge-Ie sector. From the above discus-
sions, we see that the total Hilbert space of the edge exci-
tations is given by

— ) —
ﬂdisc_e; Hxm=Hxm®H, ,

(2.3)

where 7, is spanned by states |I). The state |I) has a
charge Ie and #{\=Hxm®{|I)} corresponds to the
charge-Ie sector.

In the following we are going to show that the repre-
sentation of the algebra (2.1)-(2.3) can be constructed
from chiral boson theories. For convenience we will as-
sume that the disc has a unit radius (i.e., L =27) and set
e =v =1. Chiral boson theory is defined by the Lagrang-
ian’

-1 2_ 2
L Py [(3gp) —(3,8)°], 2.4)
where the real scalar field ¢ satisfies the ‘“chiral” con-
straint

(0g—9,)9=0. (2.5)

In the following, we will follow Ref. 8 to quantize the
chiral boson theory (2.4) and (2.5). The operator ¢

satisfies the equation of motion
(8p—3,)(9,+9,)9p=0 . (2.6)

The solutions of (2.6) take the form
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. 1 —i _ —inlt—
+i 2 _(ane m(r+o)+ane in(t a)) .
n(#0) "

2.7

The canonical momentum of ¢ is given by 7=(1/4m)0d¢:

1

1

o 2 (a"e—in(t+a)+(~1-ne—in(t—a)) ,

n(#0)
(2.8)

P4 and a, describe the left-moving excitations, while p,
and @&, describe the right-moving ones. From the com-
mutator between ¢ and m we find that @y, py, and &,
satisfy the algebra

[@,, a,]=nd,+p »
(60 Pgl=i s

others=0,

2.9

and ¢, py, and a,, satisfy
[anr am]=n8n+m ’

[bopgl=i

others=0 .

(2.10)

At this stage we may impose the constraint (2.5) by drop-
ping @y, Py, and @,. A more systematic and careful treat-
ment of the chiral boson theory can be found in Ref. 7.
Notice that algebra (2.10) just describes many indepen-
dent oscillators. The Hilbert space of the chiral boson
theory is defined as the Fock space of the oscillator alge-
bra (2.10). The operators a, generate the irreducible rep-
resentation of the KM algebra #x,. The space generat-
ed by the “zero modes” ¢, and p, needs more careful
treatment and will be discussed later. The Hamiltonian
of the chiral boson theory is given by

—1,2
H=ips+ 3 a,a_, .
n(>0)

(2.11)

The electrical current in the chiral boson theory is
identified as
a VV

J= gy €0

where

(2.12)

bL(t,0)=do+pylt +o)+i 3 %a,,e—""““’. (2.13)
n (#0)

The total charge operator is

Q=Vp,= —\/‘w‘a%. (2.14)
Using (2.10) one can explicitly check that the current in
(2.12) satisfies the KM algebra (2.1). Therefore the Hil-
bert space of the chiral boson theory forms a representa-
tion of the KM algebra (2.1).

The charged_qucrators in the chiral boson theory have
a form W=:'""t:. Because we want to identify the
charged operator ¥ as an electron operator, ¥ must satis-
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fy the anticommutation relation

Y(o)W(o')=—¥(o'W(o), o'F0o . (2.15)
Using the formula
edeB=el4 BloBo 4 (2.16)
we find that’
V(o )Wo' )=e V(70N Yo ~i0 —gmic'yr?
X e oL T oL .17

Therefore ¥ is a fermionic operator if y?=1 is an odd in-
teger.

In order to identify the operator ¥ as an electron
operator, we not only require W to be a fermionic opera-
tor, we also require W to carry a unit charge. From (2.14)
we see that the charge of WV is given by yV'v. This im-
plies that only when the filling fraction satisfies v=1/1,
can the operator W be identified as an electron operator:

¢T(t,a)=17\l’=17eiw¢'“(”a) ,
where 7) is a constant which may depend on the cutoff.
As a direct consequence of the above result, a FQH state
with filling fraction v#1/] must have more than one
branch of edge excitations.

The physical Hilbert space of the chiral boson theory
(2.4) and (2.5) is generated by the operators j;& z\n/r}d Y, or

(2.18)

equivalently by a, and e ¢° The operator e

erates the charged excited states. Because «, and e
commute, the Hilbert space can be written as

Hxm®H,

where #, is spanned by the states |I). The state |I)
carries a charge Q=le and py=I V1. Thus the Hilbert
space of the chiral boson theory is identical to the Hilbert
space #4;. that we obtained before.

The commutation relation (2.3) can easily be derived.
First, notice that

[H, ¥(t,0)]=—idg(t,0)

From (2.13) we see that y(¢,0) depend on ¢ and o only
through the combination ¢ +o¢. This implies that

do(t,0)=0,¥(t,0) (2.21)

(2.3) can be easily obtained from (2.20) and (2.21). We
find that the chiral boson theory (2.4) and (2.5) together
with the quantization condition

(2.19)

(2.20)

ps=V X integers (2.22)

form a representation of the algebra (2.1)-(2.3)

Let us summarize our results. Consider a FQH state
on a disc with a filling fraction v. Assume that the edge
excitations only have one branch and assume that it costs
infinitely small energy to add a single electron to the
FQH state. Under those assumptions we show that the
edge excitations of such a FQH state are described by the
chiral boson theory (2.4) and (2.5) and (2.22). The chiral
boson theory contains the charge-e fermion operator only
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when v=1/I, where / is an odd integer. Such an operator
is identified as the electron operator. Therefore, a FQH
state with filling fraction v#*1// must have more than
one branch of edge excitations. For the v=1// FQH
states, Haldane suggested that the edge excitations have
only one branch.!® In this case, the edge excitations are
described by the chiral boson theory (2.4) and (2.5) and
(2.22). The Hilbert space of the chiral boson theory is
generated by the operators a,, and .

The electron Green’s function can be calculated using
(2.16). We find that
(Y7(1,0)9(0,0)) =qle 14012 =itto) )= = (323

In the thermodynamic limit, 0 <<L =27 and ¢t <<L /v
=2, and we have

i
1
(¢'(,0)9(0,0)) =7 t+ (2.24)
In the momentum space (2.24) becomes
t (0—k)!
(Yry ) < PR (2.25)

If electrons are described by the Fermi-liquid theory then
the Green’s function should be

\J =_t

(¢'(2,0)9(0,0)) T
The anomalous exponent in the propagator (2.24) implies
that the electrons on the edge of the FQH states do not
form a Fermi liquid. The electrons are strongly correlat-
ed and form new kind of states. Those states resemble
the Luttinger liquid,'! in which the electron propagator
also has an anomalous exponent. Because the excitations
in our states only move in one direction, we will call such
states chiral Luttinger liquids (yLL).

The Luttinger liquids contain both right-moving and
left-moving excitations, while the YLL contain only left
(or right) moving excitations. Because the chiral proper-
ty of the YLL, the exponent in the electron propagator is
expected to be a topological invariant. In the chiral bo-
son theory considered here, the exponent is given by 1/v,
which is quantized as an odd integer. The exponent
remains unchanged no matter how we perturb the Hamil-
tonian. In contrast, the exponent of the electron propa-
gator in the Luttinger liquid can take arbitrary real
values. The exponent depends on the interactions be-
tween electrons and is not a topological invariant. From
the above discussion we see that the yLL and the Lut-
tinger liquid have some fundamental distinctions.

However, as pointed out in Refs. 4 and 6, the edge
states of FQH systems are closely related to a Fermi
liquid of charge-q=(1/Vl ) fermions. Or more precise-
ly, the charge-zero sector of the YLL is described by the
charge-zero sector of the charge-g =(1/V]) Fermi-
liquid theory. If we were only interested in the processes
that conserve the total charge of the system, then the
XLL could be regarded as a Fermi liquid. But the
charged excited states are not described by the charge-q
Fermi-liquid theory. In particular the charges of the
edge states are quantized as integers instead of as multi-

(2.26)
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plets of 1/V].

As we increase the size of the system, the constraint on
the total charge becomes less and less important. In fact,
the YLL and the charge-g Fermi liquid have the same
thermodynamic properties. We may effectively treat the
edge states as a charge-g=(1/v1 ) Fermi liquid if we
were only interested in those thermodynamic properties.

To further demonstrate the similarity between the yLL
and the Fermi liquid, we would like to calculate the
“edge capacity” of the FQH states. Assume that a
v=1/1 FQH state is in equilibrium with a charge reser-
voir of voltage V. The total charge of the FQH state is a
function of ¥V, Q =Q (V). The edge capacity is defined as

—dQ
T (2.27)
The edge capacity can also be obtained from
1 _d*E(Q)
c- a0 9 (2.28)

where E (Q) is the total energy of the FQH state. Com-
paring (2.28) and (2.11) and (2.14), we find that the capa-
city of the YLL is given by

(2.29)

The capacity of a charge-q Fermi liquid is given by ¢2N,,
where Ny=1 is the density of states of the Fermi liquid.
We find that (2.29) is also the capacity of the charge-
g =(1/V']) Fermi liquid Therefore, despite the charge,
quantization conditions are different, the capacity of the
XLL and the capacity of the charge-g =(1/V'] ) Fermi
liquid are identical.

To observe the non-Fermi-liquid behaviors of the yLL
we need to use the processes that change the total charge
of the system and probe the microscopic structures in the
states. Electron tunneling and photoemission are two
such experiments. Those experiments measure the elec-
tron spectral function

n,c =3 Knly l0)*80—w,), (2.30)
n
where o, is the energy of the state |n ). From the elec-

tron propagator we find that the spectral function and
the electron “density of states” in the YLL are given by

N <o '8 0+k)8(—w) ,
2.31)
N= 2k,  «o 10—o).
2T “

Measuring the spectral function allows us to determine
the anomalous exponent.

The YLL are characterized by the following properties:

(1) The YLL contain a conserved current which forms
a U(1) KM algebra with a central charge ¢?/2m. gq is
called the optical charge of the yLL.

(2) The YLL contain a local charged operator. The
U(1) charge of the operator is given by ¢, which may not
be equal to gq.

(3) All the excited states have the same velocity
v =e/k, where € and k are the total energy and the total
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momentum of the excited states.

When g =q, the YLL is just a charge-q Fermi liquid.
When g#¢q, the yLL is different from Fermi liquid. But
the charge-zero sector of the yLL is still described by the
charge-zero sector of the charge-g Fermi liquid.

Before ending this section we would like to discuss the
relation between the chiral boson theory and the micro-
scopic theory of the FQH states.!® Consider a FQH sys-
tem confined in a circular potential well. The filling frac-
tion of the FQH states is v=1/1. The ground state has
an angular momentum M, and is given by the Laughlin
wave function

exp (2.32)

@z)= (I (zi=2) | exp | = 3 la|?

i<j

For such simple FQH states, we may assume that the to-
tal energy of the system is a single-valued smooth func-
tion of the total angular momentum

E=E(M). (2.33)

Haldane'® pointed out that the charge-zero edge excita-
tions in such a system are generated by multiplying a
symmetric polynomial to the ground-state wave function

|n1,n2. e >=P(n,.n2,...)(2i )(I)O(zi) , (2.34)
where
P(nl,nz,...)(zi)
= 2 (zi...zi )(zjz"'zjz)"'.
{igsees inl;lx’---] ! "1 ! L)
(2.35)

The excited state |n,,n,,...) has angular momentum
K +M, and energy K dE/dM [assume E(M,)=0],
where K = 3 jn;. Such a state is called the Kth-level ex-
cited state. The number of states at the Kth level is given
by

Ne= 3 8|2jnj—Kl : (2.36)

RTINS

In the chiral boson theory the excited states are generat-
ed by the operators a,, n >0:

ny

Iny,n,, .. )=a;'a? - |0) . 2.37)

The energy of the state |n,,n,,...) is given by
Kv X (2w /L), where K= 3 jn;. We will again call such a
state the Kth-level state. The number of the Kth-level
states in the chiral boson theory is given by the same for-
mula (2.36). Because dE /dM is the angular velocity of
the edge excitations dE/dM =v(2w /L), the Kth-level
states in the FQH states and the Kth-level states in the
chiral boson theory have the same energy. Adding m
electrons to the system increases the angular momentum
by Im(m +1)/2 and the energy by
—mim+1),dE _

2 am TH
where p is the electron chemical potential. If we choose
u=(1/2)(dE /dM), we find that AE=(m?/2)lv(27/L).

AE



12 842

This again agrees with the result in the chiral boson

imV'ig

theory that the operator e O creates m electrons and
increases the total energy by im (2w /L) [See (2.11)].
From the above discussions we find that the microscopic
FQH theory and the chiral boson theory give rise to the
same Hilbert space and the same Hamiltonian for the
low-lying edge excitations. In this way we show that the
chiral boson theory (2.4) and (2.5) and (2.22) describe all
of the dynamical properties of the edge excitations in the
v =1/1 FQH states.

We would like to remark that comparing to the micro-
scopic theory discussed above, the chiral boson theory is
more general. The chiral boson theory remains to be val-
id even when the edge potential is not a smooth function
and when the electron interaction is modified near the
edge. This is because the KM algebra (2.1) is a conse-
quence of the gauge symmetry. The validity of the KM
algebra is independent of the detailed structures of the
edge configuration. The chiral boson theory also applies
to the hierarchy FQH states, which have many branches
of edge excitations. The chiral boson theory in this case
contains several boson fields, one boson field for each
branch. For the v#1/] FQH states, the total energy is
not a smooth single-valued function of M. In this case
the symmetric polynomials do not generate all the low-
lying excitations.

III. EDGE EXCITATIONS ON A CYLINDER

In this section we will discuss the edge excitations on a
cylinder. We will assume the FQH state on a cylinder to
have a filling fraction v=1/I. Since the cylinder has two
edges, one may naively expect that the Hilbert space of
the edge excitations on the cylinder is a direct product of
the Hilbert spaces on the edges of two discs, # 4is.® H giscs
where # . =Hxm® #, is constructed in the last section.
However, this naive expectation is incorrect. There are
new kinds of excitations on the edges of the cylinder.
Those excitations are not contained in 4, ® # 4. Such
new excitations transfer multiples of a fractional charge
e /I from one edge to the other. The new excitations can
be induced by adiabatic turning on the unit flux going
through the cylinder (Fig. 1). This adiabatic operation
transfer e /I charge from one edge to the other. Because
the charges in 4, ® # 4. are quantized as integers, such
an excited state is not in # 4 ® # 4. Turning on / unit
flux transfers one electron between the edges. This exci-
tation adds an electron to one edge and subtracts an elec-
tron from the other edge. Such an excitation lies within
the Hilbert space # 4, ® 4. From the above con-
siderations we conclude that the edge excitations on the
cylinder contain [/ sectors. Each sector is given by
FH 4isc® H gise» since different sectors are related by adiabat-
ic turning on the unit flux. The total Hilbert space of the
edge excitations on the cylinder is given by

I
Hen= w2, (P gioc® H gisc) ™
=7{disc®j{disc®7{glo ’ (3.1)

where #£,, contains [ states [M ), M=1,2,...,l. Those
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Left Edge Right Edge

FIG. 1. A FQH state on a cylinder with magnetic flux ®.

states are generated by an operator T, which transfers the
e /I charge from one edge to the other:

IM+1)=TM|0) . (3.2)

The operator T is induced by adiabatic turning on the
unit flux. Such an operation induces transitions between
sectors. But turning on / unit flux does not change the
sectors. From the above discussions, we also see that the
allowed values of the charges on the two edges are la-
beled by three integers I, I,,and M =1,2,...,I:

1

1
(R) (L)

o= 1+—M| oY= |I,——M]|, .
1 m 2 m (3.3)

where the superscript R and L denote the right edge and
the left edge (Fig. 1).

In the following we are going to show that the Hilbert
space #£., can be constructed from a (nonchiral) boson
theory

L=2-[(38)'=(3,4)] . (3.4)

Repeating the discussions in Sec. II, we may write the ¢
field as

¢(t,a)=¢0+$0+p¢(t to)+pylt—o)

. 1 i —in(t—
+i 2 _(ane m(t+a)+a~ne in(t U)) .
n(#0)

The operators ¢, &, Pg» Pg» a,, and @, satisfy the fol-
lowing algebra:

la,, an]=nbd, p ,
[a,,@&,1=nd, ., ,
(b0 Ps1=[d0s B41=1i ,
others=0 .

(3.5)

The operators ¢, py, and a,, describe the excitations on
the right edge, while ¢, Dy» and @, describe the excita-
tions on the left edge (see Fig. 1). From the preceding
section we see that the total charge operators on the two
edges are given by

(R— Ps_ (u=~_~i
er=r @ vl

Equations (3.3) and (3.6) imply that p, and p, are quan-

(3.6)
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tized as

Pe= I,+%M VI, py= —12+%M VI 37)

The charged operators in the boson theory have a form
ivé, (t+0)+ipdg(t—o)
:e'w’“ AAAACE AT ™ order for the charged opera-
tors to consist of the quantization condition (3.7), ¥ and
7 must be quantized. The allowed values of ¥ and ¥ are

given by

y= n,+%n3 VI, y= —n2+%n3 VI, (3.8)
where n;, i = are three integers. The operator
v n/1¢,_<x+o> \/'¢R

:) create an electron on the

left (right) edge, while the operator :e#~?/V! transfers
1/1 charge from one edge to the other.

The Hilbert space that satisfies the quantization C?}'Ldl-
tion (3.7) is generated by the operators a,, @,, °

V1§, i(¢o+8o)/V1 _
, and e . The operators a, and &, gen-

erate the irreducible representation of the two KM alge-
bras, 7{%}@?[‘“. The total Hilbert space is given by

HE HE M®F,,, where Ff_, is spanned by the states
|I1,,I,,M ), w1th I, I, denoting the integers and
M=1,2,...,l. The charges of the state |I,,I,,M) are

given in (3.3). At this stage it is not difficult to see that
the Hilbert space constructed above is identical to
FE 1= H 4isc® H 4isc® F 1o We conclude that the edge ex-
citations on the two edges of the cylinder are described
by the Lagrangian (3.4) and the quantization condition
(3.7).

Using the effective theory (3.4), we are able to study the
quantum-interference effects when the two edges are
brought together to form a torus. Notice that only elec-
trons can tunnel between two edges. The operators that
transfer an electron from one edge to the other are given
by e* VIé. After including the electron tunneling be-
tween two edges, the system is described by the following
low-energy effective Lagrangian:

L=$[(80¢)2—(60¢)2+g cos(VIg)], (3.9)
where g measures the strength of the electron tunneling.
Equation (3.9) is the standard sine-Gordon theory (or the
clock model).!?> The charged operator e”% has a dimen-
sion y2. Therefore, the operator cos(y¢) is relevant if
¥ <V2 and irrelevant if ¥ > V2. The operator cos(V7 ¢)
is relevant only when /=1 (i.e., for v=1 quantum Hall
states). In this case, an arbitrary small electron tunneling
will open a finite-energy gap to edge excitations. But
for I > 3 the operator cos(V'[ ¢) is irrelevant. It can open
an energy gap only when g is greater than a finite critical
value. This is a very nontrivial result. It would be in-
teresting to observe this gap-opening phase transition in
the type of experiments discussed in Ref. 13.

The system (3.9) has many degenerate ground states
|m ) after the energy gap is open ‘};d Those ground states
are characterized by (mle”V!|m)=e?™m/D  which
correspond to the minimums of the potentral cos (V1¢).
Different ground states are related by the operator
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i21rp¢/\/7 121rp¢/\/_
e

U= [see (3.7)]:

Um)=|m+1) .

From the quantization condition (3.7) we find that
|m)=|m+1). Therefore the ground states in our sys-
tem are /-fold degenerate. This is consistent with the
well-known result that the v=1// FQH state has / degen-
erate ground states on a torus.'*!> The solitons (kinks) in
the sine-Gordan theory (2.9) carry charge e /I and corre-
spond to the quasiparticles in the FQH states. As a soli-
ton propagates all the way around the circle, it will trans-
form the ground state |M) into |M +1). This also
agrees with the results in Ref. 15.

From the above example we see that the properties of
the edge excitations and the properties of the FQH states
on compacted space are closely related. We emphasize
that this relation is very important. We know that the
properties of the FQH states on compacted spaces can be
used to characterize the hierarchy structures, or more
precisely, the topological orders in the FQH states.! !
Because of the above relation, the properties of the edge
excitations can also be used to characterize the topologi-
cal orders in the FQH states. The dynamical properties
of the edge excitations provide a practical way to experi-
mentally measure the topological orders in the FQH
states. Using this relation, one should also be able to
determine the properties of the edge excitations from the
properties of the FQH states on compacted spaces.

IV. CONCLUSIONS

In this paper we derive the effective theory of the edge
excitations in the FQH states. In particular, we discuss
the properties of the charged excited states. The edge ex-
citations are shown to form new kinds of states which are
not described by Fermi-liquid theories. Such new states
are called chiral Luttinger liquids. The YLL are closely
related to Fermi liquids. Actually it can be shown that
the charge zero sector of the YLL is identical to the
charge zero sector of a charge-qg Fermi liquid. Here q is
the optical charge of the yLL.

The yLL is described by the chiral boson theory (2.4)
and (2.5) and (2.22). The chiral boson theory is exactly
soluble. Using this effective theory we can easily obtain
all the low-energy properties of the edge excitations. We
calculated the electron propagator and the spectral func-
tion. The electron tunneling and the photoemission ex-
periments can be used to demonstrate the non-Fermi-
liquid behaviors of the yLL.

Using the effective theory, we studied the interference
effects between excitations on different edges. We
demonstrated that the properties of the edge excitations
are closely related to the properties of the FQH states in
compacted spaces. The properties of the edge excitations
can be used to characterize the hierarchy structures, or
the topological orders in the FQH states. Using this rela-
tion we can also derive the properties of the edge excita-
tions from the properties of the FQH states in compacted
space.
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Another nontrivial result obtained from the chiral bo-
son theory is that the FQH states with v#1// must con-
tain more than one branch of edge excitations. This re-
sult is very general. It is independent of the edge poten-
tials, electron interactions, etc.

The dynamical properties of edge excitations contain
very rich structures which reflect the rich topological or-
ders in the FQH states. Experimental and theoretical
studies of edge excitations may lead to a much deeper un-
derstanding of the FQH states and may open a new era in
the FQH theory.

X. G. WEN 41

Note added in proof. Recently the propagator (2.23) at
equal time has been confirmed by numerical calculation'’
for the v=1 Laughlin state.
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FIG. 1. A FQH state on a cylinder with magnetic flux ®.




