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Quantum Hall effect and general narrow-wire circuits
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A theoretical study is made of charged-particle motion in planar circuits made up of narrow

wires, in the presence of a magnetic field of arbitrary strength, in the ballistic approximation. The
basic element is a four-terminal junction of narrow wires, and its detailed properties are calculated.
Its scattering probabilities strongly reflect the influence of quantum effects of the junction, including
subband thresholds and virtual, resonant states, and the Hall resistance calculated from them may

depart considerably from the classic wide-wire result. Physical features are related to the emer-

gence of pinned Landau levels as the field strength increases. By suitably modifying the four-
terminal method, it is extended to include elbow (L) and tee (T) junctions. The results are then used

to construct linear six- and eight-terminal junctions, whose resistive properties are discussed. The
Hall resistance is predicted to depend on which arms are used and on the stub spacing. The applica-
tion of the method to the general linear series of junctions is then outlined. The four-terminal re-

sults are also applied to a square eight-terminal junction, to show the presence and the consequences
of the Aharonov-Bohm effect in circuits with closed loops.

I. INTRODUCTION

There is considerable current experimental' and
theoretical ' interest in the physics of quantum wires,
devices made to conduct along two-dimensional surfaces
shaped into very narrow channels. The quantum Hall
effect observed when such devices are placed in a magnet-
ic field perpendicular to the plane is modified, compared
with the classic wide-sample case, ' by the quantum in-
terference effects such narrow channels exhibit. Theoret-
ically, the simplest such device is the four-terminal junc-
tion (Fig. l), but in practice it is usual to construct more
complicated circuits, by combining elements that have
that basic geometry. The finite width m of the wires re-
sults in a transverse quantization, so that electrons popu-
late subbands whose threshold energies depend on w and
on B, the strength of the magnetic field. For large iv, and
a Fermi energy and B, such that no subbands are open,
one expects a Hall resistance RH=hl(e no). " For
small w, however, the experimental results deviate from
this prediction, ' and attempts to understand these de-
viations have been made by Peeters and by Buttiker'
and others. ' ' We have presented in an earlier paper'
our results on the properties of the four-terminal junction
that make no assumptions except the ballistic approxima-
tion, and we here document the methods that produced
them, and then apply these methods to more general cir-
cuits. The method can be used for any circuit that can be
made from rectangles. It is not directly applicable to the
case of adiabatically widened channels, which seems quite
important' for understanding generic "quenching"' of
RH at low fields.

We present in Sec. II a complete quantum-mechanical
treatment of the four-terminal junction. As is discussed
in Secs. III and IV, such a treatment' predicts, for zero
B field, bound states at the junction, and also rapid varia-

tions with energy of the scattering probabilities (the
quantities that in the ballistic approximation determine

RH ) at the thresholds for the opening of new channels
(subbands). This complexity is enhanced by the presence
of a magnetic field. New structures arise at certain ener-
gies, causing RH to go through zero there. These struc-
tures are associated with virtual or resonant junction
states which become, in the limit of large B, two-
dimensional Landau levels pinned to the junction. ' The
suggestion that resonances at the junction might be im-
portant was made in Ref. 1, and a comment by Roukes
(private communication), suggesting that there might be
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FIG. 1. Schematic representation of the four-terminal junc-
tion of wires of width w. The particle potential is zero inside
the wires, and infinite outside. The five regions in which wave

functions are represented by sums in Sec. IIC are indicated.
The sums are to be matched across the boundaries represented
by the dashed lines.
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a bound state as we11, was the original impetus for our
work in this area.

We also discuss the extension of these methods to com-
pound circuits. Straightforward truncation of the matrix
introduced in Sec. II allows us to include elbows ("L")
and tees ("T"}in circuits, and sample properties of these
elements are given. We discuss the phases and gauge
transformations involved in considering all possible posi-
tions and orientations of such junctions. Section III de-
velops a method to concatenate them into six-, eight-,
and n-terminal collinear junctions. It also considers the
square loop circuit. The results for the loop, with its very
sharp "resonances, " are discussed also in terms of the
wave functions of the whole loop and their symmetries.

II. THE FOUR-TERMINAL JUNCTION

The basic element of our circuit calculations is the
four-terminal junction, and we wish to present in detail
the calculation of its properties. Our method' ' consists
in matching, on the periphery of the square defining the
intersection (the dashed lines in Fig. 1}, functions that
solve the single-wire problem. Although some of those
functions have been introduced earlier, by Peeters, we
discuss them again for completeness, and because we
need a complete set of channel states, including the
evanescent ones.

f (x)=sin[(mm/w}(x+w/2)], (2.4)

with p =k (m—n/w ) . For nonzero B they are each
an awkward combination of Kummer functions that de-
pends on the two dimensionless parameters kw and
l2/w . We have found it convenient to obtain the eigen-
values p and the functions f~ (x)=f~(x)=—f (x)

&m

directly, by numerical solution of the differential equa-
tion.

There are two symmetries that relate pairs of the func-
tions f (x). First, the difFerential equation for f (x) is
invariant if p and x are replaced by —p and —x, respec-
tively. Thus, the equation for f (x) is the same as that
for f ( —x) and these functions can differ only in phase.
We choose the phase to be

x =0 by an amount pl, and there is a continuum of (real)

p values and states f (x,y) .We assume infinite wall

boundary conditions, i.e., for the channel of width w, the
differential equation must be solved with the boundary
conditions f (w/2)= f ( —w/2)=0. This boundary-
value problem defines for each value of k a discrete set
of eigenvalues p and corresponding functions fz (x),
which we will sometimes call f (x} or f (x), where m

enumerates the discrete set. For the limit B =0 these
functions become'

f p
(x)=( —1) 'fp ( —x) (2.5}

A. Schrodinger's equation

States for vertical arms such as arm 2 of Fig. 1 are ob-
tained most conveniently by using the vector potential
A=(O, Bx,O) to represent the effect of a uniform field B
in the positive z direction. The Schrodinger equation for
a particle of mass m, charge q, and energy E =Pi k /2m
is then

f g(x)=rl [f (x)]', (2.6)

as the natural extension of the choice for the B =0 case.
The second symmetry relates p and its complex conjugate
p'. Taking the complex conjugate of Eq. (2.3) we see
that the relationship is

'2

—.V — A +k f(x,y)=0 .1 q
C

(2.1)

where g is a complex phase factor. The natural choice
rl= 1 makes f (x) real for real p. When p is purely imagi-
nary the two symmetries together make (for rl =1)

It may be solved in the separable form'

g (x,y)=e'i'~f (x), (2.2)

Ref (x}=(—1) 'Ref~( —x},
Imf (x)=( —1) Imf ( —x} (if p'= —p) .

(2.7)

where f~(x) satisfies

d 2 x+k ———p
dx 12

fp(x)=0 . (2.3)

When p is neither purely real nor purely imaginary, the
four values p, —p, p*, and —p' are all distinct but the
four corresponding f 's are all related by these two sym-
metries.

B. Orthogonality and normalization

Here l is the inagnetic length defined by 1/l =qB/Pic
(That quantity is positive if qB )0. ) For an infinite (x,y)
space, f~(x) is a harmonic-oscillator state shifted from

Standard application of the Sturm-Liouville analysis
shows that two functions fz (x) and fz (x) belonging to

&n

the same k satisfy

(p„—p )I =(p„—p )J dx fp (x)fp (x)(p„+p —2x/l )=0. (2.8)
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C. Gauge dependence and rotations

The functions described earlier were obtained in the
special gauge useful for vertical arms. We can convert to
any other gauge by multiplying by the phase factor

e~e'(~'~"' where the new vector potential A„,„= A,id+Vs. Thus to transform to the symmetric gauge
A=( By l2, Bx—l2, 0)=(0,Bx,0)+V( xyB/2—) we need
only multiply by

e
—izy/(21 ) (2.13)

the real part of (p w) is given as a function of% in Fig.
3(a). We note that the values of p decrease as m in-

creases. The values of pm for m & no are therefore com-
plex. States with imaginary parts to pm comprise the
evanescent states needed to represent the exact wave
function near the junction. We find numerically that
(pw) is real if S (

—=w /I ) is & 30 (for kw =9.5). Under
this condition pw is either pure real or pure imaginary.
For larger S the behavior is more complicated. The
maxima of pairs of values of (pw} in the figure actually
represent thresholds for complex (pw}, at which S the
purely imaginary pm acquire also a real part. For all of
these evanescent states the corresponding functions
f (x}are also complex. For the particular values 8=10
and kw =9.5, we plot in Fig. 3(b) the first few eigenfunc-
tions f (x).

hand side of the channel, i.e., towards x =w/2, as is seen
for the m = 1 state in Fig. 3(b). Evidently, when this par-
ticle moves in the x direction with wave number p it is
pushed to its right also, which now corresponds to
y = —m/2. A particle moving with —p in the x direction
will be pushed towards y =+w/2.

We have then, in the various regions of Fig. 1, the fol-
lowing wave functions. The wave function in region 2,
chosen to have only outgoing waves, is

m=1
(2.15)

M
'(Il (x y) =e&&P/(&I ) g p e &m f ( )

m=1
(2.16)

In region 3 the wave function is of similar kind to 42, in-

volving coefficients 5 . In region 1, the arm that con-
tains incoming waves in the open channels, the wave
function must be

where the constant coefficients y are yet to be deter-
mined. For no&m (M, where p (0 or is complex, the
imaginary part of p is )0. The sum up to m =M con-
tains, therefore, only outgoing waves and as many ex-
ponentially decaying waves as are needed to make an ac-
curate fit at the junction. In region 4 the wave function
with only outgoing waves is

4 (x,y)=e'&"f (y), (2.14}

To obtain the states for the horizontal arms such as
arm 4 in Fig. 1, the vector potential A=( —By,0,0} al-
lows a similar separation of variables. In terms of the
functions fz already defined, such a wave function is

+& e f (y)], (2.17)

i.e., the function which confines the wave to the channel
with —w/2&y &w/2 when the wave is traveling with
wave number p in the x direction involves —p, not p.
Physically, a particle with positive charge q traveling up-
wards with wave number p in y is pushed to the right-

where, as described earlier, f (y) means the solution
with momentum —p, and for an isolated four-terminal
junction a' =0 for m )no (i.e., there are incident waves
only in the propagating modes}. In region 5, the intersec-
tion requires waves of all types:

0'z(x, y)=e'"~ ' ' 'g [e e f (y)+e' e f (y)]+e '"~~(2' 'g [g e f (x)+g' e f (x)] . (2.18)

Note that the first two terms represent a function which is zero at y =+w/2 but can describe an arbitrary function at
x =kw/2 while the last two terms are zero at x =+w/2 and represent an arbitrary function along y =+w/2. Taken
together they describe a solution of the Schrodinger equation in region 5 that can be arbitrarily specified along the
boundaries of region 5. All of these wave functions + are solutions of the Schrodinger equation (2.1), with the sym-
metric gauge A=( —By/2, Bx/2, 0).

D. Matching

The wave functions and their normal derivatives are to be matched at the edges of the square, shown in Fig. 1; a pro-
cedure which equates eight sets of sums over modes. Since, as mentioned earlier, the functions f (x) do not possess a
simple orthogonality property, the procedure of multiplying by a specific function f (x) (or its complex conjugate) and
integrating over the side of the square to reduce these sum equations to a matrix equation whose elements involve indi-
vidual modes may be done in a variety of ways. All of those we have tried are found to produce the same amplitudes.
A judicious choice of the multiplying function for each equation reduces the integrals involved to
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y , ye& ~
y

8, =f '

(dylw)f .(y)e'~ ' f (y),

C ~
=f (dy/w)f .(y)e'~ ~ (ip +iy/21 )f (y),

D ~
= f (dy/w)f (y)e'~ '

( i—p +iy/21 )f (y),

E =f '(dy/w)f (y)e 'i' ~ e'
—0.5

F =f (dy lw)f .(y)e '" ' e—0.5

(2.19)

where m, m'=1. M. In the presence of a nonzero 8 field these are all independent integrals. In terms of these in-
tegrals [or others which reduce to them by use of the syinmetry properties off (y)], the matching procedure then pro-
duces 8M equations, 2M for each edge, which relate the outgoing waves, with coefficients a 5, and the interior
waves, e . g', to the incoming waves a' . The 8 X8 matrix equation (suppressing reference to modes) is then

—qPA
0
0
0

0
—PA

0
0

0

0 0
0 0

—qPA 0
0 —PA

0 0

0 —PC 0

qPA
x&
0
0

qPC

qx&
PA
0
0

qXD

PC

0 qPC qf' (
—)E qf'+-( )F—

(tC f', ( )F f' —( )E—

0
0

qPA
x&

qf' (+)F
f+(+)E

0 a
0 P

qx& y
PA 5

qf'+(+)E
f' (+)F
—qXD
—$C

qyBa'
0
0
0

qua'
0
0
0

(2.20)

where /=exp(ip w/2), y=P ', q =( —1),and the
other factors are slopes: f+(+)=f'+ (+w/2). The first
four rows come from matching the wave functions on the
sides 1, 4, 2, and 3 of the square, respectively, and the
second four are for matching derivatives on those same
sides. The scattering or S matrix, which expresses the
outgoing waves with coefficient a,P,y, 5 in terms
of the incoming waves a', then follows from inverting
this 8M X 8M matrix.

From the resulting amplitudes, one immediately ob-
tains the probabilities for scattering from incident open
channel m' to final open channel m forwards (F .},
sideways to the right (Ss .}, sideways to the left
(SL '), and backwards by refiection (R .).

The practicability of this method rests on its conver-
gence properties. We gauge these mainly by how well un-
itarity at the junction is obeyed. The relationship should
be g„(R„„+F„„.+Ss„„.+SL„„.)=1. For M =6, unitari-
ty may be violated in the third decimal place for kw
values close to the band edge. For the results presented
in this paper, we characteristically use M = 16, and oc-
casionally see unitarity violated by one or two parts in
the fourth decimal place. This is clearly of no practical
consequence. The rather slow convergence with M that
these results imply is, we believe, caused by the sharp
corners assumed for the confining potential, Fig. 1. As
we discussed in the case of zero field, ' a mapping argu-
ment shows that the wave function near a corner must
behave like (r r, ) ~. Thus—its slope at the corner is
infinite. It is the attempt to represent this behavior in

terms of channel functions, which have finite slope at the
edges, that causes the slow convergence.

III. MULTITERMINAL JUNCTIONS

A. Elbows and tees

Because of its symmetry, the four-terminal junction re-
quires the calculation of scattering amplitudes for waves
incident in only one arm. The symmetry then tells us the
amplitude for waves in other arms. By removing one or
two arms of that object, we obtain tee ("T") or elbow
("L"}junctions. For these, however, the unsymmetry of
the resulting junction, and the presence of a 8 field,
means that several incident-wave situations are needed.
%e enumerate the possibilities in Fig. 4.

It suSces to describe the procedure for the tee junction

Tees.

(b)

Elbows.
'

(e)
FIG. 4. Amputated versions of the four-terminal junction,

representing difFerent incident-wave situations with the tee
("T") and the elbow ("L"). For nonzero % these all have
different wave functions.
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TABLE I. Phases of amplitudes for a rotated four-terminal junction. The results of Sec. III refer to

an incident wave in arm 1 (see Fig. 1). The phase factor, mode dependent, is q =(—1) ' and should

multiply the amplitudes of Sec. III on the incident and/or the outgoing side according to the entry in

the table.

Incident
wave Rotation

0
m/2

3n /2

Inc. Ref.
Phase Factors

Trans. Snght Sleft

of Fig. 4(a). The calculation of its wave functions differs
from that for the four-terminal junction in that it lacks
arm 4, and consequently the derivative across the 5:4 side
of the square is not constrained. In terms of the matrix
equation (2.20), we must therefore omit the constants P
and the second column; and we must omit the sixth
(=4+2}equation, i.e., the sixth row. The 7MX7M set
of equations then yields the outgoing waves a, y, and
5 in terms of the incident wave a' .

B. Phase factors for the general circuit

The solution of the quantum-mechanical problem of
motion in a more complicated circuit, such as the six-
terminal junctian shown in Fig. 5(a), is clearly soluble by
application of the same methods as we have used for the
four-terminal junction. However, it is not necessary to
repeat the whole procedure. It will turn out that for cir-
cuits that involve only repetitions of the four-terminal
junction or its truncations, the wave functions and
scattering amplitudes in all arms may be abtained from
those already abtained far those junctions, by iterative
procedures following the insertion of crucial phase fac-
tors. One complication, which rotational symmetry al-

lowed us to bypass in the case of the four-terminal junc-
tion, is the need for wave functions corresponding to in-
cident waves in each of the external channels. For the
six-terminal junction, that same symmetry will allow us
to equate probabilities of scattering for incident waves in
arms 4, 5, and 6 to those with incident waves in arms 3,
2, and 1, respectively. But we do need the wave functions
for the three separate incident waves in arms 3, 2, and 1.

First, we observe that the four-terminal wave functions
we obtained, which relate outgoing waves in all the arms
to incoming waves in only one arm, are special in that the
incoming wave was in arm 1, i.e., x —+ —00. One could
redo that problem with incoming waves in each of the
other arms. But the equivalent result can be obtained by
applying a rotation to the system of wave functions we al-
ready have. Rotation of m. /2 about the origin is
equivalent to the transformation i~j, j,~—i (where i
and j are the unit vectors along the x and y axes) and
x~y, y~ —x. This clearly leaves the symmetric gauge
A=( —By/2, Bxl2,0) unchanged. It is physically clear
that the probabilities I' ~ R, Sz, and SL ~ de-

pend only on the relative orientation of the outgoing and
incoming arms of the junction. The probability ampli-
tudes f,r, sz ~ and sL ~ almost have this prop-
erty: as may be calculated, they acquire also, however,
extra phases (

—1) ' according to the scheme listed in
Table I.

The circuit shown in Fig. 5(a} consists of two four-
terminal junctions, whose centers are a distance d apart.
If we locate the origin of coordinates at the center of the
left-hand side junction, all of our previous wave functions
apply without any modification to that square and its sur-

aI(

(b)
FIG. 5. More complicated junctions obtained by concatena-

tion of the basic four-point junction: (a) the six-point junction,
with a separation between centers of d; (b) the loop, a rectangle
d Xd'. The notation is described in the text.
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rounding arms. For the right-hand side junction, we
proceed as follows: our previous solutions apply to any
junction for which the zero of A is located at its center.
If we now suppose that center to be at (d, 0,0), then our
previous solution, with x ~x —d, y ~y refers to the vec-
tor potential A'=( —By/2, B(x —d)/2, 0). The gauge
transformation A =Byd /2, which brings us back to
A=( By—/2, Bx/2, 0), together with the translation,
produce in arms 1' and 2' of the right-hand side junction
[in fact, the central arm and that labeled 4 in Fig. 5 (a)),
for example, the wave functions

P, (x,y)=e'"~ ' g [a e e f (y)

collinear circuit.
We also wish to consider compound circuits that con-

tain loops. The simplest such circuit is the rectangle
shown in Fig. 5(b), made up of four, four-terminal junc-
tions. A translation in the y direction to (O, d', 0), accom-
plished in a manner similar to the x translation just dis-
cussed, needs the gauge transformation A'= —Bd'x/2.
The resulting functions, for the junction at (O, d', 0) but
with vector potential A=( By—/2, Bx/2, 0), are

+a' e e f (y)], (3.1a)

(3.1b)

+a' e f (y —d')),
(3.2a)

Comparing with Eqs. (2.15) and (2.17), we see that the to-
tal effect of the x translation is to insert expected

—+'&msubband-dependent phase factors e in the horizontal
arms and an overall subband-independent phase factor in
the vertical arms. (Note that d is the distance between
centers of the junctions. )

This result allows us to develop the simple iterative
scheme of the next section, in which we need go back no
further than the amplitudes r, f, s!t, and

sL, with phase factors q =( —1) ' and e where
appropriate, in order to calculate the properties of any

I

2(x,y)=e " ' gp e " e f (x), (3.2b)

where 1"and 2" refer to the left-hand side arm and upper
arm of the upper left junction in Fig. 5(b). To construct
wave functions for the top right-hand side junction, cen-
tered at (d, d', 0), we may take the functions constructed
for the junction at (d, 0,0) and translate them upwards by
d'. To repair the vector potential we need the same
gauge transformation A' as we just used. The net result,
for functions centered on this junction but with
A =( —By/2, Bx/2, 0), is

(»y)=e ' " 'e'"' ' +[a e e f (y d')+a' —e e f (y —d')], (3.3a)

(x y ) e idd'/! idyl! ixy/2! —y '~m '&m~f
( d ) (3.3b)

An effect of the two successive gauge transformations is
the appearance in $2. of the inverse of the Aharonov-

'dd' IBohm phase factor P~n=e'
It would be possible to obtain wave functions to de-

scribe this junction by performing the x and y transla-
tions in the opposite order. One then obtains expressions
that are different from those we just derived [Eq. (3.3)] by
a factor P~B in both arms. The appearance of the phase
factor P~B depends on the path taken along the circuit to
get to the junction, an expected property for such trans-
formations. The total wave function of all four junctions,
which we describe in a later section, will be a single-
valued quantity, of course.

C. An iterative scheme for multiterminal junctions

Once the scattering amplitudes have been calculated
for the four-terminal junction, it is possible to combine
these amplitudes iteratively for two or more four-
terminal junctions so as to obtain amplitudes for mul-

titerminal junctions. This is important since the experi-
mental arrangements for the study of the Hall effect usu-
ally involve such multiterminal configurations.

First, we consider the combination of several four-
terminal junctions so as to obtain a linear array of n

equally spaced junctions as pictured in Fig. 6(a). In the
symbol SJ"; for the scattering amplitude for this n-

terminal junction i designates the arm through which the
particles enter and j the arm through which they leave,
according to the numbering scheme in Fig. 6(a). In addi-
tion SJ"; is a matrix S,.";(jm, im) in the space of modes (sub-
bands), im for the entrance arm and jm for the exit arm.
The indices im and jm are suppressed in the following
discussion: the equations are matrix equations with ma-
trix products and matrix inverses in this subband space.
It is important that matrix products in these equations
contain sums over the evanescent modes as well as the
propagating modes for intermediate states, although the
final products need only be evaluated with initial and
final propagating modes in the external arms. We build
up the scattering amplitude S"-, from the basic S&, for the
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(b)
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Alo

(n)
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ll

n-2

n-I

S".
, and S, . A and B are column vectors in the subband

space. They are meant to be the coefficients of the wave
functions just to the right of SJ",. To propagate A over to
the place where these waves enter the four-terminal junc-
tion we need the product PA of A with the diagonal
propagation matrix P (3.4) [compare Eq. (3.1)]. Here and
below we start with the initial state on the right and mul-
tiply on the left to obtain the final or intermediate states.
Suppose now that the entrance arm for the n +2 terminal
junction is one of the terminals i &n of the n-terminal
junction described by S";. We can calculate B from A us-

ing the properties of S; and the propagation matrix P:

B =PS))PA (3.5)

i.e., propagate A to the right with P, reQect it on the
four-terminal junction and then propagate it back to the
n-terminal junction. The A has two sources, the entrance
arm just alluded to and the wave B;

A =S„";+S„"„B

=S +S~ PS )]PA

This matrix equation is easily solved:

A =(1 S„"„PS,)—P} 'S„"; .

(3.6)

(3.7)

four-terminal junction. These latter quantities can be ob-
tained from S~&, in which the entrance arm is 1, by suit-
able rotations, taking proper care of the phase factors of
Table I that arise when the wave functions, of which the
Sj' are coefficients, are rotated. Another quantity that is
needed is the diagonal matrix of propagators

p 1StIP ~ d (3.4)

This describes the propagation of the plane waves with
wave numbers p; depending on the mode (subband}
numbers im The dist.ance d is the distance between junc-
tion centers along the linear array of Fig. 6(a). Note that
for the evanescent waves p; will have an imaginary part,
describing the exponential decay of these modes as a
function of distance away from a four-terminal junction;
for d sufficiently large, of course, the evanescent waves
will have effectively decayed away at the next terminal.

Figure 6(b) illustrates how the (n +2)-terminal ampli-
tude S";.+ is obtained by combining the four-terminal
junction SJ; on the right with the n-terminal junction S,.
on the left. The derivation depends on the linearity of the
problem and the definition of S;.. With ingoing waves in
several arms i with amplitudes a;, the outgoing waves in
the arms j will be given by linear combinations Q,.S,a, .
We introduce the state vectors A and B describing the
waves traveling to right and left in the wire connecting

FIG. 6. Schematic representations, with appropriate notation
(see text) for (a) the n-terminal junction; (b) the concatenation of
it with the four-terminal junction to form the (n +2)-terminal
junction; (c) the combination of four, four-terminal junctions
just before closing to form the rectangular loop. The currents
A &0, A &, and i are defined in the text. S"+ =S"+S"B (J (pg) (3.8)

If the exit channel j is attached to the four-terminal junc-
tion on the right,

SJ";+ =S. „+2,PA, (j ~ n) . (3.9)

This takes care of the cases i (n. For the cases i =n,
n+1, and n+2, where the entrance arm is one of the
terminals of the four-terminal junction on the right we
have to proceed differently. In the present case of a
linear n +2-terminal junction we can obtain these cases
by rotation through 180', starting with one of the cases
i &n, paying careful attention to phase factors. If this
were not available, as in the case described below of ter-
minals arranged in a square, we would need to derive
equations similar to but slightly different from (3.5)—(3.9)
with the entrance channel on the four-terminal junction
on the right.

Once the scattering amplitudes are known, the
remainder of the calculation, leading to the voltages at
the various terminals for specified currents, the Hall
resistance, etc. , is done in terms of amplitudes squared
and summed over the open channels (i.e., those with
propagating modes)

Im, Jm
open

IS,;(jm, im}I (3.10)

Before proceeding we note that unitarity (conservation of
probability) demands

Once we know A and consequently B from (3.5), we can
find the desired n +2-terminal scattering amplitudes. If
the exit channel j & n is attached to the n-terminal junc-
tion on the left (recall i & n also),
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Tj no (3.11)

where no is the number of open channels. Further,
reciprocity (time-reversal invariance) gives TJ., (B)
= TJ( —B), where B is the magnetic field. Since the sys-
tem with magnetic field reversed is also a possible system,
we find

Tji n0 (3.12)

where the sum is now over the incident arms. The condi-
tions (3.11) and (3.12) are very useful checks on the com-
puter code.

To proceed further we use the formalism of Biittiker.
The conductance matrix in units of e /h is

O'J'&
—n p5J, Tji (3.13)

The currents entering the terminals I are related to the
voltages on the terminals V; by

NI

I = ger;V;, (j=1,2, . . . , N1). (3.14)

Although i and j range from 1 to the number of legs NI,
N

the I are not independent [+~1',IJ =0, see Eq. (3.11)],
and, furthermore, we can add the same voltage V to all
the V; without changing the currents [see Eq. (3.12)]. We
consider the special case with the currents I, = IN and—

I

all other currents zero, and we take V1v =0, thus truncat-

ing the matrix equation (3.11) to a space of dimension

N, —1, with IJ =(1,0,0, . . . , 0). In this space the matrix
o 1; is nonsingular and we can invert to solve (3.14) for the

V; corresponding to unit current from arm 1 to arm NI.
Differences of these V; give the components of the resis-
tance matrix in units of h /e2. Numerical results will be
given in Sec. IV.

keep the gauge always the same A=( B—y/2, Bx/2, 0)
with x =y =0 the origin of the first junction, the wave
functions change to

41 PAB((1 ~

42 ( AB42 &

(3.15)

(()ABA1 =PS1p +PS1p 1 1+ 1p 1p 1p

pAB A 1p=PS1;+PS1 1 A1+PS1 1Ap1p.
(3.16)

The phase factors on the left compensate for the
Aharonov-Bohm phases in (3.15). Once we have solved

(3.16) for A „A,p we calculate the outgoing amplitude in

arm j as before to obtain the scattering amplitudes for the

square:

Sj' Sj'+Sj ] A ] +Sj ]OA ]p
E' =2 3 . . . 9

Id 2/I 2
where tI)AB=e'" . Thus wave functions for all arms of
a single four-terminal junction pick up the Aharonov-
Bohm phase factor after one loop of transformation as
noted in the last paragraph of Sec. III B.

In addition, when we join arm 10 to arm 1 in Fig. 6(c)
to form a square circuit enclosing the fiux Bd, we have
an additional set of self-consistency conditions to satisfy.
Suppose A] and A]0 are the state vectors describing the
total ingoing currents in wires 1 and 10 to the neighbor-

ing four-terminal junctions. In addition we have an ingo-

ing current in arm i [arm 3 in Fig. 6(c)]. We designate by

Sj ' Sj the scattering matrix for the square array of Fig.
6(c) before joining. This is obtained from equations like
those for the linear array described above, with the
modifications due to the square geometry. After joining
wires 1 and 10 we have three source currents i, A, and

A ]0 so using linearity to find the total right and left
currents in the joined wire, also A, and A ]0, we find the
self-consistency conditions

D. Loop circuit
j=2,3, . . . , 9. (3.17)

The formalism described above is readily modified to
describe an array of terminals arranged around a
square —see Fig. 6(c). Two new features appear when we

complete the square, i.e., join arm 1 to arm 10. These de-
scribe the manifestation of the Aharonov-Bohm efFect in
our formalism.

First, there are the phase factors associated with the
necessity of doing the calculation with the same unique
choice of gauge for all the various junctions of Fig. 6(a)
or 6(c) displaced from each other by translations d in the
x or y directions. These were discussed in Sec. III B. A
translation in the x direction by a distance d is described
by Eqs. (3.1a) and (3.1b). For the linear array of Fig. 6(a)

p d
the factors e are properly included in our phase ma-

I d/1trix P, Eq. (3.4) and the factor e' ' in (3.1b) drops out
when the amplitudes are squared. However, for the
square of Fig. 6(c) the situation is more complicated.
When we make four successive translations
(x~x —d,y~y), (x~x,y~y+d), (x~x+d, y~y),
and (x ~x,y~y —d ), around the square of Fig. 6(c) and
the four concomitant gauge transformations necessary to

K. Alternative method for the loop circuit

An alternative view of the loop circuit allows one to
see some of its symmetry properties. For brevity we spe-
cialize to the square loop circuit shown in Fig. 5(b) with
d =d'. Symmetry allows us to restrict our attention to
only two incident waves, i1 or i2. We have already
developed in Sec. II the wave functions appropriate to
each of the four, four-terminal vertices. For those ver-
tices without external currents there are only two
separate orientations of these wave functions needed, cor-
responding in each case to incident waves along one of
the connecting arms. At the lower left junction there are
three sets of four-terminal wave functions, two associated
with incident waves in the two connecting arms and one
for the incident wave i 1 or i 2. Along each arm, there is a
two-component equation relating the amplitudes of waves
traveling in each of two directions. For example, denot-
ing the amplitudes of the incident clockwise (counter-
clockwise) waves at each vertex by A '"

( A ""), where
a =a, b, c,d refers to the vertices as in Fig. 5(b), the equa-
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tions for the arm connecting vertices c and d, are

R A cw+S A ccw A ccw
d L d c

A'"=S A' +RA""
d R c C

(3.18)

where R, S„,and SL are M XM matrices whose elements
lp 'pm

are, respectively, e q r, e sR, and
'pm"

e q sL . For the arms joining at vertex a the equa-
tions for the clockwise and counterclockwise amplitudes
also involve the amplitudes of the incident external wave,

A;, or A;z. These eight equations can be written in a
compact two-component notation using vectors

A cw
a

g ccw
a

(3.19)

and matrices

R SL

1 0
0 1

SR R (3.20)

where R, SL, and SR are the same matrices as in Eq.
(3.18). The eight equations become

(3.21}

The incident spinors are given by

—FA;& —SR A12

0
0

SL A;i+FA;2

[ 1 y
—1(/ —l~ )4]

—1

(3.23)

(3.22)

IP d
where F is the M XM matrix e q f . With our par-
ticular choice of wave functions, as described in Sec.

id2/l~III B, the Aharonov-Bohm phase P„B=e' ' appears
only in the first equation.

These matrix equations can be solved in a standard
way, so that for example

tinct from, the symmetry of the resonant states of the
four-point junction discussed earlier.

IV. RESULTS

A. Hall resistance of the four-terminal junction

The general analysis of Buttiker gives the Hall resis-
tance RH as a function of the total probabilities discussed
at the end of Sec I.ID, F=g„„F„„,Sz =g„„,Sz„„,,
SL =Q„„St„„,and R =g„„R„„,summed over all open
channels:

2 2(Sti —
SL, }

RH=
h (2F +Sq +SL ) +(S„—SL )

(4.1)

1. Phase shift analysis-

It is noteworthy that the unitarity property, which lim-
its the total quantities by R +F+SR +SL =no, does not
restrict R to be I lno, the expected large-w result. The
plateau with this value of % corresponds to Sz =no and
all the other probabilities being zero, but unitarity cer-
tainly does not require those values. For physically ac-
cessible values of the scattering probabilities, R may be
larger or smaller than 1/no, and it may even be negative
(see also Ref. 15}. These departures are the consequence
of quantum e6'ects associated with the junction, and they
constitute the new results that we present.

In Fig. 7 we show three-dimensional graphs of the re-
sults of our calculation, the surface % as a function of kw
and S=ta /l =(w q/Rc)B. Figure 7(a) gives a slightly
di8'erent perspective on the same results presented in Fig.
2 of our previous publication. ' The wide wire integer
quantum Hall effect can be seen in the large w /l =8
portion of the graph, where the wire width w is large
compared with the magnetic length l. In this region, we
find S„=no, and thus %=1/no, except at the abrupt
transitions, where no changes as a new propagation mode
opens. Figure 7(b) is a head-on view looking along the B
axis. Figure 7(c) gives a close-up view of the complicated
behavior near kta =6.0 and S& 10.0. In Fig. 8 we show
three slices at fixed kw through this region and in Fig. 9
two slices at fixed B. We note in particular the quench-
ing' of the Hall resistance at small B for the special value
kw =5.5 shown in Fig. 8(a) and the extra plateau (which
is not at I/no) in Fig. 8(c).

With this closed expression, one can foresee the possibili-
ty of large internal amplitudes, depending on the size of
the factor in the first set of square brackets. This factor
would be zero, making the amplitude P, infinite, if one of
the eigenvalues of (X '%) was equal to /As, which
would occur if an eigenvalue of X 9i,' is equal to A,g~u,
where A, =1, or A. = l,i, —1 or —i. An actual zero will
occur only for unphysical, complex values of kw, but, for
real kw, the factor can pass close to zero, a behavior
characteristic of resonant scattering. We can anticipate
that such resonances should show up in the voltages on
the external leads. The approximate four fold symmetry
in the circuit, due to its shape, resembles, but is quite dis-

R (vr/2)g(x, y) =f(y, —x) =A/(x, y),
with A, =1, i.e.,

(4.2)

We have attempted to understand the structure in
these results in terms of the predominant inAuence of
states with specific quantum numbers. The quantum
numbers depend on the symmetry of the system together
with its boundary conditions. For any value of even
with the walls in place, the four terminal junction is in-
variant with respect to rotations through m. /2, R (~/2), in
the plane of the junction. Since four such rotations in se-
quence produce the identity operation, states can be
classified into four symmetry classes such that
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/
'l,

OO

FIG. 7. (Continued).

1.2

0.8-

%04

(o) kw= 5.5
A, =1, 1, l, (4.3)

For each of these four states the wave functions in the
four arms differ only by powers A,", n = 1,4, of these four
values of A.. The amplitudes in the four arms for each of
the four states (the arm numbers refer to Fig. I) are
shown in Table II.

2 4 6 8

io (b)kw=65

10
4'= 6

0.5-

o

' 0 4 8 l2 16 20
1.2

(c) kw=8. O

0.8-

1.5
(b)

I.O—

0.4

0 5 10 15 20 25

FIG. 8. For the four-terminal junction, sections through the
%' surface shown in Fig. 7: a range of g (a) at kw =5.5, below
the second band edge; (b) at km =6.5, showing structure at the
second band edge; (c) at km =8.0.

I

12
I

10
) I I

4 6 8 l4
kw

FIG. 9. Additional sections through the A surface of Fig. 7:
a range of kw values for (a) %=6.0 and (b) %=16.0. Also
shown is the quantity 1/no, where no is the number of open
channels.
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TABLE II. Relative phases of wave functions in the arms of
the four-terminal junction, corresponding to the states A, , Eq.
(4.3).

0x
o I-

(a)ss= 2
4

(b) 88= 8
3-

2-

0-

3
(c) 88=is

8,

0-

1

1
—1
—1

r =
—,'(S)+S )+S;+S;),

f=
—,'(Si+S i

—S;—S;),
s„=—,

' (S, —S,+iS; iS—; ),
s&= —,'(S& —S

&
iS;+—iS; ) .

Inverting these equations we find the amplitudes S&.

S, =r+f +s„+si,
S

&
=r+f —s„si, —

S;=r f is, +—is—I,
S,=r f +is„is& .——

(4.4)

(4.5)

For wave numbers kw such that only one channel (m
valve of Sec. II A) is open the amplitudes Sz can be writ-

ten in terms of real phase shifts 5&,

In terms of the states designated by A, the scattering
amplitudes S& for the four-terminal junction are diagonal
in A, . Sz is still a matrix in subband 77t, m' space. Refer-
ring to Table II we find the amplitudes for re6ection, for-
ward scattering, and scattering to the right and left

Vl

3 4 5 6
kw

3 4 5 6 7 4 6.8 7.2 76.
kw kw

FIG. 10. Phase shifts for the four states with A, symmetry
(full lines) and the Hall resistance (dashed line) for the four-
terminal junction over the range of values of ku below the
second band edge; (a) for %=2.0; (b) for 9=8.0; (c) for
g= 16.0.

l.2.

I.O

0.8-:

g 0.6-:.

kw=5. 8. At %=16.0 we have two dips in % corre-
sponding to states with A, = —i and A, = l.

For 8=8.0 the second threshold is at kw=6. 6. For
larger kw the phase shifts Sz become complex. In this
range of kw we can still obtain the amplitudes S& from
Eq. (4.5). To display them graphically we give in Fig. 11
Argand plots, i.e., plots of ImS& versus ReS& as functions
of kw. The unitarity condition constrains these plots to
the interior of the unit circle, and below the second
threshold the plot will lie on the unit circle. Resonant be-
havior appears in such an Argand plot as rapid (as a
function of kw) traversal of a circle (of radius ~ 1) in the
counterclockwise sense with increasing kw. The circle (of
unit radius) corresponding to the A, = i stat—e at kw =5.8

2i 5~S~=e (4.6) 0.4-:

For higher wave numbers with several open channels we
have only the weaker unitarity requirement

(4.7)

0.2-:

6 8
kw

IO l2 l4 l6

since the incoming wave is in one channel, but the outgo-
ing wave is partly transferred to other channels (different
m values).

We can obtain information about the states responsible
for the structures evident in Fig. 7 by performing a
"phase-shift analysis" of the sort just discussed. From
the amplitudes r,f,s„si used to calculate the Hall resis-
tance we can calculate the amplitudes Sz from Eq. (4.5)
and from these the phase shifts using Eq. (4.6) for kw
below the second threshold. Phase shifts calculated in
this way and the corresponding Hall resistance for the
three values 8 =2.0, 8.0, 16.0 are given in Fig. 10. It is
easy to identify pronounced drops in the Hall resistance
with resonant behavior, i.e., rapid increase of the phase
shift through m. , in states with specific A, values. At
%=2.0 resonant behavior in the A, = —1 state corre-
sponds to a dip in % at kw =6.l. At %=8.0 resonant be-
havior in the A, = i state corres—ponds to a dip in % at

I.O
b)

0.5-

0-
V)
E

-0 5-

—I.O
—I.O -0 5 0

Rq SII
0.5

1

1.0 -I.O -0.5 0
Re SII

0.5 I.O

FIG. 11. For the four-terminal junction at S=8.0: (a) struc-
ture of the Hall resistance as a function of kw; {b) Argand dia-

gram of the scattering amplitude for the particular scattering
state of symmetry class A, = —i responsible for the rapid varia-
tion of A near kw =5.8; and (c) Argand diagram for the state
with A, =i, associated with the dip at kw =9.4.
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below the second threshold is evident in Fig. 11(b). It is
also easy to identify a circular pattern in Fig. 11(c}for the
A, =i state and associate it with the rapid dip in the Hall
resistance at kw =9.6. In this way we can find quantum
numbers for the states responsible for the principle struc-
tures in the Hall resistance of Fig. 11(a}.

Rapidly varying phase shifts for real kw generally sig-
nify the presence of a pole of the scattering matrix at a
nearby complex value of kw. For our problem the
scattering matrix is the inverse of the matrix appearing
on the left side of Eq. (2.20). The poles of the scattering
matrix thus correspond to the zeros of the determinant of
the matrix of Eq. (2.20). We can search for these zeros
with a Newton's method using solutions of the
differential equations for complex kw. This has proved to
be a more eScient way than the phase-shift analysis for
identifying states corresponding to important structures
in the Hall resistance, and we now describe some of the
results.

2. Resonant states as poles of the scattering matrix:
real and virtual levels

As with any scattering problem, rapid variations in the
partial cross sections (probabilities F, Sti, and SL ) may be
associated with virtual levels (resonant states) of the sys-
tem. To enumerate the possibilities for our system,
whose properties depend on the strength of the magnetic
field, we recall that for %=0 there are two bound states,
the ground state at kw =2.56, which has even parities in
both the x and the y directions, and the first excited state
at kio =6.06, which has odd parities. At zero 9 we ex-
pect to find poles in our scattering matrix at these values
of kw. At higher S, these poles should persist, changing
position smoothly as a function of 8, and carry some
remnant of their zero-8 symmetry.

Relevant to the high@ limit are the two-dimensional
Landau orbits. They are the solutions for motion in a
transverse magnetic field in a two-dimensional region of
infinite extent. They have wave functions P„(r, 8)
=y„~~~(r)exp(im8), where the function y„~~~(r) has n —1

radial nodes, and energy levels such that
(kw) =(2n —1+ ~m~

—m)S. The levels possess discrete
degeneracies, e.g., that for all m ~0. Physically the
m 0 wave functions correspond to positively charged
particles moving in clockwise circles with energy levels
given by the Landau formula. Out of them can be con-
structed wave packets representing the appropriate clas-
sical trajectories. The m )0 states have radial wave
functions identical to those of the corresponding m (0
states, and their 0 dependence appears to correspond to
motion in a sense opposite to that of the classical motion.
However, they cannot be used to construct wave packets
of counterclockwise-rotating particles. For a given n,
they have an expectation value for net kinetic angular
momentum

which is, for m & 0, independent of the m of the 8 depen-

dence, and is equal to that of the m =0 state. They are
an infinite set, degenerate in energy and angular momen-
tum, and their purpose is, by appropriate superposition
with states of m ~ 0, to permit a translation of the center
of the motion, a possibility that must exist in an infinitely
extended S field. Since the classical turning point of the
n, m states is r, -2(2n —1+~m~}'~ l, and our channels
are only w wide, the presence of poles corresponding to
Landau levels of a given n and m must clearly depend on
l being small compared with w, i.e., on %=w /l being
large. For r, lia much less than 1, we may expect to be
able to identify the dominate n, m values of our resonant
states as the presence of the wall becomes less important.
As we locate the poles corresponding to the various exact
A, symmetries, we will be able to identify thein at large%
with Landau orbitals of specific n and m.

It is necessary to obtain the sets of solutions f of the
differential equations for complex values of kw. The
poles are located by searching for the zeroes of the deter-
minant of the matrix (2.20) as a function of complex kw
by using Newton's method. It is possible either to locate
such a zero and to determine its A. symmetry by examin-
ing the phase relationship of the wave functions in the
four arms, or, more economically, to impose a particular
A, symmetry on the wave function and to look for zeros of
a determinant of reduced size. When the poles corre-
spond to decaying states, which is the case for all except
those below the first band edge, kw has a negative-
imaginary part. Consequently, as may be verified from
the zero-8 relationship (p w) =(kw) —(mm), the
values of p w for those channels that are open also have
a negative-imaginary part. The p w values for the closed
channels are mainly positive imaginary, now with a small
negative real part. As S is changed, the value of Re(kui)
may approach a band edge k;w. As kw passes below k, ui

in the complex kio plane, care must be taken in the calcu-
lation of p; w so that its complex phase increases in a con-
tinuous manner. In the computation, this necessitates
the rotation of cuts of complex functions such as the
square root.

The zero-8 ground state possesses the exact rotation
symmetry A, =l. Calculations show that it remains a
stable state, below the first band edge for all S. The
modulus squared of its spatial wave function g(x,y) is
displayed in Fig. 12 for %=0 and %=15. There is evi-
dent contraction of the wave function due to the magnet-
ic field. A property of all such exact states is that for
general X they can be represented by a superposition of
Landau levels with the same exact symmetry. In this
case that symmetry is A, = 1, so that the superposition can
include all Landau levels with m =4p, where p is a posi-
tive or negative integer. This admixture produces the in-
dentations (with fourfold symmetry) of the wave function
at %=15, Fig. 12. As % increases further, the reduced
spatial size of the motion (proportional to l) means that
less of the admixture of higher Landau orbitals is needed.
Thus as S tends to infinity, this state tends to the node-
less Landau level n =1,m =0. It is evident from Fig. 12,
however, that S~ 15 is still somewhat distant frotn that
limit. In the present noninteracting electron phase of our
calculation this state has no effect on the Hall resistance
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band edges lie above the Landau levels and approach
them as S increases. At %=20, where r, lw =0.44, the
ground state, with A, =1, is just above the first Landau
level. Above it but below the first band edge (i.e., on the
physical sheet of kw) are successively the states A=.i,
which we identify as n =1,rn =1, and A, = —1, or
n = l, m =2. There is no A, = i sta—te there. At %=15,
the situation is almost the same, except that the last-
mentioned (A, = —1) state has moved onto the second (un-
physical) sheet. Just below the second band edge at
8=20, there is the first k= i s—tate, n =l, m = —1, and
slightly above it another A. =1 state that we identify as
n =2, m =0. We observe that this state is larger in physi-
cal extent than the n = 1,m =0 state (the ground state),
and that states with A, =i and —1, such as accompanied
the ground state, have not yet appeared on the physical
sheet. This and similar observations that may be made
concerning Fig. 13 lead us to the following physical pic-
ture for high S: for the pth band edge the state lying
closest to the pth Landau level, a little below the band
edge, will be n = 1,m = 1 —p, the geometrically most
confined state belonging to this level. It will have the ex-
act symmetry A=i" ~'. States with 1 —p &m ~0 and
n =p —ImI, since they are larger in radial extent, will
have kw values lying above this state, perhaps on the
second sheet. States with positive m appropriate to this
Landau level may also appear, to the extent that the
m & 0 states have room to translate in any direction and
not collide significantly with the walls of the junction.
Their presence and proximity in kw value permits the
construction of Landau states translated from the center
of the junction.

Comparing Figs. 7 and 13 (parabolically confined chan-
nels give siinilar patterns' ) we see that each of the val-
leys and "extra plateaux" of Fig. 7 is associated with one
of the poles of Fig. 13. Poles whose positions have small
imaginary parts generate valleys that widen out into pla-
teaux as the imaginary part becomes large at smaller S.
The poles which contribute significant structure to % ap-
pear to be those that occur at low S for a given band, at a
kw well distinct from the band edge. For higher bands,
and for kw well above the band edge, the relevant value
of p;w, proportional to the velocity of the particle along
the channel, is large, and the sideways Lorentz force pro-
duces orbits obeying the "turn-right" rule. One does not
expect large overlap between such scattering states
(which tend to stay near the edge of the channel) and the
kind of resonant states we have examined (which are
syminetrically located about the center of the junction),
except when the velocity is low, which occurs just above
the band edge. This gives a physical explanation of one
of the results of Fig. 13, which shows the states as being
confined by the Landau levels and the band edges to a re-
gion of kw that decreases as X~~. One thus expects in
% a structure, which for high S is confined narrowly to
the band edges, and may become self-canceling, as states
with A. values of both i and —i are concentrated in this
range of S.

B. Tees and elbows

The scattering probabilities for the four-terminal junc-
tion of Fig. 1 as well as the tees ("T")and elbows ("L")of

n' n' n'

with n =1, i.e., the incident wave is only in the lowest
open channel.

Dominant features for most of the junctions are the
cusp structures near the opening of new channels at kw
close to multiples of m and resonances just below these
thresholds. The variations near kw =5.6 and 9.2 for the
full four-point junction, discussed earlier as a manifesta-
tion of resonant virtual levels with exact symmetries
A, = —i and i, respectively, are for the amputated junc-
tions either shifted in kw or are absent, a not unreason-
able result of modifying the confining potential.

It is seen from Fig. 14(a) that for the full junction, the
left-turn arm contributes &10% to the overall process.
It is therefore reasonable that for the tee junction [Fig.
14(d)], which lacks a left-turn arm, the remaining proba-
bilities are very similar to those of the full junction. A
similar interpretation applies to the tee junction [Fig.
14(c)], which has a left-turn arm but no right-turn arm,
and for which, except at thresholds, there is only forward
scattering. At the simple elbows [Figs. 14(e) and 14(f)],
there is mainly left or right scattering until the second
threshold at kw =6.3. Thereafter, they both cause
significant reAection, with variations that are quite kw
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FIG. 14. Scattering probabilities as a function of kw, for
=6. 0, according to the convention Sz (right scattering), solid
line; SL (left), dashed; I' (forward), dotted; and R (backward),
chain dash; for (a) the four-terminal junction; fb)—(d), the tee
("T")junction with the three possibilities for incident waves; (e)
and (f), the elbow ("L") with the two possibilities for incident
waves. The line convention is the same throughout.

Fig. 4 made from it by removing some of the arms are
recorded in Fig. 14 for the value Iii=6.0 and a range of
kw covering the opening of four channels. We plot

S~ —g S~„„,Sl = g SL„.„, F = g F„„,R = g R„„,
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dependent. Up to the third threshold kw =9.5 the total
scattering probabilities are remarkably similar for left
and for right elbows; at larger kw values they start to
differ significantly. It is important to note this fact: in-
clusion of elbows or other abrupt changes in shape have
nonignorable effects on the scattering probabilities of the
circuit, and therefore on its resistive properties.

In anticipation of the possibility of more detailed ex-
periments in the ballistic regime that permit the detection
of individual mode occupation probabilities (as distinct
from summing over all modes in obtaining the Hall resis-
tance} we show in Fig. 15 the probabilities that a particle
incident on either of these elbows in the mode m =1
scatters or rejects into other open modes. It is clear that
in the region 6.3&kw &9.4, where just two outgoing
modes are open, the left and right elbows differ markedly
in this intermode scattering, whereas the total scattering
in that region, as seen in Figs. 14(e} and 14(i}, is very
similar for the two junctions. Although brevity does not
allow further display, such results pertain to all of the
junctions we shall discuss: intermode scattering rejects
more sensitively than total scattering the characteristics
of any of the configurations we examine.

C. Six terminals and higher

FIG. 1S. Intermode scattering probabilities for the elbow
("L")junction as a function of kw for %=6.0, according to the
convention that left or right scattering into mode m is labeled
t (for transmission), and backward scattering is r (for
reflection); the incident beam has mode m =1. (a) Left-turn el-
bow; (b) right-turn elbow.

Figure 16 gives some results for the six-terminal junc-
tion of Fig. 5(a}, which might be said to be a closer ap-
proximation to actual Hall-effect circuits than the four-
terminal junction customarily discussed. In our calcula-
tion the current Qows between arms 1 and 6, with no
current in arms 2—5. Figure 16 gives the transverse Hall
resistance R32 and the longitudinal resistance R35 From
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(b) d/w =2
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FIG. 16. Resistance for the six-terminal junction of Fig. 5(a) [with separation d/w =2.0, in (a) and (b) and d/w = 10.0 in (c) and
(d)] as a function of kw for %=6.0: (a) and (c) the Hall resistance R)3, (b) and (d) the longitudinal resistance R3).
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FIG. 18. Voltages of various leads of the square loop circuit
for kw =5.0. The current flow and the numbering of the leads
are shown in the inset. The curve conventions are: u1, long-
dash short-dash curve; v2, dashed; u3, dotted; v4, solid. The
average of the lead voltages is defined to be zero, so that by ro-
tational symmetry u8= —v4, u7= —v5, etc. (a) Voltage as a
function of 8 for d/w =1.95; (b) voltage as a function of d/w
for 9=8.0.

enters in arm 4 and leaves from arm 8, and there is zero
current in the other external arms. The voltages for a
square loop, d/w =1.95, for kw =5.0, are shown as a
function of 8 in Fig. 18(a). At low 8 the Aharonov-
Bohm oscillations are seen as sinusoidal changes superim-
posed on slower fluctuations similar to those of the four-
terminal junction as in Fig. 8. As the Hall plateau
(V=0.5 corresponds to 37=1.0) is approached these
sinusoidal oscillations become much sharper, more reso-
nance like in shape and, at large 8, are extremely narrow.
Finite-temperature averaging is likely to make these reso-
nances dincult to observe experimentally. Thus the
Aharonov-Bohm oscillations observable at low S are
likely to be washed out at high S. Experiments on circu-
lar loops' ' show effects similar to these.

The analytic treatment of the loop problem in Sec.
IIIE helps to understand the periodicity of these reso-
nances. We note, referring to Fig. 2, that there is only
one open channel, and from Fig. 7 that the characteris-
tics of the four-terminal junctions forming the corners of
the square are free of rapid fluctuations in this region.
We recall that our analytic treatment in Sec. III E encom-
passes the possibility of resonant behavior. Following the
arguments given there, we expect that an internal wave of
large amplitude circulating around the square would

suffer a phase shift 5~ on turning right at a corner, the
phase acquired along each arm would be p, d (since only
mode 1 has a traveling wave), so that together with the
Aharonov-Bohm phase —S(d/w) the total phase accu-
mulation around the square is 4(5z+p, d) —$(dlui) .
The condition for large internal waves is that this phase
is a multiple of 2m. For fixed k and %, the phase 5+ and
the longitudinal momentum p& are fixed, so that the total
phase is quadratic in d/w. To verify this hypothesis we
show in Fig. 18(b) the voltages of the same square, and
again kw =5, but for fixed %=8 as a function of d/w.
The resonant positions show this quadratic dependence
on d/io, for fixed S.

Similarly, by making 1/w larger the 8 dependence of
this total phase accumulation becomes dominated by the—S(d /w)2 term, i.e., 5z and p, can be considered slowly
varying functions of K In such a case the oscillation
spacing is approximately ~=—2m(w/d) . In Fig. 19(a)
we show the same voltages as in Fig. 18(a) but for
d/w =6.0 instead of 1.95. The oscillation frequency is
much higher and again the resonances become very nar-
row in the region of the plateau.

Aharonov-Bohm oscillations are often described in
terms of the amount of flux enclosed by the closed orbit
of the electron P=% (area/ic ). Since the channel width
is finite the area enclosed by the square loop is ambigu-
ous, lying between (d —w) and (1+w) . One might ex-
pect this spread in areas to show up as a spread in the os-
cillation frequencies of the Aharonov-Bohm oscillations
in Figs. 18(a) and 19(a). We show in Figs. 19(c) and 19(d)
the Fourier decomposition of Vz($) and Vz(S). The fre-
quency (area) is very well defined at (5.86%0.05w) indi-
cating that the electron orbit is effectively very close to
the center of the channels [at the center the area
=d =(6w) ]. The case shown has kw =5.0 so that only
one propagating mode is present. At higher kw, where
more modes propagate, one might expect more spread in
effective area corresponding to the spread in the effective
areas of the differing modes, but it will probably not show
the full width of the channel. In Fig. 19(b) are shown the
voltages for d/w =6.0 but with kw raised to 11.0, where
three modes propagate. The corresponding Fourier
decompositions of V2($) and V~(2t) are shown in Figs.
19(e) and 19(f). Arrows indicate the frequencies expected
when the effective area corresponds to the inside (5w),
centerline (6w), and outside (7w) of the square loop.
The spectruin is wider than at kw =5.0 [Fig. 19(c)] but
by no means does it cover the full width of the channel.
Attempts at determining the channel width for real de-
vices by measuring the spread in Aharonov-Bohm oscilla-
tion frequencies for circular loops yield smaller widths
than other methods. ' Our results demonstrate that
such a method does not determine well the physical
width of the channels.

Looking at the voltage curves of Figs. 18(a), 19(a), and
19(b) we note that peaks (or valleys, depending on the
two arms chosen to measure the voltage) of varying
sharpness can be obtained, according to whether S is
such that the basic four-terminal junction is operating on
the Hall plateau or in the foothills. Additionally, one
might expect, by operating at higher kw values, to exploit
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FIG. 19. Voltages for unit current through a square loop as in Fig. 18 but for d/w =6.0. On the left are shown the voltages as a
function of 8 for (a) kw =5.0, where only one submode is open and (b) kw = 11.0, where three submodes are open. On the right the
fourier power spectra of some of the curves on the left are shown: (c) and (d) are for curves V, and V4 of the kw =5 case, while (e)
and (f) are the same curves for kw =11. The arrows in (e) show the frequency expected for Aharonov-Bohm oscillations when the
effective area corresponds to the inside (5w), center line (6w), and outside (7w)' of the loop. Frequency is given in oscillations per
unit change ofS.

a combination of the resonances of the basic four-
terrninal junction with these resonances of the loop.
There are many possibilities which could be experimen-
tally and theoretically investigated.

V. CONCLUSION

We have presented extensive calculations in the ballis-
tic approximation, i.e., noninteracting electrons, for the
scattering probabilities and from these the Hall resis-
tance, in two-dimensional circuits of rectangular seg-
ments that form junctions connected by narrow channels
with infinite walls, in a magnetic field perpendicular to
the plane of the circuit. The calculations proceed in two
stages. First, me calculate the detailed amplitudes of the
four-terminal junction with one intersection. These am-
plitudes are then combined in the appropriate way to find
the scattering amplitudes and probabilities for multiter-
minal junctions with several intersections. These calcula-
tions depend on the two dimensionless parameters
km =(2m*Eto hrt )' and m/l=(q8/A'c Xto )', so
that for narrow wires quantum efFects become important.

With noninteracting electrons many aspects of the Hall
efFect, e.g., the fractional Hall effect, are of course absent.
Nonetheless, we find a rich structure that results from the
elementary physics of wave interference as contained in
the Schrodinger wave equation and infinite mall boundary

conditions describing the system. %e have succeeded in
understanding much of the complex structure present in
the results as due to the influence of particular quantum
states, which we can identify in the large-B limit with
Landau levels pinned at the intersections. Other effects
are due to interference in the arms connecting intersec-
tions.

The results presented here have been obtained with an
idealized shape for the confining potential, namely an
infinite square well with 90' corners between the arms.
Some of the details of the resistance curves will depend
on the specific shape. On the other hand, we believe the
existence of resonances associated with pinned Landau
levels is likely to be independent of the details of the
geometry, as are the oscillations and narrow resonances
associated with propagation around closed loops and the
influence of reflections from nearby arms and elbows.
Some results with a parabolic confining potential have
been reported by Kirczenow. ' The influence of tapered
arms has been discussed by Baranger and Stone, ' partic-
ularly in the context of quenching of the Hall resistance.
Rounding of the 90' corners has been investigated experi-
mentally by Ford et al. and by Chang et al. (Except
for the work of Baranger and Stone, very little theoretical
attention has as yet been given to the corners. ) Together
these show that the geometry does influence the details,
but that common features are present.

We have two points of interest: (I) Although other
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conductance mechanisms could be important for a com-
plete understanding of real experimental data, much of
the complex structure of the data can be accounted for by
quantum interference effects of the sort we have calculat-
ed and these interference effects should be included in
any analysis of experimental data. (2} Since interference
effects in the arms signi6cantly change our results, the
external leads in real experimental equipment are not pas-
sive objects. Their influence, which depends sensitively
on the geometry, must be calculated as we have done
here.
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