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We have used a new, approximate method for computing total energies and forces in covalent sys-

tems and investigated the electronic and vibrational spectra and equilibrium structures of small Si
clusters (Si„with n =2-7). The method uses an electronic-structure tight-binding formalism based
on density-functional theory within the pseudopotential scheme. Slightly excited pseudo-atomic-
orbitals are used to find the tight-binding Hamiltonian matrix in real space. Unlike other simplified

tight-binding schemes, no parameters or fits to data are introduced. Forces are determined from the
total-energy functional, so that molecular-dynamics simulations can be performed. The molecular-
dynamics simulations yield the ground-state structure, and the vibrational spectrum. Excellent
overall agreement is found with experiment and other first-principles calculations for Si clusters.
The technique is immediately transferable to bulk systems and surfaces.

I. INTRODUCTION

The strength and nature of the covalent bond between
two atoms critically depends on the local environment
around the bonding atoms. For instance, various forms
of hybridization, such as sp or sp, can be obtained de-

pending on the local geometry. The concept of pairwise
interactions, as represented by a single local two-body po-
tential, is simply not applicable to covalent systems. This
fact presents a serious obstacle toward performing realis-
tic time-dependent simulations of complex nonequilibri-
um processes in covalent materials such as the formation
of random networks in amorphous semiconductors, the
reconstruction at a semiconductor surface, the growth of
a surface, surface and bulk diffusion, and a whole range
of topics in the modern design of materials and struc-
tures.

There has recently been a very large effort' ' to pro-
duce potentials that mimic the many-body effects of the
covalent bond. These potentials are fitted to a large body
of data (and can contain up to 36 adjustable parame-
ters"), in the hope that they are useful for predicting new

situations. Typically, however, the potentials fit one set
of data (such as bulk bonding properties), but fail to
reproduce another set of data (such as surface properties
or cluster properties).

The effects of the environment on the covalent bonding
forces are clearly rooted in the electronic structure of the
bond and can be obtained directly from electronic-
structure calculations. However, rigorous electronic-
structure methods are extremely computer intensive and
dificult to implement. There have been recent attempts
to simplify the electronic structure by introducing
parametrized one-electron Hamiltonian hopping matrix
elements, and a suitably chosen parametrization of a

two-body (or more) repulsive interaction to obtain the to-
tal energy. Chadi' has used such a technique quite suc-
cessfully to study the structure of semiconductor sur-
faces. Tomanek and Schluter' have similarly
parametrized a tight-binding Hamiltonian for the study
of Si clusters. Pettifor et a/. ,

' Paxton et al. ,
' and Ma-

jewski and Vogl' are other authors who have developed
tight-binding models of the total energy to study a variety
of condensed-matter properties. More recently, Cheli-
kowsky and Redwing' have developed a Hamiltonian for
clusters and solids, From first principles these authors
calculate the one-electron eigenvalues but fitted the total
energy. Tight-binding Hamiltonians have also been used
in molecular-dynamics simulations. Sankey et al. ' have
optimized the geometry of the semiconductor (110) sur-
face, while Allen et al. have investigated adatom in-
teractions at surfaces. Wang et al. ' have investigated
anharmonic phonons in Si through molecular dynamics
using an empirical tight-binding Hamiltonian, and Khan
and Broughton have used the Tomanek-Schliiter tight-
binding Hamiltonian for Si clusters and the (100) Si sur-
face.

We have recently developed an approximate first-
principles electronic-structure method that very closely
matches a more rigorous calculation, but greatly reduces
the computational effort required. The method is tight
binding like, and unlike the empirical tight-binding
methods just described, this new method has no adjust-
able parameters and is not fitted to any experimental
data. The method is entirely first principles, yet is simple
enough to be used for a wide variety of purposes includ-
ing bulk systems, surfaces, and amorphous materials and
clusters. No periodicity is required (nor are Fourier
transforms of the density, etc.) because it is entirely exe-
cuted in real space. Our technique has certain elements
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similar to that recently proposed by Foulkes et al.
In this paper, we use this method to determine the

equilibrium structures and vibrational spectra of small Si
clusters (Si„with n =2—7). The technique of molecular
dynamics is employed, in which the many-body classical
equations of motion, F=m d r/dt, is solved in time,
and the subsequent motion of the atoms is determined
from some set of initial conditions. Equilibrium struc-
tures were found by simulated annealing and dynamical
quenching (in which the system is periodically quenched
by removing kinetic energy from its atoms}. In finding
the vibrational spectra, the velocity autocorrelation func-
tions are Fourier transformed. The theory and tech-
niques described in this paper are immediately transfer-
able to condensed-matter systems, which will be dealt
with in future publications.

II. ELECTRONIC-STRUCTURE THEORY

In this section, we briefly describe the theory used to
determine the electronic structure and to obtain the total
energy of these systems and forces between atoms. We
will describe four major approximations that simplify the
electronic structure tremendously, so that medium scale
( —100 atoms or more} molecular-dynamics simulations
can easily be performed. Only a brief description of the
theory will be given, as a more complete description can
be found in Ref. 23.

The theoretical foundation used is density-function
theory. Within this rigorous ground-state theory, we
make our j7rst major approximations. The approxima-
tions are the use of the Hohenberg-Kohn-Sham local-
density approximation (LDA) and the pseudopotential
approximation. The LDA replaces the exchange-
correlation energy functional by a local function of the
density. We use the local exchange-correlation function-
al of Ceperley and Alder as parametrized by Perdew and
Zunger. The pseudopotential approximation replaces
the core electrons by an effective potential that acts on
the valence electrons. Accurate nonlocal (angular-
momentum-dependent) pseudopotentials of the norm-
conserving Hamann-Schliiter-Chiang type are used.

In the LDA and nonlocal pseudopotential approxima-
tion, the total-energy functional is given by

~f, (r))= ga, (p, a)~P„" (r —r )) . (2)

0.5
Si s orbital vs.

0.4-

The PAO's are self-consistently determined eigenfunc-
tions of the valence electrons of the free atom in the non-
local pseudopotential approximation and are nodeless.
The pseudoatom contains only the valence electrons, so
that the orbital types p for Si are s, p, p, and p, .

Our second major approximation is motivated by the
need to reduce the range of interaction between atomic
orbitals, and hence, greatly reduce the number of neigh-
bors each atom (or pair of atoms) interacts with. This
reduction leads to a corresponding reduction in computer
time required for the calculations. We do this by slightly
exciting the PAO's by imposing the boundary condition
that they vanish at and outside a predetermined radius r, .
(As r, —+ 00, the atom approaches the ground state. ) The
value of r, that we use here and in previous work is
5.0as. The motivation for this value is that it rigorously
yields a third-neighbor model for matrix elements of the
single-particle Hamiltonian in crystalline Si. We have
found that our results are not critically dependent on the
precise value of r, as long as r, is not too small. The ki-
netic energy associated with the confinement of the elec-
tron in the atom begins a sharp increase at values of r,
slightly less than Saz. A plot of the Si s-orbital wave
function in the pseudopotential approximation for vari-
ous values of r, is shown in Fig. 1. The curve for r, =8az
is virtually identical to the ground-state wave function.
Notice that for r, =5az, the wave function in the bond-
ing region is well represented, but the long-ranged tail is
eliminated. In the multicenter integrals needed in this
work, we do not fit the wave function to any analytic

Etot Tlt, + ~io r r +V„] r la
a 0.2—+,d r'+e„,(n) n(r) d r,e n(r') 3

2 r —r'
0.1-

where the individual terms are, respectively, the kinetic
energy, the ionic local pseudopotential of the ion at r,
the nonlocal pseudopotential, the electron-electron Har-
tree repulsion, and the exchange-correlation energy,
which is a functional of the electron density n.

The electronic energy eigenstates g; are the expanded
in a tight-binding-like linear combination of pseudo-
atomic-orbitals (PAO's):

0.0
0,0

1 1 I I I

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

r/aa

FIG. 1. The s pseudo-atomic-orbital of Si using various
values of r, . The wave function for r, =8a& is very close to the
pseudoatom ground state. The bonding region (defined to be
half the nearest-neighbor distance in bulk Si) is shown by the
vertical arrow.
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Eas(n)=2+ e, . (3b)

The quantities c; are the single-particle Hamiltonian ei-
genvalues that satisfy the Schrodinger equation in matrix
form

g h„', a;(v, a')=e; g S'„'„a;(v,a'), (4a)
v, a' v, a'

where the single-particle Harniltonian matrix elements
are

h =(P (r —r )~h( )n~P (r —r, )),
and the overlap matrix is

S' =(P (r —r )~P„" (r —r, )) .

(4b)

(4c)

The standard single-particle LDA Hamiltonian operator
1s

2

h(n)= + g [V;,„(r r)+—V„,(r —r, )]
2m

(5)

where p„,(n) =d [ne„,(n )]/dn is the exchange-correlation
potential. The other terms in Eq. (3a) are the "short-
ranged" repulsive potential

function, but rather perform the integrals numerically
from a wave-function tabulation.

The total energy in Eq. (1) can be conveniently rewrit-
ten as a sum over eigenvalues of the single-particle Ham-
iltonian,

E„,(n)=EBs(n)+[U„—U„(n, n )]+5U„,(n), (3a)

where EBs(n) is the "band-structure" energy and is given
by a sum of one-electron eigenvalues over occupied states
l,

where

n (r)= gn„, (r —r ) .

The neutral-atom density for Si is taken to be a spherical-
ly symmetric s p configuration. To first order in 5n, the
energy functional of Eq. (3a) simplifies to

E,",,'=E"'+[U,,
—U„(n, n ))+5U„,(n ), (10)

where EB's is the "band-structure" energy determined
from the single-particle Hamiltonian of Eq. (5) with n re-
placed by n, viz. , h(n ) T.his functional neglects terms
of order 5n .

Our approach is to use this approximate total-energy
functional rather than the fully self-consistent total-
energy functional. The advantages of this method are (1)
the electronic eigenvalue equation only needs to be solved
once for each atomic configuration instead of —10 times
as in a fully self-consistent calculation and (2) four-center
Coulomb integrals do not need to be evaluated since they
appear only in the 5n terms, which are neglected. This
non-self-consistent method has been tested by Harris,
Polatoglou et a1.,2s and Read et al.29 on metals, semicon-
ductors, and an ionic compound (NaC1) and it is found to
give surprisingly good agreement with self-consistent cal-
culations.

Our fourth major approximation involves the evalua-
tion of the matrix elements of the various terms that
make up h(n ). The kinetic energy, overlap, and nonlo-
cal part of the pseudopotential are easily evaluated exact-
ly (numerically) for each geometry. A table of results on
a fine grid of separations is constructed so that the matrix
elements for any separation between the atoms is accu-
rately interpolated. The three center matrix elements of
the neutral-atom potential given by

n(r' —r, )
V (

— )= V;,„( — )+ f i,
i

d ' (ll)
r —r'

Us„= U;;
—U„(n, n )

and an exchange-correlation correction, 5U„„

5U„,=f n(r)[e„,(n) —p„,(n)]d r .

(6)

(7)

are accurately approximated by an r-dependent expan-
sion in multipole moments. The nonlinear exchange-
correlation matrix elements are calculated within the
average density approximation described in Ref. 23. All
matrix elements are calculated in real space.

The forces are determined by differentiating the total
energy E'„", given by Eq. (10), F = —BE'„",/Br . The
most difticult term comes from the band structure. Its
derivative is

n(r)=n (r)+5n(r), (8)

The Schrodinger-like Eq. (4a) follows from a variation-
al principle for the total energy of Eq. (1). The single-
particle Hamiltonian, Eq. (5), defines a problem requiring
a self-consistent solution. To avoid the difficulties associ-
ated with iterating to self-consistency, we adopt an ap-
proxirnation suggested by Harris. Thus our third major
approximation is to consider a sum of neutral-atom
spherical charge densities as a zero-order approximation
to the self-consistent density of the cluster, and to keep
only first-order changes from this density in the energy
functional. Thus we write

!occ)

)M, V

a, a'

g p„„(h )„„
p, v
a, a'

B(h O)aa' BSaa'
aa' Eaa' I'&'

Pp~ g pvr Iy
(12)

where p„and E„are the density and energy-density
matrices, respectively,
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p„„= g a,'(ILI, , a)a, (v, a'),
I

(occ)

E„„=g E;a;*(ILI,a)a;(v, a'),
I

(occ)

where a;(p, a) are the expansion coeIIicients of the wave
function in Eq. (2).

After the forces are evaluated, the equations of motion
can be solved and the positions and velocities of the
atoms updated. The energy functional has been tested in
bulk Si and found to give bulk static properties that are
in good agreement with experiment. It is the purpose
of this paper to extend these calculations to the static and
dynamic properties of small Si clusters using an ab in''tio

molecular-dynamics technique.

III. MOLECULAR DYNAMICS
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FIG. 2. The energy difference per atom between Si clusters of
size n =2—7 and bulk Si. The solid dots correspond to equilibri-

um structures explained in the text, and other metastable

configurations are also shown for n =4—7.

The equilibrium structures and vibrational spectra of
Si clusters have been determined using the technique of
molecular dynamics. The forces are calculated quantum
mechanically from the total energy [Eq. (10)] and its
derivatives [e.g., Eq. (12)]. The nuclear coordinates are
moved in time according to the classical equations of
motion, F„=m„d r/dt . These equations are integrated
using the Gear predictor-corrector algorithm, with a
time step of —1.5 fs.

The ground-state equilibrium structures are found by
one of two techniques: dynamical quenching or simulat-
ed annealing. In either of these two techniques, the clus-
ter is started in some trial structure, generally with very
little symmetry.

In the technique of dynamical quenching, the atoms in
the cluster are allowed to respond to internal forces and
are accelerated. A kinetic temperature Tz is defined as
the average classical kinetic energy of the atoms,
3/2k'=(l/N)g; —,'m;v;, where i=1,2, . . . , n is the
atom index. As the atoms accelerate, the kinetic temper-
ature increases until a maximum is reached. The system

FIG. 3. The n-dependent fragmentation energy (EEf„~)„as a
function of n. The dip at n =5 indicates that fragmentation is

more likely to occur for this cluster.

is then quenched by setting all the velocities to zero, thus
removing all the kinetic energy. The atoms again are al-
lowed to accelerate and the quenching process is repeat-
ed. After several dynamical quenching cycles, a
minimum energy configuration is obtained. The
minimum may be only a local minimum, so that the pro-
cedure needs to be repeated several times with different
initial configurations.

In the simulated annealing technique, the energy is re-
moved more gradually so that a global minimum is more
likely to be obtained. The technique has been described

by Kirkpatrick et al. ' and uses the Monte Carlo algo-
rithm of Metropolis et a/. Monte Carlo steps are taken
where the coordinates of each particle are changed as

r, ~r, +5r;. Here 5r; =ra 5R, where 5R is a triplet of
random numbers between —1 and +1 for each atom i,
and ro is the maximum step size. An energy difference
5E = —F, 5r; is computed and the step is taken if 5E (0,
while if 5E & 0 the step is taken with probability—5E/kT~
e ", where T„ is an annealing temperature. This
ensures that after many moves, the ensemble tends to the
Boltzmann distribution. The temperature T„ is gradual-

ly reduced so that the system settles into the ground
state. We have found that the dynamical quenching finds
the ground state much more readily than simulated an-
nealing for these small clusters. However, simulated an-

nealing is more likely to find the true ground state than
dynamical quenching. In either case, however, a variety
of initial configurations must be tried before one can be-
lieve that the true ground state has been found.

The vibrational spectrum is found directly from the
molecular-dynamics simulation without annealing or
quenching. We start in a ground-state configuration and
have constrained the motion so that the center of mass of
the system of atoms is stationary and there is no angular
momentum about the center of mass. To accomplish
this, we first give the atoms random velocities commensu-
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FIG. 9. The ground-state configuration of Si4.
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FIG. 7. Spectral density g(~) of Si3 in its equilibrium
configuration at a low (lower figure) and a high (upper figure) ki-
netic temperature. The kinetic temperatures are 50 and 500 K,
respectively. The modes soften at higher excitation levels, and
there is added structure due to anharmonicity.

cate that an ensemble average over all atoms is taken.
This ensemble average is defined by

M —1

&f(r;)f(0))= . g f(r;, )f(r ),M —i+1
where t is the time at the jth step and j =0, 1,2, . . . , M,
with M being the total number of time steps in the simu-
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I I I
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I
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FIG. 8. (a) A snapshot of the planar motion of an Si3 mole-
cule at high excitation corresponding to a kinetic temperature
of -2500 K. The chaotic motion is very much anharmonic. (b)
The spectral density function g(co) for the motion in (a). The
three peak structure is lost and the spectrum becomes continu-
Ous.

g (deg}

FIG. 10. (a) The one-electron LDA energy eigenvalues vs in-
terior angle 0 for Si4. In the ground state, 0=62. The side
length was kept constant at its ground-state value. Degenera-
cies and Jahn-Teller instabilities occur at 90. (b) Total energy
per atom vs interior angle 8 for Si4.
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FIG. 11. Spectral density g(co) of Si4 in its equilibrium
configuration for high and low kinetic temperatures. The peaks
in the spectrum are labeled according to the symmetry of the
displacements.

lation. The spectral density g(co) is the Fourier cosine
transform of the velocity autocorrelation function g (t),

T
g (co) = (1/T )f g ( t ) W( t ) cos(tot ) dt,

0

where T is the total time of the simulation. W(t) is the
Blackman window function used to reduce oscillations
due to finite time sampling.

IV. RESULTS FOR Si CLUSTERS

In this section we individually discuss the results of
clusters from Si„with n =2-7. We begin by summariz-

ing the energetics of the various geometries found

by quenching and annealing. In Fig. 2 we show the
energy difference per atom, b,E„=(E„,/atom), ~„„„—(E„,/atom)b„~z, between bulk (diamond) Si and the Si
clusters in their ground state and metastable equilibrium
configurations.

The solid circles indicate the ground-state
configurations (to be described individually), while the
open circles, squares, and triangles represent local-
minimum (metastable) structures. The energy per atom
of the cluster approaches the bulk binding energy mono-
tonically, but there is a marked decrease in slope in going

3.02

FIG. 12. Ground-state configuration of Si5. This structure is

a trigonal bipyramid, consisting of an equilateral triangle with

one atom above the plane of the triangle and one atom below.

from n=4 to n=5. This can be seen more clearly by
considering the fragmentation energy as defined by Raga-
vachari and Logo vinsky according to the reaction
Si„~Si„,+Si. The energy of this reaction is

(Et„s)„=(BEt„s)„+[Et —(E„,/atom)b„&i, ], (13)

T=50K

where ( EEt„s)„=( n —1)AE„,+n b E„. The last term
in Eq. (13) is a constant (independent of n) This ter.m in-
volves the energy of an isolated atom, which is not well
described in our method because of spin e8'ects and the
use of compact orbitals. The trends with n of (Ef s)„
are entirely contained in the first term (EEfrag)„ that is
plotted in Fig. 3. The lesser stability of Si5 compared to
neighboring clusters is clearly evident. The results are in
very close agreement with the fragmentation trends
found by Raghavachari.

TABLE I. Comparison of the harmonic frequencies (in

cm ) of the Si4 molecule in this work with quantum-chemistry
SCF results.

Mode
symmetry This work

6-31 G 6-31 G
(Ref. 43)

B3„
B2„
Ag

B3g
Bl„

116
248
346
464
495
546

130
223
380
453
543
503

137
157
328
371
472
425

0.0 200.0 400.0 600.0
(cm ')

FIG. 13. Spectral density g(co) of Si& in its equilibrium
configuration at low kinetic temperature {T=50 K}.
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the spin-polarized results of Northrup et al. , who find
that the 1~„level crosses the doubly degenerate 2o level

0
at about 4.0aii (2.12 A), resulting in a new ground-state
configuration at smaller separations. We also find the
1m.„ level crossing the 2cr 1evel at 8=2.12 A. This re-
sults in a potential-energy surface with two minima as
shown in Fig. 4(b). A metastable configuration exists at
1=2.03 A.

B. Si3

FIG. 14. Ground-state configuration of Sit, This structure is
a square bipyramid, consisting of a square with one atom above
the plane of the square and one atom below.

A. Siz

Dynamic quenching of Si2 gives the equilibrium bond
distance at d =2.27 A, in good agreement with the exper-
imental value of 2.24 A. The bulk bond length of crys-
talline Si is 2.35 A, while the present theory gives 2.38 A.
Thus we find especially good agreement between theory
and experiment for the large reduction in nearest-
neighbor distance in going from bulk Si to Si2 (0.11 A ex-
periment and 0.11 A theory).

The single harmonic-vibrational stretch mode is deter-
mined to be co=531 cm ', which compares well to the
experimental result of 511 cm '. In this case at least,
our results are comparable to the considerably more so-
phisticated quantum chemistry self-consistent-field (SCF)
results of Ref. 36 who find 568 cm

In Fig. 4(a) are shown the eigenvalues of the one-
electron LDA Hamiltonian for Si2 as a function of Si-Si
distance. The 1m„electronic level is fourfold degenerate
(including spin) and contains two electrons in equilibrium
(4=2.27 A). The 2crx level crosses the lm'„ level as the
distance is decreased. This is in excellent agreement with

2.46 A

FIG. 15. Ground-state configuration of Si7. This structure is
a pentagonal bipyramid, consisting of a pentagon with one atom
above the plane of the pentagon and one atom below.

The Si3 ground-state configuration we find by dynami-
cal quenching is an isosceles triangle with the two equal
sides of length d=2. 189 A and an opening angle of
8=78.8' (see Fig. 5). These results are in good agreement
with the more rigorous quantum-chemistry SCF calcula-
tions of Diercksen et al. , 9 who find d =2.196 A and
8=80.6'. Grev et al. who find d =2. 160 A and
8=78. 1', and Raghavachari et al. who find d=2. 17'
and 8=77.8'.

The energy eigenvalues as a function of the angle 8
(with the distance d kept constant at its value at equilibri-
um) are shown in Fig. 6(a). The Fermi level lies between
the sixth and seventh levels. These two levels become de-
generate at 8=60' (an equilateral triangle}, which make
this geometry Jahn-Teller unstable. The total energy as a
function of 0 (again with d fixed) is shown in Fig. 6(b).
Two equivalent minimum are seen corresponding to
8=78.8' and 8=281.2'. The system is clearly unstable at
60', and a relatively large barrier separates the two
equivalent minimum as the molecule passes through 180',
where the molecule forms a linear chain as occurs for C~.
Curiously, we find a very shallow local minimum at the
linear chain. This is to be contrasted to the SCF results
of Raghavachari, ' which find the linear chain to be un-
stable. The imaginary frequency found in that work (82i
cm '} is very small, indicating a relatively flat potential
surface similar to ours.

The spectral density function g(co} in the harmonic
(Tx =50 K) and the near-harmonic (Tx =500 K) regions
for Si3 vibrations are shown in Fig. 7. Three peaks are
apparent corresponding to the 3n —6 normal modes of vi-
bration. The width of the peaks is due to the finite time
of the simulation. The position of the peaks indicates the
frequency of the normal mode, while the relative heights
reflect the (randomly chosen) relative amplitudes in each
of the modes. The spectrum at low temperature is pure,
indicating very little anharmonicity, while at higher tem-
peratures, small contributions to anharmonic affects (sum
and diff'erence frequencies) are evident. Also notice the
overall shift toward lower frequencies. The "harmonic"
frequencies at 50 K are 202, 474, and 596 cm ' for the
A„B2, and A, symmetric modes, respectively. These
can be compared with those obtained by Grev et al. of
157, 570, and 574 and Raghavachari ' of 206, 560, and
582. %'e note that both of our A, modes are in good
agreement with these quantum-chemistry SCF calcula-
tions, while the Bz mode is only in fair agreement, with
our mode lying —16%%uo lower than theirs. This is not un-
reasonable as typically calculated frequencies of mole-
cules are accurate to —10—15 %.



12 758 SANKEY, NIKLEWSKI, DRABOLD, AND D0% 41

The molecular-dynamics technique makes no assump-
tions about harmonic potentials and does not construct a
dynamical matrix. Very harmonic systems are treated in
exactly the same way as an anharmonic system. We
show in Fig. 8 the results of a simulation of Si3 at a very
high temperature of -2500 K. The simulation was of
3600 time steps and there is no indication that the mole-
cule is about to disassociate. The motion is two dimen-
sional and a snapshot of the motion is shown in Fig. 8(a).
Within the chaotic motion, one sees a nearly sixfold pat-
tern coming from a molecule containing only three
atoms. This occurs because the atom that acts as the
apex of the ground-state triangular molecule is being
changed from one atom to the next. Also there is consid-
erable classical tunnelinglike behavior of the apex atom
through the center line connecting the other two atoms.
The spectral density function g(co) [Fig. 8(b)] has lost the
three-peak structure of the harmonic system, and takes
on a continuous spectrum. The frequencies depend on
the amplitude of each of the "modes, " and the ampli-
tudes are continuously changing.

D. Sis

We find the equilibrium structure of Si~ based on an-
nealing and quenching to be a trigonal bipyramid, con-
sisting of an equilateral triangle of side 3.02 A capped on
top and bottom, with the distance between the corners of
the triangle and a cap being 2.30 A (see Fig. 12). This
structure agrees with those found by Tornanek and
Schluter, ' who find a trigonal bipyrarnid with the
relevant lengths of 3.1 and 2.4 A, and Raghavachari and
Logovinsky, who find the same structure with distances
of 2.34 and 3.26 A. Metastable structures for Si~ include
the pentagon and pyramid. The energetics of these struc-
tures are shown in Fig. 2, where the pentagon is =1.00
eV/atom higher and the pyramid is =0.13 eV/atom
higher.

The vibrational spectral density function of Sis is
shown in Fig. 13 at low temperature ( T= 50 K}. The five
peaks in the figure come about because three frequencies
are doubly degenerate, while an additional frequency is
"accidentally" degenerate, and unresolvable.

C. Si4

The equilibrium configuration determined for Si4 is a
rhombus with side length 2.32 A and a minor diagonal
length of 2.39 A (see Fig. 9). This compares very well
with the results of Tomanek and Schluter, ' who find a
rhombus of side length 2.3 A with a diagonal of 2.4 A,
and the results of Raghavachari and Logovinsky, who
also find a rhombus of side 2.30 A and diagonal 2.40 A.
Other possible geometries include the square and
tetrahedron. The square forms a metastable minimum-
energy configuration with a side of length 2.32 A, and the
tetrahedron is metastable with minimum energy of side
length 2.46 A. The energies of these two structures are
shown in Fig. 2 and are significantly higher in energy
( =0.61 eV/atom and =0.53 eV/atom, respectively) than
the rhombus.

The one-electron LDA energy eigenvalues are plotted
as a function of the angle 8 in Fig. 10(a). As in the case
of Si3, there is again a crossing of levels at the
configuration of highest symmetry (in this case, 8=90').
This causes a Jahn-Teller unstable system that shows up
as a cusp in the total energy per atom also as a function
of the angle 8 in Fig. 10(b).

The vibrational spectrum of Si4 is shown in Fig. 11 for
a high and low kinetic temperature. There are 3n —6=6
normal modes for Si4 and the high-temperature spectrum
shows the mode-softening characteristic of anharmonici-
ty at higher-excitation levels. The normal coordinates
that give rise to the various peaks in the spectrum are la-
beled according to symmetry. The lowest frequency
mode is 83„,which is the "bond-bending" mode in which
alternate atoms move out of and into the plane of the pa-
per (see Fig. 9). The other bond-bending mode is B~„ in
which the atoms move in the plane of the paper. The fre-
quencies found from an examination of Fig. 11 are com-
pared with those of Raghavichari and Rohlfing in Table
I. Overall agreement with these far more sophisticated
calculations is excellent.

E. Si6

The equilibrium structure for Si6 is that of a bipyram-
0

id, consisting of a square with side length 2.71 A capped
on top and bottom, with the distance between a vertex of
the square and a cap being 2.36 A (see Fig. 14). This
structure agrees with that found by Tomanek and
Schluter, ' who also find such a "distorted octahedron"
with the relevant distances of 2.6 and 2.3 A. Raghava-
chari, however, finds the ground-state structure to be an
edge-capped trigonal bipyramid.

The energies of higher-energy metastable states for
n =6 are shown in Fig. 2. Three structures investigated
are structures higher in energy than the equilibrium
structure: (1) a hexagon ( = 1.22 eV/atom higher in ener-
gy), (2) the singly capped pentagon (=0.50 eV/atom
higher), and (3) a sixfold buckled ring which is a bulk
fragment ( =0.22 eV/atom higher).

F. Si7

The ground-state structure found for Si7 is a bicapped
pentagon, consisting of a pentagon of side length 2.46 A
capped on top and bottom, with the distance between a
vertex of the pentagon and a cap being 2.45 A (see Fig.
15}. This is in agreement with Ballone et al. ,

~ who also
find a pentagonal bipyramid as the equilibrium structure.
In addition, when just dynamical quenching is performed,
the system invariably settles into a capped and strongly
reconstructed version of the sixfold buckled ring. This
metastable structure is relatively close in energy ( =0.16
eV/atom higher) to this equilibrium structure.

V. CONCLUSIONS

We have used an approximate electronic-structure
method to determine the electronic and vibrational spec-
trurn and the equilibrium structures of small Si clusters.
The method used is a simplified ab initio tight-binding
model based on local-density theory, and has no adjust-



41 . . . EQUILIBRIUM STRUCTURES OF SMALL Si CLUSTERS 12 759

able parameters. We have compared a number of our re-
sults with those of others and find substantial agreement
with more rigorous calculations. Based on these results
for small molecules, we are optimistic that the
molecular-dynamics technique and energy functional
used here will be applicable to bulk crystalline and amor-
phous covalent semiconductors and to semiconductor
surfaces as well. The method is computationally fast and
efficient, and should permit us to study covalent systems
of previously incalculable complexity.
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