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Phonon-assisted magneto-optical transitions in two-dimensional systems
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We have calculated the phonon-assisted dielectric response of p-type two-dimensional systems in
the presence of a magnetic field. This permits us to calculate the magneto-optical absorption at the
mixed cyclotron resonance in which absorption or emission of a boson accompanies a cyclotron
transition. We use the Luttinger-Kohn Hamiltonian to represent the hole carriers and through a
canonical transformation eliminate the carrier-boson interaction to first order. The expression for
the phonon-assisted cyclotron-resonance absorption coefficient is obtained using linear-response
theory. The calculation is valid in the weak-coupling limit when only a one-boson process needs to
be considered. From the above formulation we have calculated the line shape for the usual cyclo-
tron resonance and a phonon-assisted sideband in the Faraday configuration for left and right circu-
larly polarized light. An additional peak in the absorption coefficient due to phonon-assisted transi-
tion is predicted in p-type GaAs/Ga& „Al„As quantum wells.

I. INTRODUCTION

Molecular-beam-epitaxy techniques allow the manipu-
lation of band discontinuities and quantum wells that
occur at the interface between different layers of semicon-
ductors. They form the basis for a broad class of two-
dimensional (2D) electron and hole systems. These ma-
terials have recently become very important for studies
on the basic physics of 2D electron and hole systems, as
well as practical applications for new semiconductor de-
vices. There is considerable interest in the study of opti-
cal properties' of such systems in the presence of a
magnetic field, e.g., interband and intraband magneto-
optical properties, magnetophonon effect, cyclotron reso-
nance, magnetoexcitons, etc. The electronic properties of
these systems are strongly modified by the application of
an external magnetic field, and its effects are measured in
various optical experiments. These experiments not only
give information about novel conditions in a magnetic
field, but in many cases also help towards a better under-
standing of the zero-field properties.

In the past few years considerable effort has been
devoted to the study of electron-phonon interaction on
the optical properties of 2D systems in the presence of a
magnetic field. One of us has reported ' calculations on
the frequency-dependent conductivity tensor for p- and
n-type 2D systems interacting with acoustic phonons.
Other investigations on the magneto-optical proper-
ties of these systems are mainly concerned with effects
like polaron effect, subband coupling, and nonparabolici-
ty of the band. Some studies also reported anomalies in
carrier effective mass and Landau-level broadening due to
electron-phonon interaction. Another major magneto-
optical effect relevant to any discussion of interaction
process is that of the boson-assisted magneto-optical
(BAMO) resonance transition. Xiaoguang et al. ' have
studied the polaron cyclotron resonance spectrum using a

memory-function approach. They obtained the cyclotron
frequency and the cyclotron mass of the single polaron
from the position of certain peaks in the magneto-optical
absorption spectrum. Recently, Cai et al. " discussed
phonon-assisted electron tunneling through a semicon-
ductor barrier. In this paper we turn our attention to the
calculation of boson-assisted cyclotron resonance transi-
tion in p-type 2D systems. Here boson stands for pho-
non, plasmon, or coupled plasmon-phonon mode.

The boson-assisted magneto-optical transitions in
three-dimensional (3D) semiconductors have been studied
extensively. ' ' Bass and Levinson, Enck et al. , and
Johnson and Dickley were the first to demonstrate the ex-
istence of a phonon-assisted cyclotron resonance (PACR)
transition. ' McCombe et al. ' observed the PACR in

Hg&, Cd Te, while Nagasaka et al. ' found evidence for
a similar resonance in n-type CdS. More recently
Goodwin and Seiler studied' in detail the PACR in InSb
for left circularly polarized (LCP) and right circularly po-
larized (RCP) light. They found that in the Faraday
geometry, the resonances were approximately equal in
amplitude for both LCP and RCP light.

In this paper, we present our calculations on the dielec-
tric response of p-type 2D systems exhibiting BAMO res-
onance. We have evaluated the frequency-dependent
conductivity tensor using linear-response theory. The
current operators are evaluated by making use of a
canonical transformation which eliminates the carrier-
boson interaction to first order in the coupling constant.
Expressions for conductivity and the absorption
coefficient are obtained in the Faraday configuration for
LCP and RCP light. The theory predicts extra peaks in
the magneto-optical spectrum due to BAMO transitions
besides the usual cyclotron resonance. These are due to
transitions between two Landau levels accompanied by
emission and absorption of bosons. Numerical calcula-
tions have been performed for p-type GaAs/Ga& „Al As
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quantum well in the extreme quantum limit. The remain-
ing part of the paper is organized as follows. In Sec. II
we outline the theory for the calculation of conductivity
tensor, and the absorption coeScient. Our results for p-
type materials are presented in Sec. III, where we also
provide commentary on the nature of our calculation, and
comparison with other theoretical accounts.
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in which the first term represents the Luttinger-Kohn
Hamiltonian for the holes ' '

II. THEORY

We consider the quantum-mechanical problem of car-
rier motion in the xy plane in 2D systems. A magnetic
field is applied parallel to the growth direction of the su-
perlattice, which is the z direction. The Hamiltonian of
the interacting carrier-boson system is (fi= 1) where
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and y„y2, and y3 are material parameters determining
the effective masses. The first two terms in Eq. (1)
represent the noninteracting Hamiltonian for the hole
carrier and boson system. The third term is the Hamil-
tonian for holes coupled to boson modes. Landau and
subband quantum numbers are denoted by n and p, re-
spectively. E„ is the energy of the nth Landau level in
the pth subband. c„P and c„P are the Landau creation and
annihilation operators, b Q and bQ are boson creation and
annihilation operators, respectively. Q = (Qi, Q, ) where

Qi and Q, are components of the boson wave vector
along and perpendicular to the 2D surface, respectively.
In the above Hamiltonian, also included is the interaction
of spin magnetic moment with the external magnetic field
through J,zp&8, where x is the Luttinger constant and

ps is the Bohr magneton, and V(z) is a self-consistent
effective potential. Landau and subband quantum num-
bers are denoted by n and p, respectively. The Landau
wave function for the holes in single-quantum structures
is givenby ' '

DP„(Q)=F" (Q, )J„„(Q,)
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I is the Landau radius, and L„"(x) are the associated
Laguerre polynomials.

The coupling constant y(Q) can be obtained from the
bare interaction
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where eb is the dielectric function for the bosons. For in-
stance, substituting ei, by phonon e(co) yields the well-
known Frohlich result for optical phonons. Similarly one
can obtain an expression for y(Q) for plasmons and cou-
pled phonon-plasmon modes by utilizing the appropriate
dielectric function in eb.

The interaction Hamiltonian for carriers and elec-
tromagnetic radiation can be written as

where the function f„' depend on the hole motion in the
z direction, and In ) is the usual harmonic oscillator func-
tion for cyclotron motion in the xy plane. The matrix
elements appearing in the carrier-boson couphng Hamil-
tonian are given by

H;„,=—e ' 'Eo j(q),

where j(q)= —,[jexp(iq. r)+exp(iq. r)j]. Eo is the elec-
tric field vector of the electromagnetic wave, q=(qi, q, ),
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qi and q, being the photon wave vectors parallel and per-
pendicular to the 20 plane, respectively. We use a circu-
lar polarization representation whose basis vectors are
e+=(e„ i'�)/~/2 and e„. Here the unit vectors e„and
e are taken in the xy plane. The components of the
current operator relative to this basis become
j =el (BH/dc„), and j+ =el (dH/Bc„).

The system we are investigating, responding to the
electromagnetic radiation, is that of interacting carriers
and bosons. We are chieAy interested in the low-
temperature regime, where carrier-level broadening will
be due primarily to impurity scattering and acoustical-
photon scattering. Hence only the one-boson interaction
processes to the lowest order will be important. We re-
move the carrier-boson interaction term from the Hamil-
tonian H to first order [in the coupling term y(Q)] by a
canonical transformation H =exp(iS)H exp( —iS). The
generator of the canonical transformation S is given by

S=ggy(Q)DPPct c„
n'n Q
pp

b
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(10)

One can now use the transformed system to calculate the
current operator appearing in the conductivity tensor.
The transformed current operator, to first order in
carrier-boson interaction, is

J'+(q)=J'+(q)+i [S,J'+(q)]=j+(q)+J'+(q) .

The first term jz(q) is the current operator in the ab-
sence of carrier-boson coupling Hamiltonian and the
second term denoted by j~(q) is written as

j' (q)= g g I[F„*~ „(coQ,q)c„c„bQ]
nn' Q
pp
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The expression for F„~„(——toQ, q) may be obtained from
Eq. (13) by replacing toQ by —coQ. The matrix elements
of & n "p"

~j+ (q ) ~ np & are provided in Ref. 8.
We calculate the conductivity tensor a +(co) in the

circular polarization representation within linear-
response theory, using the Kubo formula

o +(co)= f dt e'"+'""&[j (q, t),j+(q,0)]& .
CO 0

(14)

To obtain the conductivity tensor from Eq. (14) we use
the Landau wave functions in the evaluation of the trace.
Replacing j+(q) with the zeroth- and first-order contri-
butions [Eq. (11)]results in four commutators:

& [J—(q t) J+(q o)] &
=

& [J'- j+ ]&+ & [J'-,J+ ] &

+&[J' j' ]&+&-[j'-,j' ]&,
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of which the first term gives rise to o +(co) and the last
one to o' +(co). The other terms involving j and j' in
Eq. (15) give zero contribution to the conductivity tensor,
since the boson operators bQ and bQf have zero trace. Ex-
plicitly, the conductivity tensor due to boson-assisted
transitions between Landau states becomes

+ Q Q
l np, n'p' np, n'p' ~np n'p'+np, n'p'

2coQEpEpcoQ+co+ l PpEpEp+coQ+co+ l

pp
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f ')+f"(' f.p). (18)

Here I is the imaginary part of the self-energy function and the real part of self-energy has been included in E for
brevity. Also, we have abbreviated f„=f(E„),and NQ =No(coQ), the Fermi and Bose distribution functions evalu-
ated at carrier and boson energies.

Now one can find the expression for the absorption coefficient due to phonon-assisted absorption. The absorption
coefficient a' (co) is obtained from the real part of the conductivity tensor as a' (co)=(Eo/2)Re[o'+(co)]. The formu-
la for the absorption coefficient is considerably simplified (computationally speaking) if we choose electromagnetic wave
vector q parallel to the magnetic-field direction (i.e., Faraday configuration). The absorption coefficient in the Faraday
configuration reads
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The expressions for I'+ and I + are complex conjugates of I' and I3, and they follow from the matrix elements of
the current operator j+ in the Faraday configuration. Their detailed derivation is given by Singh and Tang.

Note from the expression for a' (co) that the absorption peaks will appear at co=E„. . E„+co—&. The positive term
corresponds to a transition from the state In'p') to state Inp ) accompanied by the emission of a boson. The negative
term corresponds to the absorption of a boson. When a transition takes place within one subband (p ~p) and different
Landau levels (i.e., say n ~n + 1) in the presence of a boson, we call it boson-assisted cyclotron resonance. When pWp'
and one has a hn =+1 transition we call it combined boson-assisted cyclotron resonance. As indicated by I * terms,
there are transitions when hn =+3; they arise because of the mixing of J,=+—,'and +—,

' states in the Luttinger-Kohn
Hamiltonian.

Finally, for completeness, we give the absorption coef5cient in the absence of carrier-boson interaction:

Eo
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where I'* and I *have the same meaning as in Eq. (19).
This completes our derivation of the conductivity tensor
and absorption coefBcient for p-type materials. We have
given results for the LCP light only, but similar expres-
sions can be obtained for RCP light through the transfor-
mation 0 p(co)=cr+( —co).

III. RESULTS AND DISCUSSION

1
yop(Q) =2me coL ——IQI .

1

6p
(23)

The optical-phonon frequency is denoted by coL and e„
and E'p are the dielectric constants of the material. We
calculate the conductivity tensor in the extreme quantum
limit where subband indices are p =p'=1 and the Lan-
dau level is n=0. If we assume that the Fermi level lies
between Landau levels n=O and n=l, then f (E„z)=1
for n=O, p= 1, and f(E„)=0 for n= 1, p= 1, at low

Having developed a theory for the linear response of a
collection of hole carriers and boson modes in single-
quantum-well structures, we now apply it to a specific
case. We consider the GaAs/Ga& Al„GaAs hetero-
junction, in which the boson modes are polar optical pho-
nons, with coupling

temperatures. Furthermore, we shall neglect the
hn =k3 transition, and only consider the hn =+1 case.

In the following, we present our results on the absorp-
tion coefficient of p-type GaAs/Ga, „Al„As heterojunc-
tions. There are two types of holes, heavy and light,
present in this material, distinguished by their effective
masses. In our calculation, we use the theoretical
effective masses given by Broido and Sham, ' but neglect
their dependence on the applied magnetic field. We
display in Fig. 1, the absorption coefficient a (co} (LCP
light in Faraday configuration) for heavy holes (effective
mass mh =0.4m, ). The first peak at co/co, =1 is the usu-
al cyclotron resonance peak, the second one occurring at
co/co, =1+coL /co, =13.6 is due to the phonon-assisted
cyclotron resonance. The results presented here at T=2
K and B=10 T. The optical-phonon frequency coL is
taken to be 36.2 meV, and for the Landau-level broaden-
ing (the imaginary part of the self-energy) I'o, we have as-
sumed a constant value of 0.5 meV. Note that neither
the position of the peaks nor their relative intensities are
affected by the choice of I p&, only the width depends on
I p& at a given magnetic-field strength B. From Fig. 1 we
observe that the relative intensity of the second peak due
to the BAMO resonance is about a fifth of the cyclotron
resonance. It should be observable without difBculty in a
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FIG. 1. The absorption coefficient a (co) divided by a (co)
vs co/~, for heavy holes in the GaAs/Ga& „Al„As superlattice
at T=2 K and B=10T. The first peak (dashed line) originates
from a (co), the second peak (solid line) is the phonon-assisted
resonance coming from a' (co).

FIG 2 The absorption coefficient a (co) divided by a (co)
vs m/co, for light holes in the GaAs/Ga& „Al„As superlattice,
at T=2 K and 8=10T. The first peak (dashed line) originates
from a (co), the second peak (solid line) is the phonon-assisted
resonance coming from a' (co).

low-temperature, high-magnetic-field (B= 10 T) experi-
ment. According to Eq. (19) there should be another
peak at coho, = 1 —

coL /co, due to phonon-absorption pro-
cess. The intensity of this peak is very small because of
the thermal factor No( col ); there are very few phonons to
contribute to an absorption process at low temperatures.
The temperature at which phonon absorption becomes
appreciable is k~T=coi. Therefore our model predicts
only a phonon emission peak to be observed in a low-
temperature experiment. In Fig. 2, we show the same
effect for light holes with effective mass mI =0.15m, . In
addition to the usual cyclotron resonance, we observe a
second peak at co/co, =1 +coL /co, =5.7 due to phonon
emission. Note that the phonon-assisted peaks occur at
different positions in Figs. I and 2, since the cyclotron
frequency m, is different in both cases owing to the
difference in the effective masses of heavy and light holes.
Xiaoguang et al. ' have studied the cyclotron resonance
spectrum of a 2D polaron within the memory-function
formalism, obtaining cyclotron resonance frequency and
mass in the weak electron-phonon coupling limit. They
have found that the absorption spectrum shows phonon-
assisted peaks around co=coL+nco„but have not report-
ed the intensity of such peaks relative to the main cyclo-
tron resonance, rendering a direct comparison with our
results difficult.

The use of a constant value for I „p can easily be re-
laxed to make the whole calculation parameter free. We
have noted earlier that the Landau-level broadening at
low temperatures will be due primarily to impurity

scattering and acoustic-phonon effects. Writing out the
hole self-energy function due to hole-acoustic-phonon in-
teraction in the self-consistent Born approximation as

n'p'

Nz(co&)

co+co& E„.+X„z(co—)

1+No(cog)+ (24)
co co& E„. +X—„(co—)

where y(Q) now describes the hole —acoustic-phonon in-
teraction, and taking the imaginary parts of both sides,
one obtains a self-consistent equation for the Landau-
level broadening function I „,which may be simplified in
special cases. Similarly, one can express the broadening
due to disorder when the impurity potential is specified. '

In the elastic-scattering approximation and from dimen-
sional analysis, one deduces that I „~(B /m ' )'~,
where m' is the effective mass of the holes. This shows
that the Landau-level broadening should increase with
the applied magnetic field, and for a given B, it should be
greater for the light holes than the heavy holes. There-
fore, if such effects were included in our calculation of
the absorption coef5cient, we would obtain a broader
phonon-assisted peak for the light holes than the corre-
sponding peak for the heavy holes.

We have also investigated the dependence of the ab-
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FIG. 3. The ratio of the peak values of the absorption
coefficients a' (coL +co, ) and a (co, ) vs the magnetic field 8 for
heavy (solid line) and light (dashed line) holes.

sorption coefficient on the magnetic field. Figure 3 shows
the ratio of the peak values of a' (co) and a (co) as a
function of B for heavy and light holes. The peak values
calculated at co=coL +to, and co=co, for a' (co) and
a (co), respectively. We observe that the peak ratio of
the phonon-assisted transition to the cyclotron resonance
reaches a maximum at B=13 T for the light holes. The
heavy holes also show a similar behavior around B=30
T, although it is barely visible on the scale of Fig. 3. This
suggests an optimum value of the applied field to be used
in the experiments to observe the BAMO transitions. In
principle, the Landau-level broadening I „~, and effective
masses of heavy and light holes should depend on B. We

have not included these effects into our calculation.
Omission of such factors may be responsible for the ob-
served behavior of a (co) in Fig. 3. In any case, it is in-
teresting to note that the intensity of phonon-assisted cy-
clotron resonance transition for a heavy hole is greater
than that of a light hole.

In conclusion, we have evaluated the conductivity ten-
sor which determines all the magneto-optical properties
of a material due to the boson-assisted transition between
Landau levels. In magneto-optical experiments at finite
temperature, in addition to carrier-photon interaction,
bosons in the material also interact with the carrier-
photon system to create absorption and emission reso-
nance. For example, a carrier in Landau level n will ab-
sorb a photon, while simultaneously emitting or absorb-
ing an optical phonon of energy coL, thus making a tran-
sition to some higher Landau level n'. The same may
happen for plasmons or more generally still for hybrid
modes involving plasmon-optical-phonon interaction.
Our theory allows, in principle, a general treatment of the
boson-assisted cyclotron resonance in 2D systems. The
introduction of new resonance will also modify the spec-
trum of elementary excitations in the material, introduc-
ing new continuum of such excitations. Experimentally,
the boson-assisted transition can be recognized by the
fact that when magnetic fields tends to zero, their ener-
gies converge to co&. The authors are not aware of any
experimental results on BAMO transitions in 2D sys-
tems, therefore a direct comparison of our results with
experiment is not possible. It would be interesting to ex-
tend the present formalism to multiple-quantum-well
structures, where the calculation of energy levels will be
considerably more complex.
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