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The complete k-p Hamiltonian with strain is solved numerically to obtain the energies and wave

functions of In„Ga& „As-GaAs superlattices. The electron, heavy-hole, light-hole, and split-off
bands are treated in a uni6ed description in which the only adjustable parameters are the respective
zone-center effective masses in each materia1. It is shown that the theory accurate1y reproduces the
spectra of a wide range of published samples for valence-band offsets ranging from 0.3 to 0.6. It is
also found that the transition energies are relatively insensitive to the valence-band offset over a
wide range of offsets. The electron —light-hole exciton energy is fitted more closely at the lower
offset values, and suggests a valence-band offset close to 0.4. At this offset, the light holes exhibit
borderline type-II behavior, and are only slightly localized in the GaAs layers.

I. INTRODUCTION

In recent years there has been considerable interest in
strained-layer In Ga

&
As-GaAs heterostructures. '

This is a potentially attractive material system from a de-
vice perspective since the narrow band gap of
In Ga, „As makes it useful as an infrared detector fabri-
cated as a superlattice or quantum well. In addition, the
low effective electron mass in In Ga& „As can be ex-
ploited in high-frequency transistor applications. Ac-
cordingly this material system has justifiably received a
great deal of attention both theoretically and experimen-
tally.

Despite detailed investigations, however, one of the
most fundamenta1 questions, the relative alignment of the
conduction and valence bands along the growth axis, still
remains unanswered. A related issue is whether the sys-
tem is fully type I or mixed. In the mixed case the light
holes exhibit type-II behavior, the heavy holes remain

type I. Knowledge of the band alignment is vital if the
transport and optical properties are to be accurately cal-
culated. Unfortunately the valence (or conduction) -band
offset cannot be observed directly, but is usually inferred
from optical measurements such as photoluminescence
excitation (PLE), absorption, and photoreflectance. By
applying a suitable band-structure theory to calculate the
energies, the valence-band offset is obtained by fitting the
energy differences to the observed spectrum, treating the
offset as an adjustable parameter. Based on this ap-
proach, Marzin et al. ' estimated the valence-band offset
as 0.3 for x =0.15, where the offset is defined as the frac-
tion of the electron-heavy-hole (e-hh) band-gap difference
appearing across the hh band edge. Taking into account
the effects of strain, this offset leads naturally to the con-
clusion that the e-hh exciton is direct and the
electron —light-hole (e-Ih) exciton indirect in real space.
This result was confirmed by Ji et al. using a similar
model to fit their data for x varying from 0.13 to 0.193.

Pan et al. were also able to fit their data to a valence-
band offset of 0.3 for x =0.11. Significantly different re-
sults were obtained by Menendez et al. , who claim an
offset of 0.6 for x =0.05. At this offset the light-hole ex-
citon will also be direct in real space, a result that is in
obvious disagreement with previous works. Recent mea-
surements by Ksendzov et al. ' for x =0.11 and 0.19 ap-
pear to agree with this conclusion. In order to accommo-
date such widely differing results, Joyce et al. have pro-
posed that the band offset is a function of x, varying from
0.6 for x (0.05 to 0.2 for x &0.2. This, however, does
not explain the discrepancy between the results of Ksend-
zov et al. ' on the one hand and Ji et al. and Pan et al.
on the other, for 0. 11 (x & 0. 193. The apparent
discrepancy for samples of similar mole fractions would
suggest a sample-dependent band offset, a deduction that
may be probable in view of the proposal' that the offset
is very sensitive to the position of the As atom near the
interface.

But before concluding that the offset is nearly
unpredictable due to random effects at the interface, it is
worthwhile to examine other possibilities. One such pos-
sibility is the theory used to fit the data. The aim of the
present work is to point out the shortcomings of the
effective-mass model currently used to calculate the ener-
gies, and to present a more detailed model which can be
used to fit the spectra of a wide range of samples. So far
the accepted approach has been to use Marzin's" exten-
sion of Bastard's' envelope-function approximation
(EFA) to include the effects of strain. This, however, is
subject to a11 of the 1imitations inherent in the EFA
which, as pointed out by Schuurmans and 't Hooft, ' is
an oversimplification of Kane's complete k p mode1. '

The important free electron terms on the diagonal of the
k-p Hamiltonian are omitted. These, it turns out, are ac-
tually larger than the off-diagonal terms retained in the
EFA. In addition, the coupling between the 1h and split-
off (SO) bands is disregarded. Marzin" includes only the
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strain-induced lh-SO coupling. The only available adjust-
able parameters are the momentum matrix element be-
tween the host Bloch functions at the zone center and the
valence-band offset. The matrix element is calculated
from the effective mass and band gap,

' and is derived by
fitting the band structure determined from the unstrained
EFA Hamiltonian to the known band structure of the
host bulk materials. But because of the approximations
made, the matrix element must be assigned different
values corresponding to each band, as described in Ref.
13. Hence the e, lh, and SO states must be obtained indi-
vidually, each time with a different matrix element. The
hh states, dispersionless within the EFA, are found sepa-
rately after reintroducing the free electron term.

Such a disjointed approach can lead to imprecise and
inconsistent calculations. With only the matrix element
to manipulate, it is not possible to fit the spectra of
different samples for a fixed offset; it is also necessary to
vary the offset. The final result depends strongly on the
choice of effective masses as well as the offset. It is not
surprising, therefore, that such widely varying offsets
have been estimated for somewhat similar samples.

In this paper we present a unified method, adding the
effects of strain to the more complete k p Hamiltonian of
Schuurmans and 't Hooft' and Eppenga et al. ' A novel
technique is used to solve the resulting Hamiltonian.
With more parameters available for adjustments, we find
that the outcome does not depend as strongly on the
offset as in the modified EFA. In fact, for a given set of
effective masses and an offset of 0.4, we have been able to
fit the data of all the samples of Refs. 1 and 6—8 very ac-
curately. In addition, we have varied the offset from 0.3
to 0.6 and found that the change of the calculated transi-

I

tion energies is negligible in many instances. We find
that the energy differences are not as sensitive to the
offset as previously supposed. We also show that for a
0.4 offset the lh ground state is extended over the entire
superlattice period due to the small lh band-edge discon-
tinuity, and is only slightly localized in the GaAs layer.
Because the lh aspect of the superlattice is borderline
type II if a 0.4 offset is presumed, it is relatively easy to
form a e-lh exciton under this condition. This may ex-
plain the strong e-lh excitonic peak reported in Ref. 7.

In the following section we describe the k p model
modified to include the effects of strain, the interface
boundary conditions, and the method of solution. Com-
parison of the calculated spectra with experimental data
is presented in Sec. III. The results are summarized in
Sec. IV.

II. THEORY

Consider a superlattice composed of layers l where
l =1 denotes the GaAs layers and l =2 the In„Ga1 „As
layers. We choose z as the quantization axis of angular
mornenta as well as the growth axis and let x and y
denote two orthogonal axes in the z =0 plane. We deal
only with the case in which the crystal momentum in the
x-y plane is zero. Then in a Kane-type k p analysis the
8 X 8 Hamiltonian in the I -point basis is reduced to two
degenerate 4X4 blocks. For the "spin-up" block the
basis set is u, =sf), u„„=g,—,'), u,„=g,—,'), and

uso =
~

—,', —,
' ). There is an analogous "spin-down" set. In

material I the energies of the spin-up states for a given k,
are given by the eigenvalues of the matrix H', ' '

K'=
',iP'k, —

E' —(y &

—2yz)ak,
E' —(y)+2yq)ak,

2&2yzak,

,'iP 'k, —

2&ay,'ak,'

E,' —~' —~',aa,'

where E,' (E') is the unstrained conduction (valence)
-band-edge energy, a=A /2m, P is Kane's rnomenturn
matrix element, ' and 6' is the spin-orbit energy. The
layer-dependent constants s', y', , and yz are Luttinger-
type parameters. ' These along with P' are obtained for
1=1 and 2 by diagonalizing K' and fitting the resulting
energy dispersion relations to those of the respective bulk
materials, i.e., by equating the I -point effective masses
derived from the dispersion relations to the experimental-
ly determined effective masses of each material.

We consider the superlattice grown on a GaAs buffer
layer in the [001] orientation. For growth on a thick
GaAs buffer, the In Ga, „As layers are subject to an in-

plane biaxial compression, a consequence of having to as-
surne the GaAs lattice constant. This effect increases the
overall band gap in the In Ga, As layers. In addition,
the uniaxial strain along the growth axis splits the degen-
eracy between the

~

—'„—,') and
~

—'„—,') states. The strain

I

Hamiltonian in the
~ J, m J ) basis is given for each layer

17, 18

H'=—st

0
0 —5E ——'5E,
0

7

5Eu + ,' 5E,'5E,' — —5E,—'

H z s s

—5E,'v'2
—5E„'

(2)

and

where 5E~ is the shift of the "center of gravity" of the
~ J, mz ) states relative to the ~s 1 ) states due to the hydro-
static component of the strain and 5E,' is the shear com-
ponent. The elements of K,', are obtained from'
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(4) states is given by

in which a' is the hydrostatic deformation potential, b' is
the valence-band axial deformation potential, and e,

' are
elements of the strain tensor. The nonzero elements of
the strain tensor are

(5)

a =—I
(C~»+2C~») aE,'

3 BP
(7)

where r}EsIBP is the pressure dependence of the band
gap. From Eq. (5) it is seen that the strain Hamiltonian
for the GaAs layers is a null matrix.

We define the strained band gap as

(8)

Taking the strain into account, the energy of the
~

—'„—', )

I

(6)

where C» and C', z are elements of the elastic stiffness
tensor, and d' is the lattice constant of material I. The
hydrostatic deformation potential is found from

(9)

The composition-dependent bulk band gaps in units of eV
are estimated from'

E (300 K)=1.43 —1.53x+0.45x

E (77 K)= 1.508 —1.47x+0.375x

E (2 K)=1.5192—l. 5837x +0.475x

(12a)

(12b)

(12c)

It is clear from Eqs. (9)—(11) that the valence-band
offset is defined with respect to the hh states in the two
layers. In addition, the "zero" of energy is taken as the
energy of the hh states is In„Ga, „As. Combining Eqs.
(1) and (2) and substituting for E,' and Ez, the total Ham-
iltonian becomes

From the strained band gaps and assuming the valence-
band offset to be Q, we obtain

(10)

El El +El

Htot

El +El +~lo.g2

', iP'k, —

E'. —(y', —2yq)ak,

'iP'k, —

0

E' +5E,' (y', +2yp)—ak,

', iP!k, -

2&2yzak, + —5E,'
2

(13)

'iP'k, - 2 2y', ~k,'+ fE,'
2

E' —6'+ —,'5E,' —yIak,

The Hamiltonian of Eq. (13) is Fourier transformed and
solved in real space, in which k, is transformed to

ir}Ir}z and—k, to —8 IBz . The resulting coupled
differential equations satisfy

Htot kz 1 F=EF
Z

(14)

where E is the energy and F is the column vector
IF„F!,„,F»,Fso I. Each F is the slowly varying envelope
portion of the wave function

Q'(r) = g u '(r )F (z)e (15)

where u'(r) is the cell-periodic part of the host Bloch
function at the zone center and the subscript j runs over
the four bands.

Equation (14) is best solved as a coupled entity.
Among the previous efforts in this area is that of Porod
et al. , who had solved a similar set for the GaAs-
A1 Ga, As system. To make a numerical treatment
feasible they found it necessary to decouple the system of
equations, retaining terms only up to second order in

I

8/Bz. But this results in a peculiar eigenvalue problem in
which each decoupled equation is nonlinear in energy.
Hence the eigenvalues must be obtained self-consistently.
A further disadvantage is that valuable terms necessary
to match the interface boundary conditions are lost. A
different scheme was used by Altarelli, who retained all
of the important terms, and expanded the components of
P in a suitable basis set. The system was subsequently re-
duced to a generalized eigenvalue problem to be solved
for the energies and the envelope expansion coefficients.
This, however, requires some guesswork in selecting the
basis set. Besides, errors are inevitably incurred by hav-
ing to truncate the set. A more exact approach was em-
ployed by Schuurmans and 't Hooft' and is similar to
that described in Ref. 24 in the treatment of piecewise-
constant potentials. At each interface the boundary con-
ditions are implemented by using transfer matrices. The
composition of these matrices is dictated by the need to
enforce the continuity of the envelope functions and par-
ticle current across each interface. A polynomial of de-
gree 8 in the crystal momentum is obtained, and the ener-
gies are computed indirectly from its roots. One disad-
vantage of this scheme, apart from being a rather difficult
problem, is that some of the solutions are physically un-
realistic, as explained in Ref. 13.
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We have opted for a more fundamental technique
wherein the superlattice period is divided into
equispaced points separated by b z. The differential
operators in Eq. (14) are then represented by their finite
difference equivalents, reducing the system to the eigen-
value problem +(C' ' —C'")8(z)F+C'"F=O, (18)

BF BF
( A ' —A "')8(z) + A''

az2 az2

+(B B )8( )
BF +B( ) BF'
az az

M)(
0

M3)

M4(

0 M)3 M)4 'F,
M 22 0 0 Fhh

0 M 33 34 Fn

0 M43 M ~ Fso

F.
Fhh

=E
1}1

Fso

(16}

where the unit step function 8(z) = 1 for z )0 and 8(z) =0
for z &0. Integrating Eq. (18) across an infinitesimally
small interval spanning the interface and using 8(z)=5(z)
we obtain

A' ' (0+)—A'" (0 ) —( A' ' —A'") (0)
az az az

where each M represents an N XN matrix, each F is a
column vector of length N, and 0 is an N XN null matrix.
Because we have not included the hh-lh mixing, the hh
component of the matrix is in block diagonal form. The
eigenvalues are readily obtained by diagonalizing the
large matrix. On finding the eigenvectors of the large
matrix, the rows will contain the envelope functions in
the order indicated in Eq. (16). For example, the first N
rows will consists of F, .

The interface boundary conditions to be applied, apart
from the continuity of the envelope functions, are ob-
tained by integrating Eq. (14) across the interface. Equa-
tion (14}can be written

+B' 'F(0+)—B'"F(0 ) —(B' ' —B"')F(0)=0 . (19)

The boundary conditions implied by Eq. (19) cannot be
imposed in practice because we do not know the function
and its derivative at z =0. As yet, there is no satisfactory
way of implementing the boundary conditions at an
abrupt interface as discussed in Refs. 13 and 23, and by
Morrow and Brownstein. Fortunately the interface is
never completely abrupt in practice, so that within a
small interval on either side, the parameters s', y&, yz,
and P' are expected to vary smoothly. This allows us to
discard the terms to be evaluated at z =0 in Eq. (19},
yielding

A' ' (0+)—A" (0 )+B' 'F(0+)
az az

BF
A +B +CF=0,

Bz2 Bz
(17)

—B'"F(0 }=0 . (20)

In the finite difference scheme this is applied by the trans-
formation

where A, B, and C are 4 X4 matrices and F is a column
vector. Assuming that the interface is at z =0 and taking
advantage of the piecewise-constant nature of the ma-
trices, Eq. (17) may be expressed as

8 8 8
A(z)

z
~ A(z)

Qz~ Bz Bz

Equation (16) is then approximated by

(21)

(E' +Eg, )F,' —a
i+1 &i

—
1

2hz

Fr+1 F&
—1

e e

2hz
. F'+ ' —2F'+F'

e e e
CXS

(b,z )

Fi +1 Fi —1 Fi +1 Fi —1

+2pi lh 1h ++]pi so EFi
3 2hz

(22a)

Ep F~h+a'
yi +1 2yi +1 yi

—1+2yi
—1

2hz

Fi +1 Fi —1
hh hh

2hz
Fhh

' —2Fhh +Fhh '

+a(y', —2y2} ~
=EFhh,

(bz}
(22b)

FI+1 F( —1

+2pi
2hz

+(E' +6E,'}F)h+a
yi +1+2yi +1 yi

—1 2yi
—1

2hz

Fi +1 Fi —1

1h 1h

2hz

F& +1 2F& +F& —1 I +1 t —1

i+2 i
)

lh 1h 1h 2~2 y2 y2
y 1 y2 (bz)2 2hz

Fso Fso

Fi +1 2F~ +FI —1

(&z)
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Fi +1 Fi —1

p j e e

2hz

i+1 i —1

—2&2a
2hz

Fi +1 Fi —1

1h 1}1

2hz
+ —5E F,h+(E b + ~5E )Fso

2

~i +1 ~i —1

2hz
Fso' —Fso', Fso' —2Fso+Fso'+ay'1 =gF

2hz (b,z )
(22d)

where the superscripts denote the position along the
growth axis within one period. The superscript l has
been discarded. The Bloch condition is enforced by set-
ting

FN+1=F(1) iqd

FIO) FN —iqd
i i

(23a)

(23b)

III. RESULTS

All of the physical constants required in the calcula-
tion are specified for the two binary compounds in Table
I. Linear interpolation is utilized for intermediate mole
fractions. The temperature dependence of these parame-
ters has been neglected. The effective masses in Table I
are close to those reported in Ref. 19 for bulk material.
In all of the subsequent simulations, these parameters
were not adjusted to fit the data of individual samples.
Instead they were fixed for all of the samples we ana-
lyzed.

To test the validity of the model, we have calculated
the I -point energies of a large number of superlattices
and compared the energy differences with the published

where F'" denotes the function at the first point in the
current unit cell, F +' is the function at the first point in
the next unit cell, F' ' is function at the last point in the
previous unit cell, d is the superlattice period, q is the
crystal momentum along the growth axis, and j runs over
the four bands. Close inspection of Eqs. (22a)-(22d) re-
veals that they form a system of equations resembling Eq.
(16). Both the energies and wave functions can be ob-
tained in a straightforward manner. Furthermore, the
full coupling among the bands is retained, and the inter-
face boundary conditions are automatically satisfied.

To demonstrate the reliability of our numerical tech-
nique, we have solved Eqs. (22a) —(22d) for the
GaAs/Ga} „Al,As system of Eppenga et al. ' Using
their set of parameters, we find that the calculated ener-
gies are identical to theirs for the test structure they ana-
lyzed. Additionally, with the use of an optimized set of
parameters, we have since been able to obtain good agree-
ment between the theoretically and experimentally deter-
mined transition energies for the GaAs/A1As system.

optical data for the corresponding structures. Table II
relates the theoretical excitonic energies to the data of Ji
et al. The exciton binding energy has been subtracted
from the calculated transition energies; a binding energy
of 10 meV is assumed. The usual notation is employed:
for instance, 1C-1H denotes the n =1 electron and n =1
hh exciton. It is clear that the theoretical values are in
very good agreement with experiment. Offsets of 0.3 and
0.4 yield comparable energies for the e-hh excitons
which are close to the experimental values. At the higher
offset, the calculated energies for the 1C-1H exciton are
consistently lower. For higher-order excitons the trend is
more obscure and depends on the structure and composi-
tion of the superlattice.

Variations of the offset are liable to induce more sub-
stantial changes in the e-lh exciton energy. Greater sensi-
tivity of the e-lh exciton energy to the offset can be ex-
pected due to the light holes residing in the GaAs layers
for small offsets, and in the In„Ga, As layers for large
offsets. This is illustrated more clearly in Figs. 1(a)—1(c)
in which the energies of the e, hh, lh, and SO band edges
are sketched along the growth axis for Q„=0.3, 0.4, and
0.6. The band-edge profile is a strong function of both
temperature and mole fraction. The temperature depen-
dence is more striking in borderline cases. At 2 K the
transition between direct and indirect e-lh excitonic be-
havior occurs at Q„=0.45. For offsets near 0.45 it is
found that the e-lh exciton is direct at some temperatures
and indirect at others. While the 0.3 offset yields reason-
ably close agreement with the data of Ref. 6, the theory is
remarkably accurate for a 0.4 offset, the worst-ease error
being only 5 meV.

To verify the consistency of the model we computed
the spectra of the samples of Ref. 1. The results are de-
picted in Table III. It is evident that the agreement is
even closer. At 77 K the calculated energies are less sen-
sitive to offset variations than at 2 K. Since both offsets
produce very close fits, it is difficult to predict an offset
value with great certainty. Once again, however, the
agreement for the e-lh excitons is slightly closer for a 0.4
offset.

The previous two sets of data pertain to fairly thick
structures. We have also tested the theory on thin sam-
ples. Table IV compares the measured data of Pan

TABLE I. The physical constants used in calculating the band structure. Except for the masses, all are taken from Ref. 19.

d
(A)

dEg /dP
(10 eV/kg cm )

b Cl 1 C12
(eV) (10" dyn/cm ) (10" dyn/cm ) (eV) m, /mo mhh/mo mph/mo mso/mo

GaAs 5.6533
In As 6.0583

11.5
10.2

—1.7
—1.8

11.88
8.329

5.380
4.526

0.341
0.381

0.067
0.023

0.454
0.410

0.08
0.04

0.15
0.08
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TABLE II. Comparison with the experimental data of Ref. 6. All energies are expressed in eV. The
data were measured at 2 K. (Sample designations are from Ref. 6.)

Sample
X

LG A.(A)
L In Ga Asx 1

—x
1C-1H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
2C-2H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
3C-3H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
1C-1L (expt. )

Theory (0.3 offset)
Theory (0.4 offset)

61
0.15

200
85

1.3747
1.3798
1.3783
1.4726
1.4768
1.4822

1.4393
1.4275
1.4393

62
0.15

200
159

1.3604
1.3576
1.3571
1.4059
1.4041
1.4022
1.4665
1.4697
1.4619
1.4179
1.4105
1.4232

64
0.15

200
213

1.3500
1.3514
1.3512
1.3785
1.3810
1.3801
1.4293
1.4271
1.4247
1.4147
1.4054
1.4183

66
0.193

200
85

1.3334
1.3361
1.3346
1.4393
1.4467
1.4398

1.4115
1.3984
1.4144

81
0.13

200
106

1.3917
1.3913
1.3903
1.4683
1.4652
1.4609

1.4440
1.4343

1.55

1.14

0.73 (a)

032-
f4

-0.09

-0.50

1.5

07 - (b)

bQ

0.3-

-0.1

-0.5

1.5

el

hh, lh

SO

el

el

GaAs

hh, lh

SO

GaAs

SO

el

InGaAs

hh

el

InGaAs

lh

lh

et al. with the calculated spectra. Unlike the previous
two examples, the agreement is not as close. Yet the er-
ror is less than 0.8' in most cases. We have not at-
tempted to vary the layer thicknesses to produce a better
fit, choosing instead to use the nominal thicknesses: Pan
et al. have reported somewhat large thickness uncer-
tainties in their structures. The agreement is close
enough, we believe, to affirm the usefulness of the model
for a wide range of structures. In this instance the calcu-
lated energies are relatively insensitive to offset variations
at the higher temperatures. This, together with the lack
of precise data regarding the geometry, makes it difficult
to deduce an offset from the data of Ref. 8 alone.

The theory is especially effective in reproducing the
spectra of Ref. 7, as shown in Table V. Based on an
effective-mass theory with strain, Menendez et al. had
fitted their data to an offset of 0.6, i.e., with most of the
band-gap difference appearing across the valence-band
edge. This would imply complete type-I character, as il-
lustrated in Fig. 1(c). Within our model, however, the
calculated energy differences are relatively small for offset
variations from 0.3 to 0.6. For example, the theoretical

TABLE III. Comparison with the 77-K experimenta1 data of
Ref. 1. The experimental numbers were estimated from the
graphical data of Ref. 1.

Sample
B

bQ

0.3-

-0. 1

-0.5

(c)

hh, lh

SO

GaAs InGaAs

hh

SO
lh

FIG. 1. The e, hh, lh, and SO band minima along the growth
axis in the vicinity of the interface for Q,, =(a) 0.3, {b) 0.4, and
(c) 0.6. The temperature is 2 K and the In mole fraction is 0.15.

LGaAS

L In Ga Asx l —x
1C-1K (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
2C-2H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
1C-1L (expt. )

Theory (0.3 offset)
Theory (0.4 offset)

0.15
200

50

1.397
1.411
1.408

1.513
1.506
1.451
1.447
1.454

0.15
200
100

1.369
1.375
1.374
1.457
1.455
1.450
1.428
1.421
1.433

0.15
200
120

1.360
1.369
1.368
1.431
1.434
1.430
1.415
1.416
1.428
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0 0

TABLE IV. Comparison with the experimental data of Ref. 8. Sample 1 is (100 A GaAs)/(50 A

Inp»Gap, 9As) and sample 2 is (100 AGaAs)/(30 A Inp»Gap 88As) ~

1C-1H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
1C-2H {expt.)
Theory (0.3 offset)
Theory (0.4 offset)
1C-3H (expt. )

Theory (0.3 offset)
Theory {0.4 offset)
2C-1H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
2C-2H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
2C-3H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)
1C-1L (expt. )

Theory (0.3 ofFset)

Theory (0.4 offset)
3C-3H (expt. )

Theory (0.3 offset)
Theory (0.4 offset)

300 K

1.358
1.356
1.353

1.392
1.387
1.393

1.476
1.493
1.495
1.379
1.383
1.387

Sample 1

77 K

1.448
1.438
1.435

1.481
1.468
1.474

1.565
1.573
1.575
1.469
1.464
1.468

300 K

1.372
1.373
1.369

1.401
1.406

1.499
1.494
1.490
1.528
1.523
1.525

1.389
1.394
1 ~ 396
1.560
1.557
1.556

Sample 2
77 K

1.453
1.454
1.450
1.487
1.481
1.485

1.582
1.575
1.570
1.616
1.602
1.605

1.473
1.474
1.476
1.646
1.636
1.635

energy for the 1C-1H exciton differs from the experimen-
tal value by 0.2 meV for Q„=0.6. While the 0.3 offset
prediction is furthest away for this exciton, it is an
overestimate by only 1.1 meV, representing an error of
0.08%. For the 1C-1L exciton, the 0.6 offset prediction is
most distant at 0.3% error while the 0.4 offset prediction
is nearest at 0.06%.

Evidently any offset in the range 0.3—0.4 can accurate-
ly fit the available data. Our model appears to support an
offset between 0.3 and 0.4, predicting a value nearer 0.4.
Such an offset would mean that 1C-1L exciton is indirect
in real space, a situation that is portrayed in Fig. 1(b).

It is instructive to examine the envelope functions as a
function of Q„ for some of the superlattices described in
the literature. Figures 2(a) —2(c) illustrate the envelope
functions at q =0 and Q, =0.6 for the structure of Ref. 7
for three different eigenvalues. Each state will, in gen-
eral, consist of four components. But in the absence of
hh-lh mixing the e and 1h states contain three com-
ponents and the hh states only a single component. In-
direct coupling among all the bands still exists via the
Luttinger parameters. In Fig. 2(a) the dominant com-
ponent is the envelope function associated with the ~s l' )
states. Based on the profile of the eigenvectors, the ener-

gy is assigned to the n =1 electron state. By a similar ar-
gument, Fig. 2(b) depicts the n = 1 hh state and Fig. 2(c)
the n =1 lh state. Type-I behavior is implied by the lo-
calization of the e, hh, and lh states in the In Ga& As
layer.

IU. SUMMARY

In summary, we have outlined a technique to calculate
the band structure of strained In Ga, ,As-GaAs super-
lattices. The e, hh, lh, and SO bands are treated in a
unified description in which Kane's k p Hamiltonian

TABLE V. Comparison with the experimental data of Ref. 7.
The structure is (415 A GaAs)/(193 A InppgGap95As). The
measured data were taken at 5 K. The theoretical values were
calculated for 2 K. The experimental numbers were estimated
from the graphical data of Ref. 7. All energies are in eV.

Experiment Theory

Offset
1C-1H
2C-2H
3C-3H
1C-3H
1C-1L

1.4609

1.4726
1.4817

0.3
1.4620
1.4866
1.5067
1.4728
1.4784

0.4
1.4616
1.4851
1.5023
1.4734
1.4826

0.6
1.4607
1.4808
1.4926
1.4736
1.4859

Figures 3(a)—3(c) show the ground-state envelope func-
tions for Q„=0.4. Contrary to expectations, the lh state
is not localized in the GaAs layer but is extended over the
entire period. Conditions are thus favorable for forming
an e-lh exciton, and may serve to explain the strong 1C-
1L peak reported in Ref. 7.
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FIG. 2. Eigenvectors of the large matrix in Eq. (16) for
E = (a) 1.4690 eV, (b) —0.001 655 3 eV, and (c) —0.026 877 eV.
An offset of 0.6 is assumed. The superlattice is that of Ref. 7.

0

The GaAs layer lies within 0 &z &415 A and the Ino o&Gao 95As
0

layer is in the range 415 &z &608 A. A temperature of 2 K is

assumed. The eigenvalues represent the n =1 e, hh, and lh

states, respectively.

containing the important free electron terms is combined
with the strain Hamiltonian and diagonalized to produce
the energies and wave functions. Four adjustable param-
eters are utilized to accurately simulate the bulk band
structure of each host material. The calculated transition
energies are in very good agreement with a wide range of
published optical data at different temperatures for sam-
ples having mole fractions varying from 0.05 to 0.193.
We find that the calculated transition energies are fairly
insensitive to offset variations between 0.3 and 0.6. The

FIG. 3. Eigenvectors of the structure described in Fig. 2 for
E =(a) 1.470 eV, (b) —0.0015518 eV, and (c) —0.022574 eV.
Here Q, , =0.4. In each case the ground state is depicted.

e-hh excitonic energies can be fitted very well with any of
these offsets. The calculated e-lh transition energies,
however, appear to indicate an offset in the vicinity of
0.4.
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